Arithmetic and geometric sequences.
parent
2430c289dc
commit
32bd0e51ce
|
@ -231,14 +231,16 @@
|
|||
"algebra/sequences/index.md": "e5a7cdfbcb61709ce2963c4b5e53a8f2",
|
||||
"_journal/2024-03-02.md": "08c3cae1df0079293b47e1e9556f1ce1",
|
||||
"_journal/2024-03/2024-03-01.md": "70da812300f284df72718dd32fc39322",
|
||||
"algebra/sequences/triangular-numbers.md": "18925b0ecae151c3e6d38bc018c632c4",
|
||||
"algebra/sequences/triangular-numbers.md": "c6626d8aa86776b6ce794c3551862d5a",
|
||||
"algebra/sequences/square-numbers.md": "886fb22fb8dbfffdd2cd233558ea3424",
|
||||
"_journal/2024-03-03.md": "c4977a3778ed227b768c3f9ad5512670",
|
||||
"_journal/2024-03/2024-03-02.md": "8136792b0ee6e08232e4f60c88d461d2",
|
||||
"_journal/2024-03-04.md": "9ec052061e7a613ff877a4488576e82f",
|
||||
"_journal/2024-03/2024-03-03.md": "64e2f17b4d57a6bd42a3d1b7f2851b83",
|
||||
"_journal/2024-03-05.md": "e049435d23c401cc28076a4e1edd1c37",
|
||||
"_journal/2024-03/2024-03-04.md": "4948d90a08af2cff58c629c9a2e11ee4"
|
||||
"_journal/2024-03-05.md": "a285ac3e48e335c50c42ee20b0cb0472",
|
||||
"_journal/2024-03/2024-03-04.md": "4948d90a08af2cff58c629c9a2e11ee4",
|
||||
"algebra/sequences/geometric.md": "53936ec392b3b714bd4a9bdb4554b582",
|
||||
"algebra/sequences/arithmetic.md": "80381ca0f2b3b9a1c155c597a7dea75a"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -10,4 +10,9 @@ title: "2024-03-05"
|
|||
- [ ] Interview Prep (1 Practice Problem)
|
||||
- [ ] Log Work Hours (Max 3 hours)
|
||||
|
||||
* Start on arithmetic/geometric sequences and their sums.
|
||||
* Arithmetic and geometric sequences in "Discrete Mathematics: An Open Introduction".
|
||||
* Completed chapter exercises 2.2.
|
||||
* TODO
|
||||
* Finish up tree objects and commit objects.
|
||||
* 101weiqi
|
||||
* 2 interview problems.
|
|
@ -0,0 +1,155 @@
|
|||
---
|
||||
title: Arithmetic Sequence
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algebra::sequence
|
||||
tags:
|
||||
- algebra
|
||||
- sequence
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
An **arithmetic sequence** $(a_n)_{n \geq 0}^d$ is a sequence in which each term differs by a constant $d$. Given initial term $a$, it has recursive definition $$a_n = a_{n-1} + d \text{ with } a_0 = a$$ and closed formula $$a_n = a + nd.$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What makes a sequence an *arithmetic* sequence?
|
||||
Back: Each term has the same constant difference from the previous.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600159-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two properties are necessary to characterize an arithmetic sequence?
|
||||
Back: The initial term and the common difference.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600161-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for the common difference of an arithmetic sequence $(a_n)$ to be $d$?
|
||||
Back: $a_n - a_{n-1} = d$ for all valid values of $n$.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600162-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)$ be an arithmetic sequence. What term refers to the difference between terms?
|
||||
Back: The common difference.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600164-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why is the "common difference" of an arithmetic sequence named the way it is?
|
||||
Back: It is shared between all successive terms.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600166-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The term "common difference" is related to what kind of sequence?
|
||||
Back: An arithmetic sequence.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600167-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 0}^d$ be an arithmetic sequence. What is its recursive definition's recurrence relation?
|
||||
Back: $a_n = a_{n-1} + d$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600169-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 0}^d$ be an arithmetic sequence. What is the $n$th term's closed formula?
|
||||
Back: $a_n = a_0 + nd$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600170-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 0}$ be an arithmetic sequence. What is the closed formula of $\sum_{k=0}^n a_k$?
|
||||
Back: $$\frac{(a_0 + a_n)(n + 1)}{2}$$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600172-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. What is the closed formula of $\sum_{k=1}^n a_k$?
|
||||
Back: $$\frac{(a_1 + a_n)(n)}{2}$$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600173-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. What does term $n$ correspond to in the following? $$\sum_{k=1}^n a_k = \frac{(a_1 + a_n)(n)}{2}$$
|
||||
Back: The number of terms in the summation.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600175-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. How do you expand $\sum_{k=1}^n a_k$ to derive its closed formula?
|
||||
Back:
|
||||
$$\begin{matrix}
|
||||
S & = & a_1 & + & a_2 & + & \cdots & + & a_n \\
|
||||
S & = & a_n & + & a_{n-1} & + & \cdots & + & a_1 \\
|
||||
\hline
|
||||
2S & = &(a_1 + a_n) & + & (a_1 + a_n) & + & \cdots & + & (a_1 + a_n)
|
||||
\end{matrix}$$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600176-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The triangular numbers belong to what larger class of sequences?
