Introductory notes on natural deduction.

c-declarations
Joshua Potter 2024-07-22 08:24:49 -06:00
parent b9504d7857
commit b498097731
11 changed files with 216 additions and 52 deletions

View File

@ -251,7 +251,7 @@
"combinatorics/inclusion-exclusion.md": "c27b49ee03cc5ee854d0e8bd12a1d505", "combinatorics/inclusion-exclusion.md": "c27b49ee03cc5ee854d0e8bd12a1d505",
"_journal/2024-02-21.md": "b9d944ecebe625da5dd72aeea6a916a2", "_journal/2024-02-21.md": "b9d944ecebe625da5dd72aeea6a916a2",
"_journal/2024-02/2024-02-20.md": "af2ef10727726200c4defe2eafc7d841", "_journal/2024-02/2024-02-20.md": "af2ef10727726200c4defe2eafc7d841",
"algebra/radices.md": "56919586bfbbb96c53ac12924bdb04b1", "algebra/radices.md": "81c887836b38a8584234a74d612aef12",
"_journal/2024-02-22.md": "e01f1d4bd2f7ac2a667cdfd500885a2a", "_journal/2024-02-22.md": "e01f1d4bd2f7ac2a667cdfd500885a2a",
"_journal/2024-02/2024-02-21.md": "f423137ae550eb958378750d1f5e98c7", "_journal/2024-02/2024-02-21.md": "f423137ae550eb958378750d1f5e98c7",
"_journal/2024-02-23.md": "219ce9ad15a8733edd476c97628b71fd", "_journal/2024-02-23.md": "219ce9ad15a8733edd476c97628b71fd",
@ -325,7 +325,7 @@
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b", "_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53", "set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
"set/index.md": "6670c57f29c84eef8dcfff7a8901befe", "set/index.md": "6670c57f29c84eef8dcfff7a8901befe",
"set/graphs.md": "1a0c09f643829dae6a101b96de31eb40", "set/graphs.md": "f0cd201673f2a999321dda6c726e8734",
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb", "_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391", "_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
"awk/variables.md": "e40a20545358228319f789243d8b9f77", "awk/variables.md": "e40a20545358228319f789243d8b9f77",
@ -485,7 +485,7 @@
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869", "_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
"_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae", "_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae",
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95", "_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
"algebra/set.md": "843b092a980133ba7bd61b1750a6df08", "algebra/set.md": "fe0121964ae8c788a2afb6031b4086d9",
"algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8", "algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8",
"git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb", "git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb",
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337", "_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
@ -510,14 +510,14 @@
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1", "_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a", "_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1", "_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
"set/relations.md": "07d593f334d656d1deb3d11055a21c37", "set/relations.md": "29f9b8220cc147ae638e4832c0e82919",
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2", "_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381", "_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8", "_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
"_journal/2024-06/2024-06-07.md": "c6bfc4c1e5913d23ea7828a23340e7d3", "_journal/2024-06/2024-06-07.md": "c6bfc4c1e5913d23ea7828a23340e7d3",
"lambda-calculus/alpha-conversion.md": "007828faf9b4ace5bd30b87a36a90dcf", "lambda-calculus/alpha-conversion.md": "007828faf9b4ace5bd30b87a36a90dcf",
"lambda-calculus/index.md": "64efe9e4f6036d3f5b4ec0dc8cd3e7b9", "lambda-calculus/index.md": "64efe9e4f6036d3f5b4ec0dc8cd3e7b9",
