More basic trigonometry notes.

main
Joshua Potter 2025-01-19 22:13:56 -07:00
parent cbeb26fbde
commit 893334a81d
6 changed files with 464 additions and 110 deletions

View File

@ -257,7 +257,8 @@
"function-general.png",
"function-kernel.png",
"triangular-gnomon.png",
"pascals-triangle.png"
"pascals-triangle.png",
"example-arc.png"
],
"File Hashes": {
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
@ -1464,12 +1465,13 @@
"_journal/2025-01-16.md": "e3a21059205784a4e88bfe3b4deac7f7",
"_journal/2025-01-17.md": "08a5f05bb572db9495bfc2b4feb8e0a9",
"_journal/2025-01/2025-01-16.md": "e3a21059205784a4e88bfe3b4deac7f7",
"trigonometry/index.md": "6d07d5ba5e352f182a19b8a3d804321b",
"geometry/circle.md": "751a5aada6521281f1d8edb463572943",
"trigonometry/index.md": "06c82d1cf3789cc8cefd37e6b64fdc4a",
"geometry/circle.md": "9469e5512a6a92a962985eab99d00606",
"_journal/2025-01-18.md": "8655fbf94aeec13efe9b6d2087c1f37e",
"_journal/2025-01/2025-01-17.md": "08a5f05bb572db9495bfc2b4feb8e0a9",
"_journal/2025-01-19.md": "a37c6f534cf5e272619c5f813974afcf",
"_journal/2025-01/2025-01-18.md": "7a1655887093f37ffe86309d90459b3b"
"_journal/2025-01-19.md": "2acb8c3c37b9a44f06bac4903efed5ad",
"_journal/2025-01/2025-01-18.md": "7a1655887093f37ffe86309d90459b3b",
"trigonometry/unit-circle.md": "4a8fb4b5ac1bc2b645f18b0b8079897c"
},
"fields_dict": {
"Basic": [

View File

@ -9,3 +9,4 @@ title: "2025-01-19"
- [ ] Korean (Read 1 Story)
* More notes on relocation entries.
* More notes on basic trigonometry.

View File

@ -13,7 +13,7 @@ A **circle** is a shape consisting of all points in a plane at a given distance
On the [[cartesian|Cartesian coordinate system]], the equation of a circle with radius $r$ and center $\langle h, k \rangle$ is $$(x - h)^2 + (y - k)^2 = r^2.$$
Such a circle has circumference $2\pi r$ and [[area]] $\pi r^2$.
Such a circle has circumference $2\pi r$ and [[area]] $\pi r^2$. A continuous segment along the circumference of a circle is called an **arc**.
%%ANKI
Basic
@ -195,6 +195,15 @@ Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.
<!--ID: 1737168379578-->
END%%
%%ANKI
Basic
What term is used to describe a continuous portion of a circle?
Back: An arc.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029852-->
END%%
## Bibliography
* “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
* Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

