We say set $A$ is **equinumerous** to set $B$, written ($A \approx B$) if and only if there exists a [[set/functions#Injections|one-to-one]] function from $A$ [[set/functions#Surjections|onto]] $B$.
* if $A \approx B$ and $B \approx C$, then $A \approx C$.
Notice though that $\{ \langle A, B \rangle \mid A \approx B \}$ is *not* an equivalence relation since the equivalence concept of equinumerosity concerns *all* sets.
%%ANKI
Basic
Concisely state the equivalence concept of equinumerosity in Zermelo-Fraenkel set theory.
Back: For all sets $A$, $B$, and $C$:
* $A \approx A$;
* $A \approx B \Rightarrow B \approx A$;
* $A \approx B \land B \approx C \Rightarrow A \approx C$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060370-->
END%%
%%ANKI
Basic
Concisely state the equivalence concept of equinumerosity in von Neumann-Bernays set theory.
Back: Class $\{ \langle A, B \rangle \mid A \approx B \}$ is reflexive on the class of all sets, symmetric, and transitive.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060374-->
END%%
%%ANKI
Basic
What is the reflexive property of equinumerosity in FOL?
Back: $\forall A, A \approx A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060379-->
END%%
%%ANKI
Basic
What is the symmetric property of equinumerosity in FOL?
Back: $\forall A, B, A \approx B \Rightarrow B \approx A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060383-->
END%%
%%ANKI
Basic
What is the transitive property of equinumerosity in FOL?
Back: $\forall A, B, C, A \approx B \land B \approx C \Rightarrow A \approx C$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060387-->
END%%
%%ANKI
Basic
Is $\{ \langle A, B \rangle \mid A \approx B \}$ a set?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060390-->
END%%
%%ANKI
Basic
*Why* isn't $\{ \langle A, B \rangle \mid A \approx B \}$ a set?
Back: Because then the field of this "relation" would be a set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060394-->
END%%
%%ANKI
Basic
Is $\{ \langle A, B \rangle \mid A \approx B \}$ an equivalence relation?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060398-->
END%%
%%ANKI
Basic
*Why* isn't $\{ \langle A, B \rangle \mid A \approx B \}$ an equivalence relation?
Back: Because then the field of this "relation" would be a set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
If one set $A$ of cardinality $\kappa$ is finite, then all of them are. In this case $\kappa$ is a **finite cardinal**. Otherwise $\kappa$ is an **infinite cardinal**.
%%ANKI
Basic
How many sets $A$ exist such that $\mathop{\text{card}} A = 0$?
Back: $1$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315442-->
END%%
%%ANKI
Basic
How many sets $A$ exist such that $\mathop{\text{card}} A = n^+$ for some $n \in \omega$?
Back: An infinite many.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315447-->
END%%
%%ANKI
Basic
Let $n \in \omega$. When is $\{X \mid \mathop{\text{card}} X = n\}$ a set?
Back: When $n = 0$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315450-->
END%%
%%ANKI
Basic
Let $n \in \omega$. When is $\{X \mid \mathop{\text{card}} X = n\}$ a class?
Back: Always.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315453-->
END%%
%%ANKI
Basic
What class can we construct to prove $\{X \mid \mathop{\text{card}} X = 1\}$ is not a set?
Back: $\bigcup\, \{\{X\} \mid X \text{ is a set} \}$, i.e. the union of all singleton sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315456-->
END%%
%%ANKI
Basic
What is a finite cardinal?
Back: A cardinal number equal to $\mathop{\text{card}} A$ for some finite set $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315459-->
END%%
%%ANKI
Basic
What is an infinite cardinal?
Back: A cardinal number equal to $\mathop{\text{card}} A$ for some infinite set $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315461-->
END%%
%%ANKI
Basic
The finite cardinals are exactly what more basic set?
Back: $\omega$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315464-->
END%%
%%ANKI
Basic
What set does $\aleph_0$ refer to?
Back: $\mathop{\text{card}} \omega$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315466-->
END%%
%%ANKI
Basic
What is the "smallest" infinite cardinal?
Back: $\aleph_0$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315469-->
END%%
%%ANKI
Basic
Let $C \subseteq A$ where $A \approx n$ for some $n \in \omega$. What does $\mathop{\text{card}} C$ evaluate to?
