493 lines
25 KiB
Markdown
493 lines
25 KiB
Markdown
---
|
|
title: Combinators
|
|
TARGET DECK: Obsidian::STEM
|
|
FILE TAGS: combinator
|
|
tags:
|
|
- combinator
|
|
---
|
|
|
|
## Overview
|
|
|
|
Assume that there is given an infinite sequence of expressions called **variables** and a finite or infinite sequence of expressions called **atomic constants**, different from the variables. Included in the atomic constants are some [[#Basic Combinators|basic combinators]]. The set of expressions called $CL$-terms is defined inductively as follows:
|
|
|
|
* all variables and atomic constants are $CL$-terms;
|
|
* if $X$ and $Y$ are $CL$-terms, then so is $(XY)$.
|
|
|
|
An **atom** is a variable or atomic constant. A **non-redex constant** is any atomic constant other than the basic combinators. A **non-redex atom** is a variable or non-redex constant. A **closed term** is a term containing no variables. A **combinator** is a closed term containing no atomic constants other than the basic combinators.
|
|
|
|
If the sequence of atomic constants is empty (besides the basic combinators), the system is called **pure**. Otherwise it is called **applied**.
|
|
|
|
%%ANKI
|
|
Basic
|
|
Who is usually attributed the creation of combinatory logic?
|
|
Back: Moses Schönfinkel.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657635-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How many variables exist in a combinatory logic system?
|
|
Back: An infinite number.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657636-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How many atomic constants exist in a combinatory logic system?
|
|
Back: The basic combinators plus zero or more.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657637-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What distinguishes variables and atomic constants in a combinatory logic system?
|
|
Back: The latter is meant to refer to constants outside the formal system.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657638-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What two classes of expressions does an "atom" potentially refer to in a combinatory logic system?
|
|
Back: Variables and atomic constants.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657639-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What general term refers to both variables and atomic constants in a combinatory logic system?
|
|
Back: Atoms.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657640-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Why are variables and atomic constants called "atoms" in a combinatory logic system?
|
|
Back: They are not composed of smaller $CL$-terms.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657641-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
When is a combinatory logic system considered pure?
|
|
Back: When there exist no atomic constants in the system (besides the basic combinators).
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657642-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
When is a combinatory logic system considered applied?
|
|
Back: When there exists at least one atomic constant in the system (besides the basic combinators).
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657643-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Cloze
|
|
A combinatory logic system is either {pure} or {applied}.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657644-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What term(s) correspond to the base case of the $CL$-term definition?
|
|
Back: The atoms.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657645-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What term(s) correspond to the inductive case of the $CL$-term definition?
|
|
Back: For $CL$-terms $X$ and $Y$, $(XY)$ is a $CL$-term.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657646-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Consider $CL$-term $(S0)$. Is our combinatory logic system pure or applied?
|
|
Back: Applied.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657647-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Consider $CL$-term $(SS)$. Is our combinatory logic system pure or applied?
|
|
Back: Indeterminate.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657648-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What atomic constants are permitted in a pure combinatory logic system?
|
|
Back: Just the basic combinators.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657649-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What variables are permitted in a pure combinatory logic system?
|
|
Back: Any.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657650-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What atomic constants are permitted in an applied combinatory logic system?
|
|
Back: Any.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657651-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What variables are permitted in an applied combinatory logic system?
|
|
Back: Any.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657652-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What atoms are permitted in a pure combinatory logic system?
|
|
Back: All variables and the basic combinators.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657653-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What atoms are permitted in an applied combinatory logic system?
|
|
Back: Any.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657654-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What are the non-redex constants in a combinatory logic system?
|
|
Back: Any atomic constant other than the basic combinators.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657655-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What are the redex constants in a combinatory logic system?
|
|
Back: The basic combinators.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657656-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What are the non-redex atoms in a combinatory logic system?
|
|
Back: Any variable or non-redex constant.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657657-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What are the redex atoms in a combinatory logic system?
|
|
Back: The basic combinators.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657658-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What distinguishes non-redex constants from non-redex atoms?
|
|
Back: The latter also refer to variables.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657659-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Which of non-redex constants or atoms is more general?
|
|
Back: The non-redex atoms.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657660-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
In a combinatory logic system, what is a closed term?
|
|
Back: A $CL$-term with no variables.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657661-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
In a combinatory logic system, what is a combinator?
|
|
Back: A closed term with no atomic constants (besides the basic combinators).
