Invariance under translation.
parent
93fd8d7a6c
commit
4c94d8fb1d
|
@ -1003,7 +1003,7 @@
|
|||
"_journal/2024-12/2024-12-04.md": "965f6619edf1002d960203e3e12a413b",
|
||||
"_journal/2024-12-06.md": "d75323d0fec57f4fc1f13cb4370df18d",
|
||||
"_journal/2024-12/2024-12-05.md": "4f3b1e7a43e01cc97b0eed6fbc6c1f96",
|
||||
"calculus/integrals.md": "7c10ec02401c982039ed421c4435c0ad",
|
||||
"calculus/integrals.md": "7f62d3f04555bdf553e1852b78229b1f",
|
||||
"_journal/2024-12-07.md": "bfb6c4db0acbacba19f03a04ec29fa5c",
|
||||
"_journal/2024-12/2024-12-06.md": "d73b611d2d15827186a0252d9b9a6580",
|
||||
"_journal/2024-12-08.md": "5662897539b222db1af45dcd217f0796",
|
||||
|
|
|
@ -254,7 +254,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the following identity called? $$\int_a^b f(x) + g(x) \,dx = \int_a^b f(x) \,dx + \int_a^b g(x) \,dx$$
|
||||
Assume the following integrals are defined. What is the following identity called? $$\int_a^b f(x) + g(x) \,dx = \int_a^b f(x) \,dx + \int_a^b g(x) \,dx$$
|
||||
|
||||
Back: The additive property w.r.t. the integrand.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
|
@ -283,7 +283,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the following identity called? $$\int_a^b c \cdot f(x) \,dx = c\int_a^b f(x) \,dx$$
|
||||
Assume the following integrals are defined. What is the following identity called? $$\int_a^b c \cdot f(x) \,dx = c\int_a^b f(x) \,dx$$
|
||||
|
||||
Back: The homogeneous property.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
|
@ -304,7 +304,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the following identity called? $$\int_a^b [c_1f(x) + c_2g(x)] \,dx = c_1 \int_a^b f(x) \,dx + c_2 \int_a^b g(x) \,dx$$
|
||||
Assume the following integrals are defined. What is the following identity called? $$\int_a^b [c_1f(x) + c_2g(x)] \,dx = c_1 \int_a^b f(x) \,dx + c_2 \int_a^b g(x) \,dx$$
|
||||
Back: The linearity property.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1734814463704-->
|
||||
|
@ -375,7 +375,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $f$ be integrable over an interval containing $a$, $b$, and $c$. What is the following identity called? $$\int_a^b f(x) \,dx + \int_b^c f(x) \,dx = \int_a^c f(x) \,dx$$
|
||||
Assume the following integrals are defined. What is the following identity called? $$\int_a^b f(x) \,dx + \int_b^c f(x) \,dx = \int_a^c f(x) \,dx$$
|
||||
|
||||
Back: The additive property w.r.t. the interval of integration.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
|
@ -406,6 +406,58 @@ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Int
|
|||
<!--ID: 1735613867225-->
|
||||
END%%
|
||||
|
||||
### Invariance Under Translation
|
||||
|
||||
Let $f$ be integrable over $[a, b]$ and $c \in \mathbb{R}$. Then $$\int_a^b f(x) \,dx = \int_{a+c}^{b+c} f(x - c) \,dx$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the invariance under translation propery of integrals state?
|
||||
Back: Let $f$ be integrable over $[a, b]$ and $c \in \mathbb{R}$. Then $$\int_a^b f(x) \,dx = \int_{a+c}^{b+c} f(x - c) \,dx$$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1735616354212-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume the following integrals are defined. What is the following identity called? $$\int_a^b f(x) \,dx = \int_{a+c}^{b+c} f(x - c) \,dx$$
|
||||
Back: Invariance under translation.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1735616354216-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Invariance of integrals under translation corresponds to what property of area?
|
||||
Back: Invariance under congruence.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1735616354218-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Invariance of area under congruence corresponds to what basic property of integrals?
|
||||
Back: Invariance under translation.
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1735616354219-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $f$ be integrable over $[a, b]$ and $g(x) = f(x - c)$. What integral of $g$ equals $\int_a^b f(x) \,dx$?
|
||||
Back: $\int_{a+c}^{b+c} g(x) \,dx$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1735616354220-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $f$ be integrable over $[a, b]$ and $g(x) = f(x + c)$. What integral of $g$ equals $\int_a^b f(x) \,dx$?
|
||||
Back: $\int_{a-c}^{b-c} g(x) \,dx$
|
||||
Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980).
|
||||
<!--ID: 1735616354222-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).
|
||||
|
|
Loading…
Reference in New Issue