Back: A natural number $m$ such that $m \underline{\in} n$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315471-->
END%%
%%ANKI
Basic
Let $C \subset A$ where $A \approx n$ for some $n \in \omega$. What does $\mathop{\text{card}} C$ evaluate to?
Back: A natural number $m$ such that $m \in n$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315474-->
END%%
%%ANKI
Basic
How is proposition "any subset of a finite set is finite" expressed in FOL?
Back: $\forall n \in \omega, \forall A \approx n, \forall B \subseteq A, \exists m \in n, B \approx m$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315477-->
END%%
%%ANKI
Basic
How is the following more succinctly stated? $$\forall n \in \omega, \forall A \approx n, \forall B \subseteq A, \exists m \in n, B \approx m$$
Back: Any subset of a finite set is finite.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315479-->
END%%
%%ANKI
Basic
Suppose sets $A$ and $B$ are finite. When is $A \cup B$ infinite?
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa + \lambda = \mathop{\text{card}}(K \cup L)$, where $K$ and $L$ are any disjoint sets of cardinality $\kappa$ and $\lambda$, respectively.
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be any cardinal numbers. How is $\kappa + \lambda$ defined?
Back: As $\mathop{\text{card}}(K \cup L)$ where $K$ and $L$ are disjoint sets with cardinality $\kappa$ and $\lambda$, respectively.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Let $\mathop{\text{card}}(K) = \kappa$ and $\mathop{\text{card}}(L) = \lambda$. What is necessary for $\mathop{\text{card}}(K \cup L) = \kappa + \lambda$?
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa \cdot \lambda = \mathop{\text{card}}(K \times L)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be any cardinal numbers. How is $\kappa \cdot \lambda$ defined?
Back: As $\mathop{\text{card}}(K \times L)$ where $K$ and $L$ are sets with cardinality $\kappa$ and $\lambda$, respectively.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa^\lambda = \mathop{\text{card}}(^LK)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be any cardinal numbers. How is $\kappa^\lambda$ defined?
Back: As $\mathop{\text{card}}(^LK)$ where $K$ and $L$ are sets with cardinality $\kappa$ and $\lambda$, respectively.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Let $\kappa$ and $\lambda$ be cardinal numbers. Does $\kappa ^ \lambda = \lambda ^ \kappa$?
Back: Not necessarily.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143705-->
END%%
%%ANKI
Cloze
Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. Then $\kappa^{\lambda + \mu} =$ {$\kappa^\lambda \cdot \kappa^\mu$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143706-->
END%%
%%ANKI
Cloze
Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. Then $(\kappa \cdot \lambda)^\mu =$ {$\kappa^\mu \cdot \lambda^\mu$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143707-->
END%%
%%ANKI
Cloze
Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. Then $(\kappa^\lambda)^\mu =$ {$\kappa^{\lambda \cdot \mu}$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143708-->
END%%
%%ANKI
Basic
Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. What $\lambda$-calculus concept does $(\kappa^\lambda)^\mu = \kappa^{\lambda \cdot \mu}$ embody?
Back: Currying.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143709-->
END%%
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be cardinal numbers. Rewrite $\kappa^{\lambda + 1}$ without using addition.
Back: $\kappa^\lambda \cdot \kappa$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143710-->
END%%
%%ANKI
Basic
Let $\kappa$ be a cardinal number. How is the factorial of $\kappa$ denoted?
Back: $\kappa !$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143711-->
END%%
%%ANKI
Basic
Let $\kappa$ be a cardinal number. How is the factorial of $\kappa$ defined?