View File

@ -8,7 +8,9 @@ tags:
## Overview
Trigonometry was originally derived from a Greek word meaning "triangle measuring". It has generalized to studying periodicity.
Trigonometry was originally derived from a Greek word meaning "triangle measuring". It has since been generalized to refer to the study of periodicity.
If the real number $t$ is the directed length of an arc (either positive or negative) measured on the [[unit-circle|unit circle]] $x^2 + y^2 = 1$ (with counterclockwise as the positive direction) with initial point $\langle 1, 0 \rangle$ and terminal point $\langle x, y \rangle$, then the **cosine** of $t$, denoted $\cos(t)$, and **sine** of $t$, denoted $\sin(t)$, are defined to be $$\cos(t) = x \quad\text{and}\quad \sin(t) = y.$$
%%ANKI
Basic
@ -18,196 +20,220 @@ Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693405-->
END%%
## Unit Circle
On the [[cartesian|Cartesian coordinate system]], the **unit circle** is the [[circle]] with center at the origin and radius $1$.
%%ANKI
Basic
On the Cartesian coordinate system, what is the unit circle?
Back: The circle with center at the origin and radius $1$.
What are the two most fundamental trigonometric functions?
Back: $\sin$ and $\cos$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693410-->
<!--ID: 1737349513249-->
END%%
%%ANKI
Cloze
The {sine} of $t$ is denoted as {$\sin(t)$}.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513250-->
END%%
%%ANKI
Cloze
The {cosine} of $t$ is denoted as {$\cos(t)$}.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513251-->
END%%
%%ANKI
Basic
On the Cartesian coordinate system, where is the center of the unit circle located?
Back: At $\langle 0, 0 \rangle$, i.e. the origin.
Map $[0, t]$ to the unit circle. Geometrically, what does $\cos(t)$ correspond to?
Back: The $x$-coordinate of the arc's terminal point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693413-->
<!--ID: 1737349513252-->
END%%
%%ANKI
Basic
What is the radius of the unit circle?
Back: $1$
Map $[0, t]$ to the unit circle. Geometrically, what does $\sin(t)$ correspond to?
Back: The $y$-coordinate of the arc's terminal point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693416-->
<!--ID: 1737349513253-->
END%%
%%ANKI
Cloze
The {1:$x$}-coordinate is to {2:$\cos$} whereas the {2:$y$}-coordinate is to {1:$\sin$}.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513254-->
END%%
%%ANKI
Basic
What is the diameter of the unit circle?
Back: $2$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693419-->
END%%
%%ANKI
Basic
What is the circumference of the unit circle?
Back: $2\pi$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693428-->
END%%
%%ANKI
Basic
What is the area of the unit circle?
Back: $\pi$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693435-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle 0, 0 \rangle$ on the unit circle map to?
Back: N/A. This point is not on the circle itself.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795237-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle 1, 0 \rangle$ on the unit circle map to?
Back: $2\pi k$ for all $k \in \mathbb{Z}$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795241-->
END%%
%%ANKI
Basic
Which point on the unit circle does number $2\pi$ map to?
Suppose an arc on the unit circle has terminal point $\langle \cos(t), \sin(t) \rangle$. What was its initial point?
Back: $\langle 1, 0 \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795265-->
<!--ID: 1737349513255-->
END%%
%%ANKI
Basic
Which point on the unit circle does number $\frac{3\pi}{2}$ map to?
Back: $\langle 0, -1 \rangle$
What geometric aspect of the unit circle corresponds to the input of the cosine function?
Back: Arc length.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795244-->
<!--ID: 1737349513257-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle 0, -1 \rangle$ on the unit circle map to?
Back:$\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
What geometric aspect of the unit circle corresponds to the output of the cosine function?
Back: The $x$-coordinate of an arc's terminal point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795269-->
<!--ID: 1737349513258-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle 0, 1 \rangle$ on the unit circle map to?
Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
What geometric aspect of the unit circle corresponds to the input of sine?
Back: Arc length.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795248-->
