Nest abstract rewriting systems under formal systems.
parent
6ba651c41b
commit
b9504d7857
|
@ -620,7 +620,7 @@
|
|||
"_journal/2024-07/2024-07-18.md": "237918b58424435959cbc949d01e7932",
|
||||
"_journal/2024-07-20.md": "d8685729effc374e4ece1e618c2fdad3",
|
||||
"_journal/2024-07/2024-07-19.md": "e9fe4569f88e1ba9393292bcf092edfc",
|
||||
"_journal/2024-07-21.md": "682ee0ada782dd281d8fd217227e985c",
|
||||
"_journal/2024-07-21.md": "dd5dd93f119f69571a78e027fab7da5d",
|
||||
"_journal/2024-07/2024-07-20.md": "d8685729effc374e4ece1e618c2fdad3",
|
||||
"logic/classical/index.md": "ee0a4b2bfcfa2cab0880db449cb62df1",
|
||||
"logic/classical/truth-tables.md": "b739e2824a4a5c26ac446e7c15ce02aa",
|
||||
|
@ -630,7 +630,8 @@
|
|||
"formal-system/logical-system/pred-logic.md": "2524ccc09561bc219dab3f32010a0161",
|
||||
"formal-system/logical-system/prop-logic.md": "b61ce051795d5a951c763b928ec5cea8",
|
||||
"formal-system/index.md": "3d31c99bffdcb05de9f2e32ac6319952",
|
||||
"programming/short-circuit.md": "c256ced42dc3b493aff5a356e5383b6e"
|
||||
"programming/short-circuit.md": "c256ced42dc3b493aff5a356e5383b6e",
|
||||
"formal-system/abstract-rewriting.md": "8424314a627851c5b94be6163f64ba30"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -1,44 +0,0 @@
|
|||
---
|
||||
title: Normal Form
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: ars::normal
|
||||
tags:
|
||||
- ars
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
An object is said to be in **normal form** if it cannot be reduced any further. Examples of normal form include:
|
||||
|
||||
* [[truth-tables|Conjunctive Normal Form]]
|
||||
* [[truth-tables|Disjunctive Normal Form]]
|
||||
* [[pred-logic#Identifiers|Prenex Normal Form]]
|
||||
* [[beta-reduction#Normal Form|β-normal forms]]
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for an object to be in normal form?
|
||||
Back: It cannot be rewritten/reduced any further.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707675146194-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What zero-order logical normal form(s) have only $\land$ and $\lor$ operators?
|
||||
Back: CNF and DNF.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707675369145-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What first-order logical normal form(s) writes bound identifiers before free ones?
|
||||
Back: PNF
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707675369187-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|
@ -1,15 +1,23 @@
|
|||
---
|
||||
title: Abstract Rewriting Systems
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: ars
|
||||
FILE TAGS: formal-system::abstract-rewriting
|
||||
tags:
|
||||
- ars
|
||||
- abstract-rewriting
|
||||
- formal-system
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
In an **abstract rewriting system** (ARS), an object is said to be in **normal form** if it cannot be rewritten any further, i.e. it is irreducible. An object is said to be in **canonical form** if it is presented in the "standard" representation (where "standard" is defined per field).
|
||||
|
||||
Examples of normal form include:
|
||||
|
||||
* [[truth-tables|Conjunctive Normal Form]]
|
||||
* [[truth-tables|Disjunctive Normal Form]]
|
||||
* [[pred-logic#Identifiers|Prenex Normal Form]]
|
||||
* [[beta-reduction#Normal Form|β-normal forms]]
|
||||
|
||||
In most fields, a canoncial form specifies a *unique* representation.
|
||||
|
||||
%%ANKI
|
||||
|
@ -59,6 +67,30 @@ Reference: “Canonical Form,” in _Wikipedia_, January 7, 2024, [https://en.wi
|
|||
<!--ID: 1719067812833-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for an object to be in normal form?
|
||||
Back: It cannot be rewritten/reduced any further.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707675146194-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What zero-order logical normal form(s) have only $\land$ and $\lor$ operators?
|
||||
Back: CNF and DNF.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707675369145-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What first-order logical normal form(s) writes bound identifiers before free ones?
|
||||
Back: PNF
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1707675369187-->
|
||||
END%%
|
||||
|
||||
## Confluence
|
||||
|
||||
**Confluence** is the property by which two different terms can be further reduced to one common term. That is to say, confluence is a property of rewriting systems describing which terms in such a system can be rewritten in more than one way.
|
Loading…
Reference in New Issue