The x86-64 stack grows towards lower addresses. When a procedure is invoked, more spack on the top of the stack is allocated for that procedure to make use of. This portion of the stack is called a **frame**. The general shape of the stack looks as follows:
![[x86-64-stack.png]]
Note parts of this diagram are omitted when possible. For instance, a stack frame may not exist at all if all arguments to a **leaf procedure** can be passed through registers. A leaf procedure is a function that does not call another function.
%%ANKII
Basic
What ADT is used internally in procedure-calling mechanisms?
Back: A stack.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
END%%
%%ANKII
Cloze
The x86-64 stack grows towards {lower} addresses.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
END%%
%%ANKI
Basic
What is a frame w.r.t. the x86-64 stack?
Back: A region of the stack dedicated to a particular function call.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728480337611-->
END%%
%%ANKI
Basic
What instructions are used to store and retrieve from the x86-64 stack?
Back: `pushq` and `popq`.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728480337614-->
END%%
%%ANKI
Basic
What does the "stack pointer" refer to w.r.t. the x86-64 stack?
Back: Register `%rsp`.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728480337617-->
END%%
%%ANKI
Basic
How is the stack pointer manipulated to allocate space on the x86-64 stack?
Back: By decrementing `%rsp` by an appropriate amount.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728480337621-->
END%%
%%ANKI
Basic
How is the stack pointer manipulated to deallocate space on the x86-64 stack?
Back: By incrementing `%rsp` by an appropriate amount.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728480337604-->
END%%
%%ANKI
Basic
Suppose procedure `P` calls `Q`. What data sits at the end of `P`'s frame?
Back: A return address.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728481058927-->
END%%
%%ANKI
Cloze
A {leaf} procedure is a function that {does not call another function}.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728481058953-->
END%%
%%ANKI
Basic
Suppose procedure `P` calls `Q`. The return address belongs to who's frame?
Back: `P`
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728481058960-->
END%%
%%ANKI
Basic
Suppose procedure `P` calls `Q`. Why is the return address considered to be in `P`'s frame?
Back: It is state relevant to `P`.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728481058966-->
END%%
## Control Transfer
Like [[conditions#JMP|JMP]] instructions, `call` allows specifying a direct or indirect operand. `call` pushes the address of the instruction following it onto the stack and updates the PC to the operand. `ret` reverts these steps.
| Instruction | Operands | Description |
| ----------- | ----------- | ---------------- |
| `call` | Label | Procedure call |
| `call` | \**Operand* | Procedure call |
| `ret` | | Return from call |
%%ANKI
Cloze
The {`call`} instruction is the counterpart to the {`ret`} instruction.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728558288130-->
END%%
%%ANKI
Basic
What two things does the `call` instruction do?
Back: It pushes the return address on the stack and updates the PC.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728558288148-->
END%%
%%ANKI
Basic
What two things does the `ret` instruction do?
Back: It pops the return address off the stack and updates the PC.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728558288160-->
END%%
%%ANKI
Basic
The operand forms of `call` mirror what other instruction class?
Back: `JMP`
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728558288165-->
END%%
%%ANKI
Basic
A `call` instruction pushes what address onto the stack?
Back: That of the instruction following the `call` instruction.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728558288171-->
END%%
%%ANKI
Basic
What return address is pushed onto the stack after `call` is run?
```x86
1: ...
2: callq .L1
3: ...
```
Back: `3`
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728558288177-->
END%%
%%ANKI
Basic
What address is the PC updated to after `call` is run?
```x86
1: ...
2: callq .L1
3: ...
```
Back: That corresponding to label `.L1`.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728558288183-->
END%%
%%ANKI
Basic
Which register(s) does a `call` instruction update?
Back: `%rsp` and `%rip`.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1728559336730-->
END%%
%%ANKI
Basic
Which register(s) does a `ret` instruction update?
Back: `%rsp` and `%rip`.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
The 6 registers used for passing integral arguments are highlighted [[registers#Integral Arguments|here]]. If more than 6 integral arguments are specified to a procedure, the surplus are placed onto the stack in the caller's frame.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
In some cases, integral values still need to be placed onto the stack. For example, operator `&` is applied to a local variable and hence we must be able to generate an address for it.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
* Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.