<!--ID: 1737349513259-->
END%%
%%ANKI
Basic
Which point on the unit circle does number $\frac{\pi}{2}$ map to?
Back: $\langle 0, 1 \rangle$
What geometric aspect of the unit circle corresponds to the output of the sine function?
Back: The $y$-coordinate of an arc's terminal point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795261-->
<!--ID: 1737349513261-->
END%%
%%ANKI
Basic
Which point on the unit circle does number $\pi$ map to?
Back: $\langle -1, 0 \rangle$
Consider the following arc with length $t$ on the unit circle. What is the terminal point's $x$-coordinate?
![[example-arc.png]]
Back: $\cos(t)$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795252-->
<!--ID: 1737349513260-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle -1, 0 \rangle$ on the unit circle map to?
Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$.
Consider the following arc with length $t$ on the unit circle. What is the terminal point's $y$-coordinate?
![[example-arc.png]]
Back: $\sin(t)$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795256-->
<!--ID: 1737349513256-->
END%%
%%ANKI
Basic
Which real numbers correspond to the highlighted point on the unit circle?
![[unit-circle-1-0.png]]
Back: $2 \pi k$ for all $k \in \mathbb{Z}$.
Consider the following arc with length $t$ on the unit circle. With maximum specificity, what is its terminal point?
![[example-arc.png]]
Back: $\langle \cos(t), \sin(t) \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169243685-->
<!--ID: 1737349513262-->
END%%
%%ANKI
Basic
Which real numbers correspond to the highlighted point on the unit circle?
![[unit-circle-0-1.png]]
Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
What does $\cos(0)$ evaluate to?
Back: $1$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169243690-->
<!--ID: 1737349971441-->
END%%
%%ANKI
Basic
Which real numbers correspond to the highlighted point on the unit circle?
![[unit-circle-n1-0.png]]
Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$.
What does $\cos\left(\frac{\pi}{2}\right)$ evaluate to?
Back: $0$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169243692-->
<!--ID: 1737349971443-->
END%%
%%ANKI
Basic
Which real numbers correspond to the highlighted point on the unit circle?
![[unit-circle-0-n1.png]]
Back: $\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
What does $\cos\left(-\frac{\pi}{2}\right)$ evaluate to?
Back: $0$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169243695-->
<!--ID: 1737349971445-->
END%%
%%ANKI
Basic
*Why* does point $\langle 1, 0 \rangle$ on the unit circle coincide with real number $2\pi$?
Back: Because the circumference of the unit circle is $2\pi$.
What does $\cos\left(\pi\right)$ evaluate to?
Back: $-1$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169683142-->
<!--ID: 1737349971446-->
END%%
%%ANKI
Basic
*Why* does point $\langle -1, 0 \rangle$ on the unit circle coincide with real number $\pi$?
Back: Because half the circumference of the unit circle is $\pi$.
What does $\sin(2\pi)$ evaluate to?
Back: $0$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169683151-->
<!--ID: 1737349971447-->
END%%
%%ANKI
Basic
What is the "periodicity" of the unit circle?
Back: $2 \pi$
What does $\sin\left(\frac{\pi}{2}\right)$ evaluate to?
Back: $1$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737230158153-->
<!--ID: 1737349971449-->
END%%
%%ANKI
Basic
What property of the unit circle does its periodicity correspond to?
Back: Its circumference.
What does $\sin\left(-\frac{\pi}{2}\right)$ evaluate to?
Back: $-1$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737230158163-->
<!--ID: 1737349971450-->
END%%
%%ANKI
Basic
What does $\sin\left(\pi\right)$ evaluate to?
Back: $0$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971451-->
END%%
%%ANKI
Basic
Why are $\sin$ and $\cos$ called circular functions?
Back: Their values are determined by coordinates of points on the unit circle.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971452-->
END%%
%%ANKI
Basic
What is the domain of $\cos$?
Back: $\mathbb{R}$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971453-->
END%%
%%ANKI
Basic
What is the range of $\cos$?
Back: $[-1, 1]$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971454-->
END%%
%%ANKI
Basic
What is the domain of $\sin$?
Back: $\mathbb{R}$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971455-->
END%%
%%ANKI
Basic
What is the range of $\sin$?
Back: $[-1, 1]$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971456-->
END%%
## Bibliography

