An **arithmetic sequence** $(a_n)_{n \geq 0}^d$ is a sequence in which each term differs by a constant $d$. Given initial term $a$, it has recursive definition $$a_n = a_{n-1} + d \text{ with } a_0 = a$$ and closed formula $$a_n = a + nd.$$
%%ANKI
Basic
What makes a sequence an *arithmetic* sequence?
Back: Each term has the same constant difference from the previous.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600159-->
END%%
%%ANKI
Basic
What two properties are necessary to characterize an arithmetic sequence?
Back: The initial term and the common difference.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600161-->
END%%
%%ANKI
Basic
What does it mean for the common difference of an arithmetic sequence $(a_n)$ to be $d$?
Back: $a_n - a_{n-1} = d$ for all valid values of $n$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600162-->
END%%
%%ANKI
Basic
Let $(a_n)$ be an arithmetic sequence. What term refers to the difference between terms?
Back: The common difference.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600164-->
END%%
%%ANKI
Basic
Why is the "common difference" of an arithmetic sequence named the way it is?
Back: It is shared between all successive terms.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600166-->
END%%
%%ANKI
Basic
The term "common difference" is related to what kind of sequence?
Back: An arithmetic sequence.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600167-->
END%%
%%ANKI
Basic
Let $(a_n)_{n \geq 0}^d$ be an arithmetic sequence. What is its recursive definition's recurrence relation?
Back: $a_n = a_{n-1} + d$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600169-->
END%%
%%ANKI
Basic
Let $(a_n)_{n \geq 0}^d$ be an arithmetic sequence. What is the $n$th term's closed formula?
Back: $a_n = a_0 + nd$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600170-->
END%%
%%ANKI
Basic
Let $(a_n)_{n \geq 0}$ be an arithmetic sequence. What is the closed formula of $\sum_{k=0}^n a_k$?
Back: $$\frac{(a_0 + a_n)(n + 1)}{2}$$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600172-->
END%%
%%ANKI
Basic
Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. What is the closed formula of $\sum_{k=1}^n a_k$?
Back: $$\frac{(a_1 + a_n)(n)}{2}$$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600175-->
END%%
%%ANKI
Basic
Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. How do you expand $\sum_{k=1}^n a_k$ to derive its closed formula?
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Back: The double-counting that occurs when adding the summation to itself.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709664600181-->
END%%
%%ANKI
Cloze
You can find the partial sums of {arithmetic} sequences using the "reverse and add" strategy.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1709666305449-->
END%%
## References
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).