|
||||
Back: Arithmetic sequences.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600178-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. What does term $2$ correspond to in the following? $$\sum_{k=1}^n a_k = \frac{(a_1 + a_n)(n)}{2}$$
|
||||
Back: The double-counting that occurs when adding the summation to itself.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600179-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. How do we visualize the role of term $2$ in the following? $$\sum_{k=1}^n a_k = \frac{(a_1 + a_n)(n)}{2}$$
|
||||
Back:
|
||||
```
|
||||
* * * * -
|
||||
* * * - -
|
||||
* * - - -
|
||||
* - - - -
|
||||
```
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600181-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
You can find the partial sums of {arithmetic} sequences using the "reverse and add" strategy.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709666305449-->
|
||||
END%%
|
||||
|
||||
## References
|
||||
|
||||
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|
@ -0,0 +1,147 @@
|
|||
---
|
||||
title: Geometric Sequence
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: algebra::sequence
|
||||
tags:
|
||||
- algebra
|
||||
- sequence
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
A **geometric sequence** $(a_n)_{n \geq 0}^r$ is a sequence in which each term differs by a constant multiple of $r$. Given initial term $a$, it has recursive definition $$a_n = ra_{n-1} \text{ with } a_0 = a$$ and closed formula $$a_n = ar^n.$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What makes a sequence a *geometric* sequence?
|
||||
Back: Each term is the same constant multiple from the previous.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600144-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two properties are necessary to characterize a geometric sequence?
|
||||
Back: The initial term and the common ratio.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600147-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for the common ratio of a geometric sequence $(a_n)$ to be $r$?
|
||||
Back: $a_n = a_{n-1} \cdot r$ for all valid values of $n$.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600149-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)$ be a geometric sequence. What term refers to the ratio between terms?
|
||||
Back: The common ratio.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600151-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why is the "common ratio" of a geometric sequence named the way it is?
|
||||
Back: It is shared between all successive terms.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600152-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The term "common ratio" is related to what kind of sequence?
|
||||
Back: A geometric sequence.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600153-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 0}^r$ be a geometric sequence. What is its recursive definition's recurrence relation?
|
||||
Back: $a_n = a_{n-1} \cdot r$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600155-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 0}^r$ be a geometric sequence. What is the $n$th term's closed formula?
|
||||
Back: $a_n = a_0 \cdot r^n$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600156-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:Arithmetic} sequences are characterized by the common {2:difference}. {2:Geometric} sequences are characterized by the common {1:ratio}.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709664600158-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 0}^r$ be a geometric sequence. What is the closed formula of $\sum_{k=0}^n a_k$?
|
||||
Back: $$\frac{a_0(1 - r^{n+1})}{1 - r}$$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709666305433-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 1}^r$ be a geometric sequence. What is the closed formula of $\sum_{k=1}^n a_k$?
|
||||
Back: $$\frac{a_1(1 - r^n)}{1 - r}$$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709666305436-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 1}^r$ be a geometric sequence. What does term $n$ correspond to in the following? $$\sum_{k=1}^n a_k = \frac{a_1(1 - r^n)}{1 - r}$$
|
||||
Back: The number of terms in the summation.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709666305438-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 1}^r$ be a geometric sequence. How do you expand $\sum_{k=1}^n a_k$ to derive its closed formula?
|
||||
Back:
|
||||
$$\begin{matrix}
|
||||
S & = & a_1r^0 & + & a_1r^1 & + & \cdots & + & a_1r^{n-1} & + & 0 \\
|
||||
rS & = & 0 & + & a_1r^1 & + & \cdots & + & a_1r^{n-1} & + & a_1r^n \\
|
||||
\hline
|
||||
S - rS & = & a_1r^0 & & & & & & & - & a_1r^n
|
||||
\end{matrix}$$
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709666305441-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $(a_n)_{n \geq 1}^r$ be a geometric sequence. How is term $1 - r$ derived in the following? $$\sum_{k=1}^n a_k = \frac{a_1(1 - r^n)}{1 - r}$$
|
||||
Back: Given $S = \sum_{k=1}^n a_k$, by factoring out $S$ from $S - rS$.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709666356524-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
You can find the partial sums of {geometric} sequences using the "multiply and subtract" strategy.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709666305444-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:Reverse} and {1:add} arithmetic sequences. {2:Multiply} and {2:subtract} geometric sequences.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1709666305447-->
|
||||
END%%
|
||||
|
||||
## References
|
||||
|
||||
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|
@ -180,7 +180,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
How do you expand sum $\sum_{k=1}^n k$ to derive closed formula $\frac{n(n + 1)}{2}$?
|
||||
How do you expand $\sum_{k=1}^n k$ to derive closed formula $\frac{n(n + 1)}{2}$?
|
||||
Back:
|
||||
$$\begin{matrix}
|
||||
1 & + & 2 & + & \cdots & + & n \\
|
||||
|
|
Loading…
Reference in New Issue