import Mathlib.Data.Set.Basic /-! # Common.Set.Basic Additional theorems and definitions useful in the context of sets. -/ namespace Set /- The Minkowski sum of two sets `s` and `t` is the set `s + t = { a + b : a ∈ s, b ∈ t }`. -/ def minkowski_sum {α : Type u} [Add α] (s t : Set α) := { x | ∃ a ∈ s, ∃ b ∈ t, x = a + b } /-- The sum of two sets is nonempty **iff** the summands are nonempty. -/ theorem nonempty_minkowski_sum_iff_nonempty_add_nonempty {α : Type u} [Add α] {s t : Set α} : (minkowski_sum s t).Nonempty ↔ s.Nonempty ∧ t.Nonempty := by apply Iff.intro · intro h have ⟨x, hx⟩ := h have ⟨a, ⟨ha, ⟨b, ⟨hb, _⟩⟩⟩⟩ := hx apply And.intro · exact ⟨a, ha⟩ · exact ⟨b, hb⟩ · intro ⟨⟨a, ha⟩, ⟨b, hb⟩⟩ exact ⟨a + b, ⟨a, ⟨ha, ⟨b, ⟨hb, rfl⟩⟩⟩⟩⟩ /-- The characteristic function of a set `S`. It returns `1` if the specified input belongs to `S` and `0` otherwise. -/ def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)]: Nat := if x ∈ S then 1 else 0 end Set