Initial notes on open/closed addressing.

c-declarations
Joshua Potter 2024-06-12 07:35:13 -06:00
parent 7664346b62
commit 9045439d0b
15 changed files with 415 additions and 50 deletions

View File

@ -134,7 +134,10 @@
"venn-diagram-intersection.png", "venn-diagram-intersection.png",
"venn-diagram-rel-comp.png", "venn-diagram-rel-comp.png",
"venn-diagram-abs-comp.png", "venn-diagram-abs-comp.png",
"venn-diagram-symm-diff.png" "venn-diagram-symm-diff.png",
"relation-ordering-example.png",
"open-addressing.png",
"closed-addressing.png"
], ],
"File Hashes": { "File Hashes": {
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8", "algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
@ -173,7 +176,7 @@
"_journal/2024-02-02.md": "a3b222daee8a50bce4cbac699efc7180", "_journal/2024-02-02.md": "a3b222daee8a50bce4cbac699efc7180",
"_journal/2024-02-01.md": "3aa232387d2dc662384976fd116888eb", "_journal/2024-02-01.md": "3aa232387d2dc662384976fd116888eb",
"_journal/2024-01-31.md": "7c7fbfccabc316f9e676826bf8dfe970", "_journal/2024-01-31.md": "7c7fbfccabc316f9e676826bf8dfe970",
"logic/equiv-trans.md": "d6d9c7dacac07540ddc20608c8a805e5", "logic/equiv-trans.md": "8bfb004bc500f32620aff7b95c0d92d7",
"_journal/2024-02-07.md": "8d81cd56a3b33883a7706d32e77b5889", "_journal/2024-02-07.md": "8d81cd56a3b33883a7706d32e77b5889",
"algorithms/loop-invariants.md": "cbefc346842c21a6cce5c5edce451eb2", "algorithms/loop-invariants.md": "cbefc346842c21a6cce5c5edce451eb2",
"algorithms/loop-invariant.md": "3b390e720f3b2a98e611b49a0bb1f5a9", "algorithms/loop-invariant.md": "3b390e720f3b2a98e611b49a0bb1f5a9",
@ -314,7 +317,7 @@
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f", "_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b", "_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53", "set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
"set/index.md": "d1fcdfe4506aab4ec86f30118464fb2a", "set/index.md": "24a66a792b7b75329590dcfc495faa91",
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800", "set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb", "_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391", "_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
@ -451,8 +454,8 @@
"_journal/2024-05-17.md": "fb880d68077b655ede36d994554f3aba", "_journal/2024-05-17.md": "fb880d68077b655ede36d994554f3aba",
"_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c", "_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c",
"_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c", "_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
"hashing/direct-addressing.md": "87d1052ac7eae3061d88d011432cb693", "hashing/direct-addressing.md": "acff356a70980cb4135094fccb3b3187",
"hashing/index.md": "8912a564ac1066de14044421fdc35b75", "hashing/index.md": "2f75e951aac609a2a9da731ef5444214",
"set/classes.md": "6776b4dc415021e0ef60b323b5c2d436", "set/classes.md": "6776b4dc415021e0ef60b323b5c2d436",
"_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a", "_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a",
"_journal/2024-05/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c", "_journal/2024-05/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
@ -475,7 +478,7 @@
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869", "_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
"_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae", "_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae",
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95", "_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
"algebra/set.md": "7eb2f9cae83e9aaf16aa42f82cea944f", "algebra/set.md": "9aadf7ca6153592b5af7e942021e56de",
"algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8", "algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8",
"git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb", "git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb",
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337", "_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
@ -500,7 +503,7 @@
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1", "_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a", "_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1", "_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
"set/relations.md": "42f3dff509071ad31d6831e1c05e5aa9", "set/relations.md": "80ad79358f1ce6ecf488a059c4de78bb",
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2", "_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381", "_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8", "_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
@ -516,8 +519,12 @@
"_journal/2024-06/2024-06-08.md": "9e1ebc8882a395b96ca765ad5c982d68", "_journal/2024-06/2024-06-08.md": "9e1ebc8882a395b96ca765ad5c982d68",
"_journal/2024-06-10.md": "84d27300b97c8544ab4ec68b06edd824", "_journal/2024-06-10.md": "84d27300b97c8544ab4ec68b06edd824",
"_journal/2024-06/2024-06-09.md": "4c336a39775846b416aa73278435065f", "_journal/2024-06/2024-06-09.md": "4c336a39775846b416aa73278435065f",
"_journal/2024-06-11.md": "4988503ee98aa4fe32d5eeaea2cc65a5", "_journal/2024-06-11.md": "48f46f654a1b8dfeebc01b3adb2bc1d1",
"_journal/2024-06/2024-06-10.md": "1fe3a8beb03b1cc9af188b85933339e4" "_journal/2024-06/2024-06-10.md": "1fe3a8beb03b1cc9af188b85933339e4",
"_journal/2024-06-12.md": "8cc810c0f594093768117f57461e2e9e",
"_journal/2024-06/2024-06-11.md": "764ccba25646673fdf7bb6a5f090394d",
"hashing/open-addressing.md": "c27e92f2865bbb426fdd1e30fc52f1ed",
"hashing/closed-addressing.md": "962a48517969bf5e410cf78fc584051f"
}, },
"fields_dict": { "fields_dict": {
"Basic": [ "Basic": [