"x86-64/instructions/condition-codes.md": "67d325298b9b605a59c4855d0c9f2043", "x86-64/instructions/condition-codes.md": "1f59f0b81b2e15582b855d96d1d377da",
"x86-64/instructions/logical.md": "818428b9ef84753920dc61e5c2de9199", "x86-64/instructions/logical.md": "818428b9ef84753920dc61e5c2de9199",
"x86-64/instructions/arithmetic.md": "271218d855e7291f119f96e91f582738", "x86-64/instructions/arithmetic.md": "271218d855e7291f119f96e91f582738",
"x86-64/instructions/access.md": "c19bc3392cf493fcc9becf46c818cc50", "x86-64/instructions/access.md": "c19bc3392cf493fcc9becf46c818cc50",
@ -536,7 +536,7 @@
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e", "_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728", "_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
"set/functions.md": "5740a88e79df5fcd8096485954c0a26a", "set/functions.md": "b739ef156a4420a141f76dbcecaff8cf",
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4", "_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"lambda-calculus/beta-reduction.md": "6c9a9f4983b0974e0184acaee7c27a22", "lambda-calculus/beta-reduction.md": "6c9a9f4983b0974e0184acaee7c27a22",
@ -620,18 +620,21 @@
"_journal/2024-07/2024-07-18.md": "237918b58424435959cbc949d01e7932", "_journal/2024-07/2024-07-18.md": "237918b58424435959cbc949d01e7932",
"_journal/2024-07-20.md": "d8685729effc374e4ece1e618c2fdad3", "_journal/2024-07-20.md": "d8685729effc374e4ece1e618c2fdad3",
"_journal/2024-07/2024-07-19.md": "e9fe4569f88e1ba9393292bcf092edfc", "_journal/2024-07/2024-07-19.md": "e9fe4569f88e1ba9393292bcf092edfc",
"_journal/2024-07-21.md": "dd5dd93f119f69571a78e027fab7da5d", "_journal/2024-07-21.md": "62c2651999371dd9ab10d964dac3d0f8",
"_journal/2024-07/2024-07-20.md": "d8685729effc374e4ece1e618c2fdad3", "_journal/2024-07/2024-07-20.md": "d8685729effc374e4ece1e618c2fdad3",
"logic/classical/index.md": "ee0a4b2bfcfa2cab0880db449cb62df1", "logic/classical/index.md": "ee0a4b2bfcfa2cab0880db449cb62df1",
"logic/classical/truth-tables.md": "b739e2824a4a5c26ac446e7c15ce02aa", "logic/classical/truth-tables.md": "b739e2824a4a5c26ac446e7c15ce02aa",
"formal-system/proof-system/index.md": "1c95481cbb2e79ae27f6be1869599657", "formal-system/proof-system/index.md": "1c95481cbb2e79ae27f6be1869599657",
"formal-system/proof-system/equiv-trans.md": "00f6d209a448ab25acaa3bff7fd5c6b6", "formal-system/proof-system/equiv-trans.md": "4d5e9236944c3ea99f484bfcb14292d0",
"formal-system/logical-system/index.md": "708bb1547e7343c236068c18da3f5dc0", "formal-system/logical-system/index.md": "708bb1547e7343c236068c18da3f5dc0",
"formal-system/logical-system/pred-logic.md": "2524ccc09561bc219dab3f32010a0161", "formal-system/logical-system/pred-logic.md": "2524ccc09561bc219dab3f32010a0161",
"formal-system/logical-system/prop-logic.md": "b61ce051795d5a951c763b928ec5cea8", "formal-system/logical-system/prop-logic.md": "b61ce051795d5a951c763b928ec5cea8",
"formal-system/index.md": "3d31c99bffdcb05de9f2e32ac6319952", "formal-system/index.md": "3d31c99bffdcb05de9f2e32ac6319952",
"programming/short-circuit.md": "c256ced42dc3b493aff5a356e5383b6e", "programming/short-circuit.md": "c256ced42dc3b493aff5a356e5383b6e",
"formal-system/abstract-rewriting.md": "8424314a627851c5b94be6163f64ba30" "formal-system/abstract-rewriting.md": "8424314a627851c5b94be6163f64ba30",
"_journal/2024-07-22.md": "dbbf1666c0ed939ce0ce339d41231b04",
"_journal/2024-07/2024-07-21.md": "62c2651999371dd9ab10d964dac3d0f8",
"formal-system/proof-system/natural-deduction.md": "c910adfd2b6d162936db02d2c7f4563e"
}, },
"fields_dict": { "fields_dict": {
"Basic": [ "Basic": [

View File

@ -0,0 +1,11 @@
---
title: "2024-07-22"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Beginning notes on [[natural-deduction|natural deduction]].

