notebook/notes/algebra/abs-val.md

6.6 KiB

title TARGET DECK FILE TAGS tags
Absolute Value Obsidian::STEM algebra::abs
algebra

Overview

Let x \in \mathbb{R}. The absolute value of x, denoted \lvert x \rvert, is defined as \lvert x \rvert = \begin{cases} x & \text{if } x \geq 0 \ -x & \text{if } x \leq 0 \end{cases}

%%ANKI Basic How is the absolute value of x \in \mathbb{R} denoted? Back: \lvert x \rvert Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic How is the absolute value of x \in \mathbb{R} defined? Back: \lvert x \rvert = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x \leq 0 \end{cases} Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic The absolute value of x \in \mathbb{R} considers what two cases? Back: Whether x \geq 0 or x \leq 0. Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic Let x \in \mathbb{R}. When is -\lvert x \rvert \leq x < \lvert x \rvert? Back: When x < 0. Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic Let x \in \mathbb{R}. When is -\lvert x \rvert < x \leq \lvert x \rvert? Back: When x > 0. Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic Let x \in \mathbb{R}. When is -\lvert x \rvert \leq x \leq \lvert x \rvert? Back: Always. Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic Let x, a \in \mathbb{R} and a \geq 0. How is \lvert x \rvert \leq a equivalently written as a chain of inequalities? Back: -a \leq x \leq a Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic Let x, a \in \mathbb{R} and a \geq 0. How is \lvert x \rvert \leq a geometricaly depicted? Back: !abs-value-geom.png Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic Let x, a \in \mathbb{R} and a \geq 0. How is -a \leq x \leq a equivalently written using absolute value? Back: \lvert x \rvert \leq a Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic Let x, a \in \mathbb{R} and a \geq 0. How is -a \leq x \leq a geometrically depicted? Back: !abs-value-geom.png Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

Triangle Inequality

Let x, y \in \mathbb{R}. Then the triangle inequality of \mathbb{R} states \lvert x + y \rvert \leq \lvert x \rvert + \lvert y \rvert$$

%%ANKI Basic What does the triangle inequality of \mathbb{R} state? Back: For x, y \in \mathbb{R}, \lvert x + y \rvert \leq \lvert x \rvert + \lvert y \rvert. Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic Why is the triangle inequality named the way it is? Back: The length of a triangle side is \leq the sum of the other two sides. Reference: Tom M. Apostol, Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, 2nd ed. (New York: Wiley, 1980).

END%%

%%ANKI Basic What algebraic inequality is demonstrated in the following? !triangle-inequality.png Back: The triangle inequality of \mathbb{R}. Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.

END%%

%%ANKI Basic What degenerate triangle justifies use of \leq over < in the triangle inequality of \mathbb{R}? Back: !triangle-inequality-degenerate.png Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.

END%%

%%ANKI Basic What two chains of inequalities can be added together to prove the triangle inequality of \mathbb{R}? Back: -\lvert x \rvert \leq x \leq \lvert x \rvert and -\lvert y \rvert \leq y \leq \lvert y \rvert. Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.

END%%

%%ANKI Basic What does the general triangle inequality of \mathbb{R} state? Back: For real numbers a_1, \ldots, a_n, \left\lvert \sum_{k=1}^n a_k \right\rvert \leq \sum_{k=1}^n \lvert a_k \rvert$$ Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.

END%%

%%ANKI Basic Let a_1\, \ldots, a_n \in \mathbb{R}. What is the following a generalization of? \left\lvert \sum_{k=1}^n a_k \right\rvert \leq \sum_{k=1}^n \lvert a_k \rvert$$ Back: The triangle inequality of \mathbb{R}. Reference: “Triangle Inequality.” In Wikipedia, July 1, 2024. https://en.wikipedia.org/w/index.php?title=Triangle_inequality.

END%%

Bibliography