View File

@ -1,9 +0,0 @@
---
title: "2024-06-11"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)

View File

@ -0,0 +1,11 @@
---
title: "2024-06-12"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Notes on [[open-addressing|open]] and [[closed-addressing|closed]] hashing.

View File

@ -0,0 +1,12 @@
---
title: "2024-06-11"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Cartesian product [[set#Cancellation Laws|cancellation laws]].
* Notes on [[relations]].

View File

@ -27,6 +27,85 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1716396060605--> <!--ID: 1716396060605-->
END%% END%%
## Symmetric Difference
Define the **symmetric difference** of sets $A$ and $B$ as $$A \mathop{\triangle} B = (A - B) \cup (B - A)$$
%%ANKI
Basic
What two operators are used in the definition of the symmetric difference?
Back: $\cup$ and $-$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445662-->
END%%
%%ANKI
Basic
How is the symmetric difference of sets $A$ and $B$ denoted?
Back: $A \mathop{\triangle} B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445665-->
END%%
%%ANKI
Basic
How is $A \mathop{\triangle} B$ defined?
Back: As $(A - B) \cup (B - A)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445670-->
END%%
## Cartesian Product
Given two sets $A$ and $B$, the **Cartesian product** $A \times B$ is defined as: $$A \times B = \{\langle x, y \rangle \mid x \in A \land y \in B\}$$
%%ANKI
Basic
How is the Cartesian product of $A$ and $B$ denoted?
Back: $A \times B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397781-->
END%%
%%ANKI
Basic
Using ordered pairs, how is $A \times B$ defined?
Back: $\{\langle x, y \rangle \mid x \in A \land y \in B\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397797-->
END%%
%%ANKI
Basic
Who is attributed the representation of points in a plane?
Back: René Descartes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397825-->
END%%
%%ANKI
Basic
Why is the Cartesian product named the way it is?
Back: It is named after René Descartes.
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
<!--ID: 1717679397836-->
END%%
%%ANKI
Basic
Suppose $x, y \in A$. What set is $\langle x, y \rangle$ in?
Back: $\mathscr{P}\mathscr{P}A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397848-->
END%%
%%ANKI
Cloze
{$x \in A$} iff {$\{x\} \subseteq A$} iff {$\{x\} \in \mathscr{P}A$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397860-->
END%%
## Laws ## Laws
The algebra of sets obey laws reminiscent (but not exactly) of the algebra of real numbers. The algebra of sets obey laws reminiscent (but not exactly) of the algebra of real numbers.
@ -676,32 +755,43 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1717073537007--> <!--ID: 1717073537007-->
END%% END%%
## Symmetric Difference ### Cancellation Laws
Define the **symmetric difference** of sets $A$ and $B$ as $$A \mathop{\triangle} B = (A - B) \cup (B - A)$$ Let $A$, $B$, and $C$ be sets. If $A \neq \varnothing$,
* $(A \times B = A \times C) \Rightarrow B = C$
* $(B \times A = C \times A) \Rightarrow B = C$
%%ANKI %%ANKI
Basic Basic
What two operators are used in the definition of the symmetric difference? What is the left cancellation law of the Cartesian product?
Back: $\cup$ and $-$. Back: $(A \times B = A \times C) \Rightarrow B = C$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445662--> <!--ID: 1718107987907-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
How is the symmetric difference of sets $A$ and $B$ denoted? $(A \times B = A \times C) \Rightarrow B = C$ is always true if what condition is satisfied?
Back: $A \mathop{\triangle} B$ Back: $A \neq \varnothing$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445665--> <!--ID: 1718107987918-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
How is $A \mathop{\triangle} B$ defined? What is the right cancellation law of the Cartesian product?
Back: As $(A - B) \cup (B - A)$. Back: $(B \times A = C \times A) \Rightarrow B = C$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445670--> <!--ID: 1718107987928-->
END%%
%%ANKI
Basic
$(B \times A = C \times A) \Rightarrow B = C$ is always true if what condition is satisfied?
Back: $A \neq \varnothing$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987936-->
END%% END%%
## Bibliography ## Bibliography