View File

@ -2,8 +2,8 @@
title: "2024-07-21" title: "2024-07-21"
--- ---
- [ ] Anki Flashcards - [x] Anki Flashcards
- [ ] KoL - [x] KoL
- [ ] OGS - [ ] OGS
- [ ] Sheet Music (10 min.) - [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story) - [ ] Korean (Read 1 Story)

View File

@ -241,7 +241,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
How is the *remainder* of e.g. `158 / 16` managed in decimal to hex conversion? How is the *remainder* of e.g. `158 / 16` managed in decimal to hex conversion?
Back: As the next least significant bit of our conversion. Back: Assuming big-endian, as the next most significant bit of our conversion.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016. Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Tags: binary::hex Tags: binary::hex
<!--ID: 1707432641594--> <!--ID: 1707432641594-->

View File

@ -231,36 +231,6 @@ END%%
## Laws ## Laws
The algebra of sets obey laws reminiscent (but not exactly) of the algebra of real numbers.
%%ANKI
Cloze
{$\cup$} is to algebra of sets whereas {$+$} is to algebra of real numbers.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716396060607-->
END%%
%%ANKI
Cloze
{$\cap$} is to algebra of sets whereas {$\cdot$} is to algebra of real numbers.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716396060609-->
END%%
%%ANKI
Cloze
{$-$} is to algebra of sets whereas {$-$} is to algebra of real numbers.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716396060611-->
END%%
%%ANKI
Cloze
{$\subseteq$} is to algebra of sets whereas {$\leq$} is to algebra of real numbers.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716396060614-->
END%%
### Commutative Laws ### Commutative Laws
For any sets $A$ and $B$, $$\begin{align*} A \cup B & = B \cup A \\ A \cap B & = B \cap A \end{align*}$$ For any sets $A$ and $B$, $$\begin{align*} A \cup B & = B \cup A \\ A \cap B & = B \cap A \end{align*}$$

View File

@ -10,7 +10,7 @@ tags:
## Overview ## Overview
**Equivalence-transformation** is a [[formal-system/index|formal-system]] based on classical truth-functional [[pred-logic|predicate logic]] developed by David Gries. It is the foundation upon which [[pred-trans|predicate transformers]] are based. **Equivalence-transformation** is a proof system used alongside classical truth-functional [[pred-logic|predicate logic]]. It is the foundation upon which [[pred-trans|predicate transformers]] are based.
%%ANKI %%ANKI
Basic Basic
@ -140,6 +140,7 @@ END%%
Basic Basic
What is the commutative law of e.g. $\land$? What is the commutative law of e.g. $\land$?
Back: $E1 \land E2 = E2 \land E1$ Back: $E1 \land E2 = E2 \land E1$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673353--> <!--ID: 1707251673353-->
END%% END%%

