diff --git a/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json b/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json index d0280ce..b15b548 100644 --- a/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json +++ b/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json @@ -1003,7 +1003,7 @@ "_journal/2024-12/2024-12-04.md": "965f6619edf1002d960203e3e12a413b", "_journal/2024-12-06.md": "d75323d0fec57f4fc1f13cb4370df18d", "_journal/2024-12/2024-12-05.md": "4f3b1e7a43e01cc97b0eed6fbc6c1f96", - "calculus/integrals.md": "7c10ec02401c982039ed421c4435c0ad", + "calculus/integrals.md": "7f62d3f04555bdf553e1852b78229b1f", "_journal/2024-12-07.md": "bfb6c4db0acbacba19f03a04ec29fa5c", "_journal/2024-12/2024-12-06.md": "d73b611d2d15827186a0252d9b9a6580", "_journal/2024-12-08.md": "5662897539b222db1af45dcd217f0796", diff --git a/notes/calculus/integrals.md b/notes/calculus/integrals.md index 79ee4df..40a354e 100644 --- a/notes/calculus/integrals.md +++ b/notes/calculus/integrals.md @@ -254,7 +254,7 @@ END%% %%ANKI Basic -What is the following identity called? $$\int_a^b f(x) + g(x) \,dx = \int_a^b f(x) \,dx + \int_a^b g(x) \,dx$$ +Assume the following integrals are defined. What is the following identity called? $$\int_a^b f(x) + g(x) \,dx = \int_a^b f(x) \,dx + \int_a^b g(x) \,dx$$ Back: The additive property w.r.t. the integrand. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). @@ -283,7 +283,7 @@ END%% %%ANKI Basic -What is the following identity called? $$\int_a^b c \cdot f(x) \,dx = c\int_a^b f(x) \,dx$$ +Assume the following integrals are defined. What is the following identity called? $$\int_a^b c \cdot f(x) \,dx = c\int_a^b f(x) \,dx$$ Back: The homogeneous property. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). @@ -304,7 +304,7 @@ END%% %%ANKI Basic -What is the following identity called? $$\int_a^b [c_1f(x) + c_2g(x)] \,dx = c_1 \int_a^b f(x) \,dx + c_2 \int_a^b g(x) \,dx$$ +Assume the following integrals are defined. What is the following identity called? $$\int_a^b [c_1f(x) + c_2g(x)] \,dx = c_1 \int_a^b f(x) \,dx + c_2 \int_a^b g(x) \,dx$$ Back: The linearity property. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). @@ -375,7 +375,7 @@ END%% %%ANKI Basic -Let $f$ be integrable over an interval containing $a$, $b$, and $c$. What is the following identity called? $$\int_a^b f(x) \,dx + \int_b^c f(x) \,dx = \int_a^c f(x) \,dx$$ +Assume the following integrals are defined. What is the following identity called? $$\int_a^b f(x) \,dx + \int_b^c f(x) \,dx = \int_a^c f(x) \,dx$$ Back: The additive property w.r.t. the interval of integration. Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). @@ -406,6 +406,58 @@ Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Int END%% +### Invariance Under Translation + +Let $f$ be integrable over $[a, b]$ and $c \in \mathbb{R}$. Then $$\int_a^b f(x) \,dx = \int_{a+c}^{b+c} f(x - c) \,dx$$ + +%%ANKI +Basic +What does the invariance under translation propery of integrals state? +Back: Let $f$ be integrable over $[a, b]$ and $c \in \mathbb{R}$. Then $$\int_a^b f(x) \,dx = \int_{a+c}^{b+c} f(x - c) \,dx$$ +Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). + +END%% + +%%ANKI +Basic +Assume the following integrals are defined. What is the following identity called? $$\int_a^b f(x) \,dx = \int_{a+c}^{b+c} f(x - c) \,dx$$ +Back: Invariance under translation. +Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). + +END%% + +%%ANKI +Basic +Invariance of integrals under translation corresponds to what property of area? +Back: Invariance under congruence. +Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). + +END%% + +%%ANKI +Basic +Invariance of area under congruence corresponds to what basic property of integrals? +Back: Invariance under translation. +Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). + +END%% + +%%ANKI +Basic +Let $f$ be integrable over $[a, b]$ and $g(x) = f(x - c)$. What integral of $g$ equals $\int_a^b f(x) \,dx$? +Back: $\int_{a+c}^{b+c} g(x) \,dx$ +Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). + +END%% + +%%ANKI +Basic +Let $f$ be integrable over $[a, b]$ and $g(x) = f(x + c)$. What integral of $g$ equals $\int_a^b f(x) \,dx$? +Back: $\int_{a-c}^{b-c} g(x) \,dx$ +Reference: Tom M. Apostol, _Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra_, 2nd ed. (New York: Wiley, 1980). + +END%% + ## Bibliography * “Integral.” In _Wikipedia_, December 31, 2024. [https://en.wikipedia.org/w/index.php?title=Integral](https://en.wikipedia.org/w/index.php?title=Integral&oldid=1266307875).