Back: As $\mathop{\text{card}} \{ f \mid f \text{ is a permutation of } K\}$ for some $\mathop{\text{card}} K = \kappa$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
A set $A$ is **dominated** by a set $B$, written $A \preceq B$, if and only if there is a one-to-one function from $A$ into $B$. In other words, $A \preceq B$ if and only if $A$ is equinumerous to some subset of $B$. Then $$\mathop{\text{card}}A \leq \mathop{\text{card}}B \text{ if and only if } A \preceq B.$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493305952-->
END%%
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be cardinal numbers. Restate the following in terms of sets: $$\kappa < \lambda \text{iff} \kappa \leq \lambda \text{and} \kappa \neq \lambda$$
Back: Given $\mathop{\text{card}}K = \kappa$ and $\mathop{\text{card}}L = \lambda$, $\mathop{\text{card}}K < \mathop{\text{card}}L$iff$K \preceqL$and$K \not\approxL$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493305957-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. Restate the following in terms of cardinal numbers: $$\mathop{\text{card}}K < \mathop{\text{card}}L \text{iff}K \preceqL \text{and}K \not\approxL.$$
Back: Given $\mathop{\text{card}}K = \kappa$ and $\mathop{\text{card}}L = \lambda$, $\kappa < \lambda$iff$\kappa \leq \lambda$and$\kappa \neq \lambda$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493305962-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. *Why* can't we use the following definition? $$\mathop{\text{card}} K \leq \mathop{\text{card}} L \text{ iff } \exists A \subseteq L, K \approx A$$
Back: N/A. This is a suitable definition.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493767848-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. *Why* can't we use the following definition? $$\mathop{\text{card}} K < \mathop{\text{card}}L \text{iff} \existsA \subsetL,K \approxA$$
Back: Infinite sets may be equinumerous to a proper subset of themselves.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493767854-->
END%%
%%ANKI
Basic
For any $n \in \omega$, *why* is $n < \aleph_0$?
Back: $n \not\approx \omega$ and there exists an injective function $f \colon n \rightarrow \omega$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735522988804-->
END%%
%%ANKI
Basic
For any cardinal number $\kappa$, *why* is $\kappa <2^\kappa$?
Back: Assuming $\mathop{\text{card}}K = \kappa$, $K \not\approx \mathscr{P}(K)$ and there exists an injective function $f \colon K \rightarrow \mathscr{P}(K)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735522988810-->
END%%
%%ANKI
Basic
What is the smallest cardinal number?
Back: $0$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735522988813-->
END%%
%%ANKI
Basic
What is the largest cardinal number?
Back: N/A. There is no largest cardinal number.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736702905241-->
END%%
%%ANKI
Basic
*Why* does $\kappa \leq \kappa$ for any cardinal number $\kappa$?
Back: For set $K$ s.t. $\mathop{\text{card}}K = \kappa$, $K \preceq K$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736702905244-->
END%%
%%ANKI
Basic
For set $K$, which function most naturally proves $K \preceq K$?
Back: The identity function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736702905248-->
END%%
%%ANKI
Basic
What does it mean for cardinal numbers to obey transitivity?
Back: Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. If $\kappa \leq \lambda$ and $\lambda \leq \mu$, then $\kappa \leq \mu$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736702905252-->
END%%
%%ANKI
Basic
Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. Restate the following in terms of sets: $$\text{if } \kappa \leq \lambda \text{ and } \lambda \leq \mu, \text{ then } \kappa \leq \mu$$
Back: Let $K$, $L$, and $M$ be sets s.t. $\mathop{\text{card}}K = \kappa$, $\mathop{\text{card}}L = \lambda$, and $\mathop{\text{card}}M = \mu$. Then $$\text{if } K \preceq L \text{ and } L \preceq M, \text{ then } K \preceq M$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736702905257-->
END%%
%%ANKI
Basic
Let $K$, $L$, and $M$ be sets. Restate the following in terms of cardinal numbers: $$\text{if } K \preceq L \text{ and } L \preceq M, \text{ then } K \preceq M$$
Back: Let $\mathop{\text{card}}K = \kappa$, $\mathop{\text{card}}L = \lambda$, and $\mathop{\text{card}}M = \mu$. Then $$\text{if } \kappa \leq \lambda \text{ and } \lambda \leq \mu, \text{ then } \kappa \leq \mu$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736702905262-->
END%%
%%ANKI
Basic
Suppose $K \preceq L$ and $L \preceq M$. *Why* must $K \preceq M$?
Back: There exist injective functions $f \colon K \rightarrow L$ and $g \colon L \rightarrow M$. Then $f \circ g$ is one-to-one from $K$ to $M$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
For any sets $A$ and $B$, if $A \preceq B$ and $B \preceq A$, then $A \approx B$.
