6.6 KiB
title | TARGET DECK | FILE TAGS | tags | |
---|---|---|---|---|
Absolute Value | Obsidian::STEM | algebra::abs |
|
Overview
Let x \in \mathbb{R}
. The absolute value of x
, denoted \lvert x \rvert
, is defined as \lvert x \rvert = \begin{cases} x & \text{if } x \geq 0 \ -x & \text{if } x \leq 0 \end{cases}
%%ANKI
Basic
How is the absolute value of x \in \mathbb{R}
denoted?
Back: \lvert x \rvert
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
How is the absolute value of x \in \mathbb{R}
defined?
Back: \lvert x \rvert = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x \leq 0 \end{cases}
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
The absolute value of x \in \mathbb{R}
considers what two cases?
Back: Whether x \geq 0
or x \leq 0
.
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
Let x \in \mathbb{R}
. When is -\lvert x \rvert \leq x < \lvert x \rvert
?
Back: When x < 0
.
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
Let x \in \mathbb{R}
. When is -\lvert x \rvert < x \leq \lvert x \rvert
?
Back: When x > 0
.
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
Let x \in \mathbb{R}
. When is -\lvert x \rvert \leq x \leq \lvert x \rvert
?
Back: Always.
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
Let x, a \in \mathbb{R}
and a \geq 0
. How is \lvert x \rvert \leq a
equivalently written as a chain of inequalities?
Back: -a \leq x \leq a
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
Let x, a \in \mathbb{R}
and a \geq 0
. How is \lvert x \rvert \leq a
geometricaly depicted?
Back:
!
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
Let x, a \in \mathbb{R}
and a \geq 0
. How is -a \leq x \leq a
equivalently written using absolute value?
Back: \lvert x \rvert \leq a
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
Let x, a \in \mathbb{R}
and a \geq 0
. How is -a \leq x \leq a
geometrically depicted?
Back:
!
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
Triangle Inequality
Let x, y \in \mathbb{R}
. Then the triangle inequality of \mathbb{R}
states \lvert x + y \rvert \leq \lvert x \rvert + \lvert y \rvert$$
%%ANKI
Basic
What does the triangle inequality of \mathbb{R}
state?
Back: For x, y \in \mathbb{R}
, \lvert x + y \rvert \leq \lvert x \rvert + \lvert y \rvert
.
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
Why is the triangle inequality named the way it is?
Back: The length of a triangle side is \leq
the sum of the other two sides.
Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
END%%
%%ANKI
Basic
What algebraic inequality is demonstrated in the following?
!
Back: The triangle inequality of \mathbb{R}
.
Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.
END%%
%%ANKI
Basic
What degenerate triangle justifies use of \leq
over <
in the triangle inequality of \mathbb{R}
?
Back:
!
Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.
END%%
%%ANKI
Basic
What two chains of inequalities can be added together to prove the triangle inequality of \mathbb{R}
?
Back: -\lvert x \rvert \leq x \leq \lvert x \rvert
and -\lvert y \rvert \leq y \leq \lvert y \rvert
.
Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.
END%%
%%ANKI
Basic
What does the general triangle inequality of \mathbb{R}
state?
Back: For real numbers a_1, \ldots, a_n
, \left\lvert \sum_{k=1}^n a_k \right\rvert \leq \sum_{k=1}^n \lvert a_k \rvert$$
Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.
END%%
%%ANKI
Basic
Let a_1\, \ldots, a_n \in \mathbb{R}
. What is the following a generalization of? \left\lvert \sum_{k=1}^n a_k \right\rvert \leq \sum_{k=1}^n \lvert a_k \rvert$$
Back: The triangle inequality of
\mathbb{R}
.
Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.
END%%
Bibliography
- Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).
- “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.