We say set $A$ is **equinumerous** to set $B$, written ($A \approx B$) if and only if there exists a [[set/functions#Injections|one-to-one]] function from $A$ [[set/functions#Surjections|onto]] $B$.
* if $A \approx B$ and $B \approx C$, then $A \approx C$.
Notice though that $\{ \langle A, B \rangle \mid A \approx B \}$ is *not* an equivalence relation since the equivalence concept of equinumerosity concerns *all* sets.
%%ANKI
Basic
Concisely state the equivalence concept of equinumerosity in Zermelo-Fraenkel set theory.
Back: For all sets $A$, $B$, and $C$:
* $A \approx A$;
* $A \approx B \Rightarrow B \approx A$;
* $A \approx B \land B \approx C \Rightarrow A \approx C$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060370-->
END%%
%%ANKI
Basic
Concisely state the equivalence concept of equinumerosity in von Neumann-Bernays set theory.
Back: Class $\{ \langle A, B \rangle \mid A \approx B \}$ is reflexive on the class of all sets, symmetric, and transitive.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060374-->
END%%
%%ANKI
Basic
What is the reflexive property of equinumerosity in FOL?
Back: $\forall A, A \approx A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060379-->
END%%
%%ANKI
Basic
What is the symmetric property of equinumerosity in FOL?
Back: $\forall A, B, A \approx B \Rightarrow B \approx A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060383-->
END%%
%%ANKI
Basic
What is the transitive property of equinumerosity in FOL?
Back: $\forall A, B, C, A \approx B \land B \approx C \Rightarrow A \approx C$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060387-->
END%%
%%ANKI
Basic
Is $\{ \langle A, B \rangle \mid A \approx B \}$ a set?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060390-->
END%%
%%ANKI
Basic
*Why* isn't $\{ \langle A, B \rangle \mid A \approx B \}$ a set?
Back: Because then the field of this "relation" would be a set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060394-->
END%%
%%ANKI
Basic
Is $\{ \langle A, B \rangle \mid A \approx B \}$ an equivalence relation?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060398-->
END%%
%%ANKI
Basic
*Why* isn't $\{ \langle A, B \rangle \mid A \approx B \}$ an equivalence relation?
Back: Because then the field of this "relation" would be a set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
If one set $A$ of cardinality $\kappa$ is finite, then all of them are. In this case $\kappa$ is a **finite cardinal**. Otherwise $\kappa$ is an **infinite cardinal**.
%%ANKI
Basic
How many sets $A$ exist such that $\mathop{\text{card}} A = 0$?
Back: $1$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315442-->
END%%
%%ANKI
Basic
How many sets $A$ exist such that $\mathop{\text{card}} A = n^+$ for some $n \in \omega$?
Back: An infinite many.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315447-->
END%%
%%ANKI
Basic
Let $n \in \omega$. When is $\{X \mid \mathop{\text{card}} X = n\}$ a set?
Back: When $n = 0$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315450-->
END%%
%%ANKI
Basic
Let $n \in \omega$. When is $\{X \mid \mathop{\text{card}} X = n\}$ a class?
Back: Always.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315453-->
END%%
%%ANKI
Basic
What class can we construct to prove $\{X \mid \mathop{\text{card}} X = 1\}$ is not a set?
Back: $\bigcup\, \{\{X\} \mid X \text{ is a set} \}$, i.e. the union of all singleton sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315456-->
END%%
%%ANKI
Basic
What is a finite cardinal?
Back: A cardinal number equal to $\mathop{\text{card}} A$ for some finite set $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315459-->
END%%
%%ANKI
Basic
What is an infinite cardinal?
Back: A cardinal number equal to $\mathop{\text{card}} A$ for some infinite set $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315461-->
END%%
%%ANKI
Basic
The finite cardinals are exactly what more basic set?
Back: $\omega$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315464-->
END%%
%%ANKI
Basic
What set does $\aleph_0$ refer to?
Back: $\mathop{\text{card}} \omega$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315466-->
END%%
%%ANKI
Basic
What is the "smallest" infinite cardinal?
Back: $\aleph_0$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315469-->
END%%
%%ANKI
Basic
Let $C \subseteq A$ where $A \approx n$ for some $n \in \omega$. What does $\mathop{\text{card}} C$ evaluate to?
Back: A natural number $m$ such that $m \underline{\in} n$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315471-->
END%%
%%ANKI
Basic
Let $C \subset A$ where $A \approx n$ for some $n \in \omega$. What does $\mathop{\text{card}} C$ evaluate to?
Back: A natural number $m$ such that $m \in n$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315474-->
END%%
%%ANKI
Basic
How is proposition "any subset of a finite set is finite" expressed in FOL?
Back: $\forall n \in \omega, \forall A \approx n, \forall B \subseteq A, \exists m \in n, B \approx m$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315477-->
END%%
%%ANKI
Basic
How is the following more succinctly stated? $$\forall n \in \omega, \forall A \approx n, \forall B \subseteq A, \exists m \in n, B \approx m$$
Back: Any subset of a finite set is finite.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315479-->
END%%
%%ANKI
Basic
Suppose sets $A$ and $B$ are finite. When is $A \cup B$ infinite?