View File

@ -0,0 +1,316 @@
---
title: Unit Circle
TARGET DECK: Obsidian::STEM
FILE TAGS: trigonometry
tags:
- trigonometry
- unit-circle
---
## Overview
On the [[cartesian|Cartesian coordinate system]], the **unit circle** is the [[circle]] with center at the origin and radius $1$.
Suppose [[intervals|closed interval]] $[a, b]$ is mapped to an arc on the unit circle. Then the point on the unit circle corresponding to $a$ is called the **initial point** of the arc. The point corresponding to $b$ is called the **terminal point** of the arc.
%%ANKI
Basic
On the Cartesian coordinate system, what is the unit circle?
Back: The circle with center at the origin and radius $1$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693410-->
END%%
%%ANKI
Basic
On the Cartesian coordinate system, where is the center of the unit circle located?
Back: At $\langle 0, 0 \rangle$, i.e. the origin.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693413-->
END%%
%%ANKI
Basic
What is the radius of the unit circle?
Back: $1$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693416-->
END%%
%%ANKI
Basic
What is the diameter of the unit circle?
Back: $2$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693419-->
END%%
%%ANKI
Basic
What is the circumference of the unit circle?
Back: $2\pi$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693428-->
END%%
%%ANKI
Basic
What is the area of the unit circle?
Back: $\pi$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693435-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle 0, 0 \rangle$ on the unit circle map to?
Back: N/A. This point is not on the circle itself.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795237-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle 1, 0 \rangle$ on the unit circle map to?
Back: $2\pi k$ for all $k \in \mathbb{Z}$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795241-->
END%%
%%ANKI
Basic
Which point on the unit circle does number $2\pi$ map to?
Back: $\langle 1, 0 \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795265-->
END%%
%%ANKI
Basic
Which point on the unit circle does number $\frac{3\pi}{2}$ map to?
Back: $\langle 0, -1 \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795244-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle 0, -1 \rangle$ on the unit circle map to?
Back:$\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795269-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle 0, 1 \rangle$ on the unit circle map to?
Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795248-->
END%%
%%ANKI
Basic
Which point on the unit circle does number $\frac{\pi}{2}$ map to?
Back: $\langle 0, 1 \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795261-->
END%%
%%ANKI
Basic
Which point on the unit circle does number $\pi$ map to?
Back: $\langle -1, 0 \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795252-->
END%%
%%ANKI
Basic
Which real numbers does the point $\langle -1, 0 \rangle$ on the unit circle map to?
Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737168795256-->
END%%
%%ANKI
Basic
Which real numbers correspond to the highlighted point on the unit circle?
![[unit-circle-1-0.png]]
Back: $2 \pi k$ for all $k \in \mathbb{Z}$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169243685-->
END%%
%%ANKI
Basic
Which real numbers correspond to the highlighted point on the unit circle?
![[unit-circle-0-1.png]]
Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169243690-->
END%%
%%ANKI
Basic
Which real numbers correspond to the highlighted point on the unit circle?
![[unit-circle-n1-0.png]]
Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169243692-->
END%%
%%ANKI
Basic
Which real numbers correspond to the highlighted point on the unit circle?
![[unit-circle-0-n1.png]]
Back: $\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169243695-->
END%%
%%ANKI
Basic
*Why* does point $\langle 1, 0 \rangle$ on the unit circle coincide with real number $2\pi$?
Back: Because the circumference of the unit circle is $2\pi$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169683142-->
END%%
%%ANKI
Basic
*Why* does point $\langle -1, 0 \rangle$ on the unit circle coincide with real number $\pi$?
Back: Because half the circumference of the unit circle is $\pi$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737169683151-->
END%%
%%ANKI
Basic
What is the "periodicity" of the unit circle?
Back: $2 \pi$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737230158153-->
END%%
%%ANKI
Basic
What property of the unit circle does its periodicity correspond to?
Back: Its circumference.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737230158163-->
END%%
%%ANKI
Basic
What arc describes the portion of a unit circle found in the first quadrant?
Back: $\left(0, \frac{\pi}{2}\right)$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029839-->
END%%
%%ANKI
Basic
What arc describes the portion of a unit circle found in the third quadrant?
Back: $\left(\pi, \frac{3\pi}{2}\right)$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029841-->
END%%
%%ANKI
Basic
What arc describes the portion of a unit circle found in the fourth quadrant?
Back: $\left(\frac{3\pi}{2}, 2\pi\right)$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029843-->
END%%
%%ANKI
Basic
What arc describes the portion of a unit circle found in the second quadrant?
Back: $\left(\frac{\pi}{2}, \pi\right)$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029844-->
END%%
%%ANKI
Basic
Suppose interval $[a, b]$ is mapped to the unit circle. What is the point corresponding to $a$ called?
Back: The initial point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029845-->
END%%
%%ANKI
Basic
Suppose interval $[a, b]$ is mapped to the unit circle. What is the point corresponding to $b$ called?
Back: The terminal point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029847-->
END%%
%%ANKI
Basic
Map $\left[0, \frac{\pi}{2}\right]$ onto the unit circle. What is the initial point of this arc?
Back: $\langle 1, 0 \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029848-->
END%%
%%ANKI
Basic
Map $\left[0, \frac{\pi}{2}\right]$ onto the unit circle. What is the terminal point of this arc?
Back: $\langle 0, 1 \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029849-->
END%%
%%ANKI
Basic
Map $\left(0, \frac{\pi}{2}\right)$ onto the unit circle. What is the initial point of this arc?
Back: N/A. There is no initial point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029850-->
END%%
%%ANKI
Basic
Map $\left(0, \frac{\pi}{2}\right)$ onto the unit circle. What is the terminal point of this arc?
Back: N/A. There is no terminal point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347029851-->
END%%
%%ANKI
Basic
Map $\left[-\pi, -\frac{\pi}{2}\right]$ onto the unit circle. What is the initial point of this arc?
Back: $\langle -1, 0 \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513245-->
END%%
%%ANKI
Basic
Map $\left[-\pi, -\frac{\pi}{2}\right]$ onto the unit circle. What is the terminal point of this arc?
Back: $\langle 0, -1 \rangle$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513248-->
END%%
%%ANKI
Cloze
Moving in the {positive} direction of the real number line corresponds to moving {counterclockwise} on the unit circle.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347197473-->
END%%
%%ANKI
Cloze
Moving in the {negative} direction of the real number line corresponds to moving {clockwise} on the unit circle.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737347197477-->
END%%
## Bibliography
* Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.