View File

@ -0,0 +1,179 @@
---
title: Natural Deduction
TARGET DECK: Obsidian::STEM
FILE TAGS: formal-system::natural-deduction
tags:
- logic
- natural-deduction
- programming
---
## Overview
Natural deduction is a proof system typically used alongside classical truth-functional [[prop-logic|propositional]] and [[pred-logic|predicate]] logic. It is meant to mimic the patterns of reasoning that one might "naturally" make when forming arguments in plain English.
%%ANKI
Basic
Why is natural deduction named the way it is?
Back: It is mean to mimic the patterns of reasoning one might "naturally" make when forming arguments in plain English.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721655978485-->
END%%
## Axioms
Natural deduction is interesting in that it has no axioms.
%%ANKI
Basic
How many axioms does natural deduction include?
Back: $0$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721655978490-->
END%%
## Inference Rules
Scoped to just propositional logic, there are 10 inference rules corresponding to an "introduction" and "elimination" of each propositional logic operator. When extending to predicate logic, we also include an introduction and elimination rule for both the [[pred-logic#Existentials|existential]] and [[pred-logic#Universals|universal]] quantifers.
%%ANKI
Basic
With respect to propositional logic, how many inference rules does natural deduction include?
Back: $10$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721655978493-->
END%%
%%ANKI
Basic
With respect to predicate logic, how many inference rules does natural deduction include?
Back: $14$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721655978496-->
END%%
%%ANKI
Basic
How are natural deduction's inference rules categorized into two?
Back: As introduction and elimination rules.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721655978499-->
END%%
%%ANKI
Basic
With respect to propositional logic, how are natural deduction's inference rules categorized into five?
Back: As an introduction and elimination rule per propositional logic operators.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721655978506-->
END%%
### Conjunction
For propositions $E_1, \ldots, E_n$, $$\land{\text{-}}I{:} \quad \begin{array}{c} E_1, \ldots, E_n \\ \hline E_1 \land \cdots \land E_n \end{array}$$
and $$\land{\text{-}}E{:} \quad \begin{array}{c} E_1 \land \cdots \land E_n \\ \hline E_i \end{array}$$
%%ANKI
Basic
In natural deduction, how is conjunction introduction denoted?
Back: As $\land{\text{-}}I$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656449679-->
END%%
%%ANKI
Basic
In natural deduction, how is conjunction elimination denoted?
Back: As $\land{\text{-}}E$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656449704-->
END%%
%%ANKI
Basic
How is $\land{\text{-}}I$ expressed in schematic notation?
Back: $$\begin{array}{c} E_1, \ldots, E_n \\ \hline E_1 \land \cdots \land E_n \end{array}$$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721655978513-->
END%%
%%ANKI
Basic
How is $\land{\text{-}}E$ expressed in schematic notation?
Back: $$\begin{array}{c} E_1 \land \cdots \land E_n \\ \hline E_i \end{array}$$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721655978517-->
END%%
%%ANKI
Basic
Which natural deduction inference rule is used in the following? $$\begin{array}{c} P, Q, R \\ \hline P \land R \end{array}$$
Back: $\land{\text{-}}I$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656730330-->
END%%
%%ANKI
Basic
Which natural deduction inference rule is used in the following? $$\begin{array}{c} P \land Q \\ \hline P \end{array}$$
Back: $\land{\text{-}}E$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656601607-->
END%%
### Disjunction
For propositions $E_1, \ldots, E_n$, $$\lor{\text{-}}I{:} \quad \begin{array}{c} E_i \\ \hline E_1 \lor \cdots \lor E_n \end{array}$$
and $$\lor{\text{-}}E{:} \quad \begin{array}{c} E_1 \lor \cdots \lor E_n, E_1 \Rightarrow E, \ldots, E_n \Rightarrow E \\ \hline E \end{array}$$
%%ANKI
Basic
In natural deduction, how is disjunction introduction denoted?
Back: As $\lor{\text{-}}I$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656416280-->
END%%
%%ANKI
Basic
In natural deduction, how is disjunction elimination denoted??
Back: As $\lor{\text{-}}E$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656416284-->
END%%
%%ANKI
Basic
How is $\lor{\text{-}}I$ expressed in schematic notation?
Back: $$\lor{\text{-}}I{:} \quad \begin{array}{c} E_i \\ \hline E_1 \lor \cdots \lor E_n \end{array}$$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656416288-->
END%%
%%ANKI
Basic
How is $\lor{\text{-}}E$ expressed in schematic notation?
Back: $$\lor{\text{-}}E{:} \quad \begin{array}{c} E_1 \lor \cdots \lor E_n, E_1 \Rightarrow E, \ldots, E_n \Rightarrow E \\ \hline E \end{array}$$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656416291-->
END%%
%%ANKI
Basic
Which natural deduction inference rule is used in the following? $$\begin{array}{c} P, Q \\ \hline R \lor P \end{array}$$
Back: $\lor{\text{-}}I$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656730337-->
END%%
%%ANKI
Basic
Which natural deduction inference rule is used in the following? $$\begin{array}{c} P \lor Q, P \Rightarrow R, Q \Rightarrow R \\ \hline P \end{array}$$
Back: $\lor{\text{-}}E$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1721656601613-->
END%%
## Bibliography
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.