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa + \lambda = \mathop{\text{card}}(K \cup L)$, where $K$ and $L$ are any disjoint sets of cardinality $\kappa$ and $\lambda$, respectively.
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be any cardinal numbers. How is $\kappa + \lambda$ defined?
Back: As $\mathop{\text{card}}(K \cup L)$ where $K$ and $L$ are disjoint sets with cardinality $\kappa$ and $\lambda$, respectively.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Let $\mathop{\text{card}}(K) = \kappa$ and $\mathop{\text{card}}(L) = \lambda$. What is necessary for $\mathop{\text{card}}(K \cup L) = \kappa + \lambda$?
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa \cdot \lambda = \mathop{\text{card}}(K \times L)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be any cardinal numbers. How is $\kappa \cdot \lambda$ defined?
Back: As $\mathop{\text{card}}(K \times L)$ where $K$ and $L$ are sets with cardinality $\kappa$ and $\lambda$, respectively.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa^\lambda = \mathop{\text{card}}(^LK)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be any cardinal numbers. How is $\kappa^\lambda$ defined?
Back: As $\mathop{\text{card}}(^LK)$ where $K$ and $L$ are sets with cardinality $\kappa$ and $\lambda$, respectively.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Let $\kappa$ and $\lambda$ be cardinal numbers. Does $\kappa ^ \lambda = \lambda ^ \kappa$?
Back: Not necessarily.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143705-->
END%%
%%ANKI
Cloze
Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. Then $\kappa^{\lambda + \mu} =$ {$\kappa^\lambda \cdot \kappa^\mu$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143706-->
END%%
%%ANKI
Cloze
Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. Then $(\kappa \cdot \lambda)^\mu =$ {$\kappa^\mu \cdot \lambda^\mu$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143707-->
END%%
%%ANKI
Cloze
Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. Then $(\kappa^\lambda)^\mu =$ {$\kappa^{\lambda \cdot \mu}$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143708-->
END%%
%%ANKI
Basic
Let $\kappa$, $\lambda$, and $\mu$ be cardinal numbers. What $\lambda$-calculus concept does $(\kappa^\lambda)^\mu = \kappa^{\lambda \cdot \mu}$ embody?
Back: Currying.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143709-->
END%%
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be cardinal numbers. Rewrite $\kappa^{\lambda + 1}$ without using addition.
Back: $\kappa^\lambda \cdot \kappa$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143710-->
END%%
%%ANKI
Basic
Let $\kappa$ be a cardinal number. How is the factorial of $\kappa$ denoted?
Back: $\kappa !$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735074143711-->
END%%
%%ANKI
Basic
Let $\kappa$ be a cardinal number. How is the factorial of $\kappa$ defined?
Back: As $\mathop{\text{card}} \{ f \mid f \text{ is a permutation of } K\}$ for some $\mathop{\text{card}} K = \kappa$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
A set $A$ is **dominated** by a set $B$, written $A \preceq B$, if and only if there is a one-to-one function from $A$ into $B$. In other words, $A \preceq B$ if and only if $A$ is equinumerous to some subset of $B$. Then $$\mathop{\text{card}}A \leq \mathop{\text{card}}B \text{ if and only if } A \preceq B.$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493305952-->
END%%
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be cardinal numbers. Restate the following in terms of sets: $$\kappa < \lambda \text{iff} \kappa \leq \lambda \text{and} \kappa \neq \lambda$$
Back: Given $\mathop{\text{card}}K = \kappa$ and $\mathop{\text{card}}L = \lambda$, $\mathop{\text{card}}K < \mathop{\text{card}}L$iff$K \preceqL$and$K \not\approxL$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493305957-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. Restate the following in terms of cardinal numbers: $$\mathop{\text{card}}K < \mathop{\text{card}}L \text{iff}K \preceqL \text{and}K \not\approxL.$$
Back: Given $\mathop{\text{card}}K = \kappa$ and $\mathop{\text{card}}L = \lambda$, $\kappa < \lambda$iff$\kappa \leq \lambda$and$\kappa \neq \lambda$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493305962-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. *Why* can't we use the following definition? $$\mathop{\text{card}} K \leq \mathop{\text{card}} L \text{ iff } \exists A \subseteq L, K \approx A$$
Back: N/A. This is a suitable definition.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493767848-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. *Why* can't we use the following definition? $$\mathop{\text{card}} K < \mathop{\text{card}}L \text{iff} \existsA \subsetL,K \approxA$$
Back: Infinite sets may be equinumerous to a proper subset of themselves.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735493767854-->
END%%
%%ANKI
Basic
For any $n \in \omega$, *why* is $n < \aleph_0$?
Back: $n \not\approx \omega$ and there exists an injective function $f \colon n \rightarrow \omega$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735522988804-->
END%%
%%ANKI
Basic
For any cardinal number $\kappa$, *why* is $\kappa <2^\kappa$?
Back: Assuming $\mathop{\text{card}}K = \kappa$, $K \not\approx \mathscr{P}(K)$ and there exists an injective function $f \colon K \rightarrow \mathscr{P}(K)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735522988810-->
END%%
%%ANKI
Basic
What is the smallest cardinal number?
Back: $0$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1735522988813-->
END%%
%%ANKI
Basic
What is the largest cardinal number?
Back: N/A. There is no largest cardinal number.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).