View File

@ -0,0 +1,55 @@
---
title: Closed Addressing
TARGET DECK: Obsidian::STEM
FILE TAGS: hashing::closed
tags:
- hashing
---
## Overview
In **closed addressing**, a key is always stored in the bucket it's hashed to. Collisions are dealt with using separate data structures on a per-bucket basis.
%%ANKI
Basic
What does "closed" refer to in term "closed addressing"?
Back: A key is always stored in the slot it hashes to.
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198717474-->
END%%
%%ANKI
Basic
What does "open" refer to in term "open hashing"?
Back: A key may resides in a data structure separate from the hash table.
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198717484-->
END%%
%%ANKI
Cloze
{Closed} addressing is also known as {open} hashing.
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198717495-->
END%%
%%ANKI
Cloze
The following is an example of {closed} addressing.
![[closed-addressing.png]]
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198717506-->
END%%
%%ANKI
Cloze
The following is an example of {open} hashing.
![[closed-addressing.png]]
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198755496-->
END%%
## Bibliography
* “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).

View File

@ -121,6 +121,23 @@ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (
<!--ID: 1716307180987--> <!--ID: 1716307180987-->
END%% END%%
%%ANKI
Basic
What distinguishes direct addressing from closed and open addressing?
Back: Direct addressing isn't concerned with conflicting keys.
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718199205862-->
END%%
%%ANKI
Basic
Direct addressing sits between what other addressing types?
Back: Open and closed addressing.
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718199205872-->
END%%
## Bibliography ## Bibliography
* “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). * Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.7 KiB

View File

@ -137,6 +137,48 @@ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (
<!--ID: 1716307180980--> <!--ID: 1716307180980-->
END%% END%%
An **independent uniform hash function** is the ideal theoretical abstraction. For each possible input $k$ in universe $U$, an output $h(k)$ is produced randomly and independently chosen from range $\{0, 1, \ldots, m - 1\}$. Once a value $h(k)$ is chosen, each subsequent call to $h$ with the same input $k$ yields the same output $h(k)$.
%%ANKI
Basic
What is considered the ideal (though only theoretical) hash function?
Back: The independent uniform hash function.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1718197741507-->
END%%
%%ANKI
Basic
Given independent uniform hash function $h$, what about $h$ is "independent"?
Back: Each key $k$ has output $h(k)$ determined independently from other keys.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1718197741527-->
END%%
%%ANKI
Basic
Given independent uniform hash function $h$, what about $h$ is "uniform"?
Back: Every output of $h$ is equally likely to be any of the values in its range.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1718197741537-->
END%%
%%ANKI
Basic
With respect to hashing, a random oracle refers to what kind of hash function?
Back: An independent uniform hash function.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1718197741545-->
END%%
%%ANKI
Basic
Where does "memory" come into play with independent uniform hash functions?
Back: Once $h(k)$ is determined, subsequent calls to $h$ with $k$ always yield the same value.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1718197741555-->
END%%
## Bibliography ## Bibliography
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). * Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).

View File

@ -0,0 +1,55 @@
---
title: Open Addressing
TARGET DECK: Obsidian::STEM
FILE TAGS: hashing::open
tags:
- hashing
---
## Overview
In **open addressing**, keys always reside in the hash table. Collisions are dealt with by searching for other empty buckets within the hash table.
%%ANKI
Basic
What does "closed" refer to in term "closed hashing"?
Back: A key must reside in the hash table.
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198717434-->
END%%
%%ANKI
Basic
What does "open" refer to in term "open addressing"?
Back: A key is not necessarily stored in the slot it hashes to.
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198717447-->
END%%
%%ANKI
Cloze
{Open} addressing is also known as {closed} hashing.
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198717455-->
END%%
%%ANKI
Cloze
The following is an example of {closed} hashing.
![[open-addressing.png]]
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198717464-->
END%%
%%ANKI
Cloze
The following is an example of {open} addressing.
![[open-addressing.png]]
Reference: “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
<!--ID: 1718198755486-->
END%%
## Bibliography
* “Hash Tables: Open vs Closed Addressing | Programming.Guide,” accessed June 12, 2024, [https://programming.guide/hash-tables-open-vs-closed-addressing.html](https://programming.guide/hash-tables-open-vs-closed-addressing.html).
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).