View File

@ -1673,8 +1673,8 @@ END%%
%%ANKI %%ANKI
Basic Basic
Let $F \colon A \rightarrow B$. What does $\mathop{\text{coim}}F$ refer to? Let $F \colon A \rightarrow B$. Term "$\mathop{\text{coim}}F$" is shorthand for what?
Back: The coimage of $F$. Back: The **coim**age of $F$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015596--> <!--ID: 1721223015596-->
END%% END%%
@ -1682,14 +1682,14 @@ END%%
%%ANKI %%ANKI
Basic Basic
How is the coimage of function $F \colon A \rightarrow B$ defined? How is the coimage of function $F \colon A \rightarrow B$ defined?
Back: As $A / {\sim}$ where $x \sim y \Leftrightarrow F(x) = F(y)$. Back: As $A / \mathop{\text{ker}}(F)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015599--> <!--ID: 1721223015599-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Let $F \colon A \rightarrow B$. What specific name does a member of $\mathop{\text{coim}}F$ go by? Let $F \colon A \rightarrow B$. What term refers to a member of $\mathop{\text{coim}}F$?
Back: A fiber. Back: A fiber.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015602--> <!--ID: 1721223015602-->
@ -1714,7 +1714,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Let $F \colon A \rightarrow B$. How is $\mathop{\text{coim}}F$ denoted as a quotient set? Let $F \colon A \rightarrow B$. How is $\mathop{\text{coim}}F$ denoted as a quotient set?
Back: As $A / {\sim}$ where $x \sim y \Leftrightarrow F(x) = F(y)$. Back: As $A / \mathop{\text{ker}}(F)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015613--> <!--ID: 1721223015613-->
END%% END%%
@ -1747,7 +1747,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What name does $\sim$ go by? Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What name does $A /{\sim}$ go by?
![[function-kernel.png]] ![[function-kernel.png]]
Back: $\mathop{\text{coim}} F$ Back: $\mathop{\text{coim}} F$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).

View File

@ -279,7 +279,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Under what conditions is a multigraph considered a graph? Under what conditions is a multigraph considered a graph?
Back: When the number of edges between any two vertices is $1$. Back: When the number of edges from any vertex to any other vertex is at most $1$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1720360545684--> <!--ID: 1720360545684-->
END%% END%%

View File

@ -1123,7 +1123,7 @@ END%%
%%ANKI %%ANKI
Cloze Cloze
Let $R$ be an equivalence relation on $A$ and $x \in A$. Then {1:$x$ (modulo $R$)} is an {2:equivalence class} whereas {2:$A$ modulo $R$} is a {1:quotient set}. Let $R$ be an equivalence relation on $A$ and $x \in A$. Then {1:$x$} (modulo {1:$R$}) is an {2:equivalence class} whereas {2:$A$} modulo {2:$R$} is a {1:quotient set}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015580--> <!--ID: 1721223015580-->
END%% END%%

View File

@ -135,7 +135,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
What is `e` in the `setz` instruction short for? What is `z` in the `setz` instruction short for?
Back: **Z**ero. Back: **Z**ero.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016. Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1720793027129--> <!--ID: 1720793027129-->