%%ANKI
Basic
In terms of sets, what does the Schröder-Bernstein theorem state?
Back: For any sets $A$ and $B$, if $A \preceq B$ and $B \preceq A$, then $A \approx B$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693540-->
END%%
%%ANKI
Basic
In terms of cardinal numbers, what does the Schröder-Bernstein theorem state?
Back: For any cardinal numbers $\kappa$ and $\lambda$, if $\kappa \leq \lambda$ and $\lambda \leq \kappa$, then $\kappa = \lambda$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693542-->
END%%
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be cardinals numbers. What name is given to the following conditional? $$\kappa \leq \lambda \land \lambda \leq \kappa \Rightarrow \kappa = \lambda$$
Back: The Schröder-Bernstein theorem.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693543-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be sets. What name is given to the following conditional? $$A \preceq B \land B \preceq A \Rightarrow A \approx B$$
Back: The Schröder-Bernstein theorem.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693544-->
END%%
%%ANKI
Basic
The following is a visual depiction of what theorem?
![[schroder-bernstein.png]]
Back: The Schröder-Bernstein theorem.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693545-->
END%%
%%ANKI
Basic
Consider injections $f \colon A \rightarrow B$ and $g \colon B \rightarrow A$. What set is "reflected" in the proof of the Schröder-Bernstein theorem?
Back: $A - \mathop{\text{ran}}g$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693546-->
END%%
%%ANKI
Basic
The proof of the Schröder-Bernstein theorem uses concepts from what "paradox"?
Back: Hilbert's paradox of the Grand Hotel.
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693547-->
END%%
%%ANKI
Basic
Consider this visual proof of the Schröder-Bernstein theorem. The first yellow segment corresponds to what set?
![[schroder-bernstein.png]]
Back: $A - \mathop{\text{ran}}g$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693548-->
END%%
%%ANKI
Basic
Consider this visual proof of the Schröder-Bernstein theorem. The second yellow segment corresponds to what set?
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1736711693550-->
END%%
## Hilbert's Hotel
Consider a hypothetical hotel with rooms numbered $1$, $2$, $3$, and so on with no upper limit. That is, there is a countably infinite number of rooms in this hotel. Furthermore, it's assumed every room is occupied.
Hilbert's hotel shows that any finite or countably infinite number of additional guests can still be accommodated for.
%%ANKI
Basic
How many rooms exist in Hilbert's Hotel?
Back: A countably infinite number.
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693551-->
END%%
%%ANKI
Basic
What does Hilbert's Hotel assume about every one of its rooms?
Back: That they are occupied.
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693552-->
END%%
%%ANKI
Basic
How many rooms are there assumed to be in Hilbert's Hotel?
Back: A countably infinite number of them, i.e. $\omega$.
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693553-->
END%%
%%ANKI
Basic
Add one guest to Hilbert's Hotel. Typically, the occupant of room $n$ moves to what room?
Back: $n + 1$
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693554-->
END%%
%%ANKI
Basic
Add $k \in \mathbb{N}$ guests to Hilbert's Hotel. Typically, the occupant of room $n$ moves to what room?
Back: $n + k$
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693555-->
END%%
%%ANKI
Basic
Add a countably infinite number of guests to Hilbert's Hotel. Typically, the occupant of room $n$ moves to what room?
Back: $2n$
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693556-->
END%%
%%ANKI
Basic
Add a countably infinite number of guests to Hilbert's Hotel. Moving occupant of room $n$ to room $2n$ makes which rooms available?
Back: All odd-numbered rooms.
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693557-->
END%%
%%ANKI
Basic
What "paradox" does Hilbert's Hotel raise?
Back: A fully occupied hotel can still make room for more guests.
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
<!--ID: 1736711693558-->
END%%
%%ANKI
Basic
Hilbert's paradox of the Grand Hotel illustates the existence of what mathematical entity?
Back: A bijection between any countably infinite set and $\mathbb{N}$.
Reference: “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
* “Hilbert’s Paradox of the Grand Hotel.” In _Wikipedia_, December 23, 2024. [https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel](https://en.wikipedia.org/w/index.php?title=Hilbert%27s_paradox_of_the_Grand_Hotel&oldid=1264833516).