Daily notes.
parent
d74f149d92
commit
6cd8e0a2ca
|
@ -508,7 +508,7 @@
|
||||||
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
||||||
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
||||||
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
||||||
"set/relations.md": "83e38548017dda4fa6371fa1b312b2e2",
|
"set/relations.md": "a57cf42b30db6c6b430b40c6d37a2af6",
|
||||||
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
|
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
|
||||||
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
|
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
|
||||||
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
||||||
|
@ -534,7 +534,7 @@
|
||||||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
||||||
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
||||||
"set/functions.md": "8d2f0ef04e32de2de5054127f6970f18",
|
"set/functions.md": "4f5d82d67c9a85db350f1b26175c26ed",
|
||||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||||
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"lambda-calculus/beta-reduction.md": "bd7ed2d1b8aae2e584c3e7be1d116170",
|
"lambda-calculus/beta-reduction.md": "bd7ed2d1b8aae2e584c3e7be1d116170",
|
||||||
|
@ -569,7 +569,9 @@
|
||||||
"_journal/2024-06/2024-06-27.md": "237c73268a28f652985a5ef7ca7e188e",
|
"_journal/2024-06/2024-06-27.md": "237c73268a28f652985a5ef7ca7e188e",
|
||||||
"_journal/2024-06/2024-06-26.md": "9c5d7e6395496736f2f268e9fdba117f",
|
"_journal/2024-06/2024-06-26.md": "9c5d7e6395496736f2f268e9fdba117f",
|
||||||
"_journal/2024-06-29.md": "9d43f4f33e03a48aa08e13bb5be365e0",
|
"_journal/2024-06-29.md": "9d43f4f33e03a48aa08e13bb5be365e0",
|
||||||
"_journal/2024-06/2024-06-28.md": "3f6a47a6324918b6c3af6b9549663372"
|
"_journal/2024-06/2024-06-28.md": "3f6a47a6324918b6c3af6b9549663372",
|
||||||
|
"_journal/2024-06-30.md": "97d39a4905e296c6c3fd12e48c4283bd",
|
||||||
|
"_journal/2024-06/2024-06-29.md": "9d43f4f33e03a48aa08e13bb5be365e0"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
"Basic": [
|
"Basic": [
|
||||||
|
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-06-30"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [x] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-07-01"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [x] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -375,8 +375,8 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $F \colon A \rightarrow B$. *Why* does "left inverses iff injective" require $A \neq \varnothing$?
|
Let $F \colon A \rightarrow B$. *Why* does "left inverses iff injective" assume $A \neq \varnothing$?
|
||||||
Back: Because a mapping from $B$ to $\varnothing$ cannot be a function.
|
Back: Because a mapping from nonempty $B$ to $\varnothing$ cannot be a function.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1719683703729-->
|
<!--ID: 1719683703729-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -600,8 +600,8 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Let $F \colon A \rightarrow B$. *Why* does "right inverses iff surjective" require $A \neq \varnothing$?
|
Let $F \colon A \rightarrow B$. *Why* does "right inverses iff surjective" assume $A \neq \varnothing$?
|
||||||
Back: Because a mapping from $B$ to $\varnothing$ cannot be a function.
|
Back: Because a mapping from nonempty $B$ to $\varnothing$ cannot be a function.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1719683703734-->
|
<!--ID: 1719683703734-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -1002,14 +1002,14 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Cloze
|
Cloze
|
||||||
Let $F$ be {a function}. If $t \in$ {$\mathop{\text{ran}}F$}, then $F(F^{-1}(t)) = t$.
|
Let $F$ be a {function}. If $t \in$ {$\mathop{\text{ran} }F$}, then $F(F^{-1}(t)) = t$.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1719398756562-->
|
<!--ID: 1719398756562-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Cloze
|
Cloze
|
||||||
Let $F$ be {an injection}. If $t \in$ {$\mathop{\text{dom}}F$}, then $F^{-1}(F(t)) = t$.
|
Let $F$ be an {injection}. If $t \in$ {$\mathop{\text{dom} }F$}, then $F^{-1}(F(t)) = t$.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1719398756565-->
|
<!--ID: 1719398756565-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -390,7 +390,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What does it mean for a set $A$ to be "single-rooted"?
|
What does it mean for a set $A$ to be "single-rooted"?
|
||||||
Back: For each $y \in \mathop{\text{ran}}A$, there exists a unique $x$ such that $xRy$.
|
Back: For each $y \in \mathop{\text{ran}}A$, there exists a unique $x$ such that $xAy$.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1718465870483-->
|
<!--ID: 1718465870483-->
|
||||||
END%%
|
END%%
|
||||||
|
|
Loading…
Reference in New Issue