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657662-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
In a pure combinatory logic system, what distinguishes closed terms from combinators?
|
|
Back: N/A. They are equivalent.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657663-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
In an applied combinatory logic system, what distinguishes closed terms from combinators?
|
|
Back: Closed terms are permitted to have atomic constants other than the basic combinators.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657664-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Is $CL$-term $(\mathbf{S}0)$ a closed term?
|
|
Back: Yes.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657665-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Is $CL$-term $(\mathbf{S}x)$ a closed term?
|
|
Back: No, assuming $x$ is a variable.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657666-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Is $CL$-term $(\mathbf{S}0)$ a combinator?
|
|
Back: No.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657667-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Is $CL$-term $(\mathbf{S}x)$ a combinator?
|
|
Back: No.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657668-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
In what kind of combinator logic are closed terms equivalent to combinators?
|
|
Back: Pure systems.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657669-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Cloze
|
|
A {1:$CL$}-term is to {2:combinatory logic} whereas a {2:$\lambda$}-term is to {1:$\lambda$-calculus}.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657670-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What are the non-redex constants in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
|
|
Back: Just $0$.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657671-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What are the redex constants in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
|
|
Back: Each $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657672-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What are the non-redex atoms in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
|
|
Back: $x$ and $0$.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657673-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What are the redex atoms in $CL$-term $(((\mathbf{SK})((\mathbf{SK})(x)))(\mathbf{I}0))$?
|
|
Back: Each $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735413657674-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}\mathbf{S}))\mathbf{K})$ a combinator?
|
|
Back: N/A. It is.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1737212699921-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}x))((\mathbf{S}\mathbf{K})\mathbf{K}))$ a combinator?
|
|
Back: It contains atom $x$ which isn't a basic combinator.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1737212699927-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}0))((\mathbf{S}\mathbf{K})\mathbf{K}))$ a combinator?
|
|
Back: It contains atom $0$ which isn't a basic combinator.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1737212699932-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}\mathbf{S}))\mathbf{K})$ a closed term?
|
|
Back: N/A. It is.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1737212699937-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}x))((\mathbf{S}\mathbf{K})\mathbf{K}))$ a closed term?
|
|
Back: It contains variable $x$.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1737212699942-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}0))((\mathbf{S}\mathbf{K})\mathbf{K}))$ a closed term?
|
|
Back: N/A. It is.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1737212699947-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Cloze
|
|
By convention, parentheses in combinatory logic are {left}-associative.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1737245400699-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is $CL$-term $UVWX$ written with parentheses reintroduced?
|
|
Back: $(((UV)W)X)$
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1737245400709-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
In combinatory logic, is $UVW \equiv ((UV)W)$?
|
|
Back: Yes.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1737245400737-->
|
|
END%%
|
|
|
|
## Basic Combinators
|
|
|
|
The combinatory logic is a notation that eliminate the need for quantified variables. We start with basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. These **basic combinators** are defined as:
|
|
|
|
* $\mathbf{S}$ (the starling); $(\mathbf{S}(f, g))(x) = f(x, g(x))$
|
|
* $\mathbf{K}$ (the kestrel); $(\mathbf{K}(a))(x) = a$
|
|
* $\mathbf{I}$ (the idiot bird); $\mathbf{I}(f) = f$
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the $\mathbf{S}$ combinator defined?
|
|
Back: As $(\mathbf{S}(f, g))(x) = f(x, g(x))$.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735403774398-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What name does Smullyan give the $\mathbf{S}$ combinator?
|
|
Back: The starling.
|
|
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
|
<!--ID: 1735403774399-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the starling combinator defined?
|
|
Back: As $(\mathbf{S}(f, g))(x) = f(x, g(x))$.
|
|
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
|
<!--ID: 1735404184954-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the $\mathbf{K}$ combinator defined?
|
|
Back: As $(\mathbf{K}(a))(x) = a$.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735403774400-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What name does Smullyan give the $\mathbf{K}$ combinator?
|
|
Back: The kestrel.
|
|
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
|
<!--ID: 1735403774401-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the kestrel combinator defined?
|
|
Back: As $(\mathbf{K}(a))(x) = a$.
|
|
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
|
<!--ID: 1735404184957-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the $\mathbf{I}$ combinator defined?
|
|
Back: As $I(f) = f$.
|
|
Reference: Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
<!--ID: 1735403774402-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What name does Smullyan give the $\mathbf{I}$ combinator?
|
|
Back: The idiot bird.
|
|
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
|
<!--ID: 1735403774403-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the idiot bird combinator defined?
|
|
Back: As $I(f) = f$.
|
|
Reference: Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000.
|
|
<!--ID: 1735404184959-->
|
|
END%%
|
|
|
|
## Bibliography
|
|
|
|
* “Combinatory Logic.” In _Wikipedia_, August 25, 2024. [https://en.wikipedia.org/w/index.php?title=Combinatory_logic](https://en.wikipedia.org/w/index.php?title=Combinatory_logic&oldid=1242193088).
|
|
* Hindley, J Roger, and Jonathan P Seldin. _Lambda-Calculus and Combinators, an Introduction_, n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
* Smullyan, Raymond M. _To Mock a Mockingbird_. Oxford: Oxford university press, 2000. |