41 lines
1.1 KiB
Plaintext
41 lines
1.1 KiB
Plaintext
import Mathlib.Data.Set.Basic
|
||
|
||
/-! # Common.Set.Basic
|
||
|
||
Additional theorems and definitions useful in the context of sets.
|
||
-/
|
||
|
||
namespace Set
|
||
|
||
/-
|
||
The Minkowski sum of two sets `s` and `t` is the set
|
||
`s + t = { a + b : a ∈ s, b ∈ t }`.
|
||
-/
|
||
def minkowski_sum {α : Type u} [Add α] (s t : Set α) :=
|
||
{ x | ∃ a ∈ s, ∃ b ∈ t, x = a + b }
|
||
|
||
/--
|
||
The sum of two sets is nonempty **iff** the summands are nonempty.
|
||
-/
|
||
theorem nonempty_minkowski_sum_iff_nonempty_add_nonempty {α : Type u} [Add α]
|
||
{s t : Set α}
|
||
: (minkowski_sum s t).Nonempty ↔ s.Nonempty ∧ t.Nonempty := by
|
||
apply Iff.intro
|
||
· intro h
|
||
have ⟨x, hx⟩ := h
|
||
have ⟨a, ⟨ha, ⟨b, ⟨hb, _⟩⟩⟩⟩ := hx
|
||
apply And.intro
|
||
· exact ⟨a, ha⟩
|
||
· exact ⟨b, hb⟩
|
||
· intro ⟨⟨a, ha⟩, ⟨b, hb⟩⟩
|
||
exact ⟨a + b, ⟨a, ⟨ha, ⟨b, ⟨hb, rfl⟩⟩⟩⟩⟩
|
||
|
||
/--
|
||
The characteristic function of a set `S`.
|
||
|
||
It returns `1` if the specified input belongs to `S` and `0` otherwise.
|
||
-/
|
||
def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)]: Nat :=
|
||
if x ∈ S then 1 else 0
|
||
|
||
end Set |