View File

@ -621,8 +621,8 @@ END%%
%%ANKI %%ANKI
Basic Basic
Execution of `b[i] := e` of array $b$ yields what new value of $b$? Execution of `b[i] := e` of array $b$ in state $s$ yields what new value of $b$?
Back: $b = (b; i{:}e)$ Back: $b = (b; i{:}s(e))$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130031--> <!--ID: 1713793130031-->
END%% END%%

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

View File

@ -255,6 +255,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1717372494462--> <!--ID: 1717372494462-->
END%% END%%
%%ANKI
Basic
Let $A$ and $B$ be sets. Proving the following is equivalent to showing what class is a set? $$\exists C, \forall y, (y \in C \Leftrightarrow y = \{x\} \times B \text{ for some } x \in A)$$
Back: $\{\{x\} \times B \mid x \in A\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718105051820-->
END%%
## Empty Set Axiom ## Empty Set Axiom
There exists a set having no members: $$\exists B, \forall x, x \not\in B$$ There exists a set having no members: $$\exists B, \forall x, x \not\in B$$

View File

@ -95,53 +95,130 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1717678753145--> <!--ID: 1717678753145-->
END%% END%%
Given two sets $A$ and $B$, the **Cartesian product** $A \times B$ is defined as: $$A \times B = \{\langle x, y \rangle \mid x \in A \land y \in B\}$$ A **relation** $R$ is a set of ordered pairs. The **domain** of $R$ ($\mathop{\text{dom}}{R}$), the **range** of $R$ ($\mathop{\text{ran}}{R}$), and the **field** of $R$ ($\mathop{\text{fld}}{R}$) is defined as:
* $x \in \mathop{\text{dom}}{R} \Leftrightarrow \exists y, \langle x, y \rangle \in R$
* $x \in \mathop{\text{ran}}{R} \Leftrightarrow \exists t, \langle t, x \rangle \in R$
* $\mathop{\text{fld}}{R} = \mathop{\text{dom}}{R} \cup \mathop{\text{ran}}{R}$
%%ANKI %%ANKI
Basic Basic
How is the Cartesian product of $A$ and $B$ denoted? What is a relation?
Back: $A \times B$ Back: A set of ordered pairs.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397781--> <!--ID: 1718107987764-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Using ordered pairs, how is $A \times B$ defined? Are relations or sets the more general concept?
Back: $\{\langle x, y \rangle \mid x \in A \land y \in B\}$ Back: Sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397797--> <!--ID: 1718107987776-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Who is attributed the representation of points in a plane? How is the ordering relation $<$ on $\{2, 3, 5\}$ defined?
Back: René Descartes. Back: As set $\{\langle 2, 3\rangle, \langle 2, 5 \rangle, \langle 3, 5 \rangle\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397825--> <!--ID: 1718107987783-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Why is the Cartesian product named the way it is? How is the ordering relation $<$ on $\{2, 3, 5\}$ visualized?
Back: It is named after René Descartes. Back:
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305). ![[relation-ordering-example.png]]
<!--ID: 1717679397836--> Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987794-->
END%% END%%
%%ANKI %%ANKI
Basic Basic
Suppose $x, y \in A$. What set is $\langle x, y \rangle$ in? A relation is a set of ordered pairs with what additional restriction?
Back: $\mathscr{P}\mathscr{P}A$ Back: N/A.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397848--> <!--ID: 1718107987803-->
END%% END%%
%%ANKI %%ANKI
Cloze Cloze
{$x \in A$} iff {$\{x\} \subseteq A$} iff {$\{x\} \in \mathscr{P}A$}. For relation $R$, {$xRy$} is alternative notation for {$\langle x, y \rangle \in R$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397860--> <!--ID: 1718107987813-->
END%%
%%ANKI
Basic
How is ordering relation $<$ on set $\mathbb{R}$ defined using set-builder notation?
Back: As $\{\langle x, y\rangle \in \mathbb{R} \times \mathbb{R} \mid x \text{ is less than } y\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987822-->
END%%
%%ANKI
Basic
How is $x < y$ rewritten to emphasize that $<$ is a relation?
Back: $\langle x, y \rangle \in \;<$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987831-->
END%%
%%ANKI
Basic
How is the identity relation on $\omega$ defined using set-builder notation?
Back: $\{\langle n, n \rangle \mid n \in \omega\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987840-->
END%%
%%ANKI
Basic
How is the domain of relation $R$ denoted?
Back: $\mathop{\text{dom}}{R}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987850-->
END%%
%%ANKI
Basic
How is the domain of relation $R$ defined?
Back: $x \in \mathop{\text{dom}}{R} \Leftrightarrow \exists y, \langle x, y \rangle \in R$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987862-->
END%%
%%ANKI
Basic
How is the range of relation $R$ denoted?
Back: $\mathop{\text{ran}}{R}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987872-->
END%%
%%ANKI
Basic
How is the range of relation $R$ defined?
Back: $x \in \mathop{\text{ran}}{R} \Leftrightarrow \exists t, \langle t, x \rangle \in R$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987880-->
END%%
%%ANKI
Basic
How is the field of relation $R$ denoted?
Back: $\mathop{\text{fld}}{R}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987887-->
END%%
%%ANKI
Basic
How is the field of relation $R$ defined?
Back: $\mathop{\text{fld}}{R} = \mathop{\text{dom}}{R} \cup \mathop{\text{ran}}{R}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718107987897-->
END%% END%%
## Bibliography ## Bibliography