bookshelf/Common/Real/Floor.lean

148 lines
4.4 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Real.Archimedean
/-! # Common.Real.Floor
A collection of useful definitions and theorems around the floor function.
-/
namespace Real.Floor
/--
The fractional portion of any real number is always in `[0, 1)`.
-/
theorem fract_mem_Ico_zero_one (x : )
: Int.fract x ∈ Set.Ico 0 1 :=
⟨Int.fract_nonneg x, Int.fract_lt_one x⟩
/-! ## Hermite's Identity
Definitions and theorems in support of proving Hermite's identity.
-/
namespace Hermite
/--
A partition of `[0, 1)` that looks as follows:
```
[0, 1/n), [1/n, 2/n), ..., [(n-1)/n, 1)
```
This is expected to be used as an indexing function of a union of sets, e.g.
` i ∈ Finset.range n, partition n i`.
-/
def partition (n : ) (i : ) : Set := Set.Ico (↑i / n) ((↑i + 1) / n)
/--
The fractional portion of any real number always exists in some member of the
indexed family of sets formed by any `partition`.
-/
theorem fract_mem_partition (r : ) (hr : r ∈ Set.Ico 0 1)
: ∀ n : , ∃ j : ,
j < n ∧ r ∈ Set.Ico (((j : ) : ) / n) ((↑j + 1) / n) := by
sorry
/--
The indexed union of the family of sets of a `partition` is a subset of `[0, 1)`.
-/
theorem partition_subset_Ico_zero_one
: ( i ∈ Finset.range n, partition n i) ⊆ Set.Ico 0 1 := by
simp only [
Finset.mem_range,
gt_iff_lt,
zero_lt_one,
not_true,
ge_iff_le,
Set.iUnion_subset_iff
]
intro i hi x hx
have hn : (0 : ) < n := calc (0 : )
_ ≤ i := Nat.cast_nonneg i
_ < n := Nat.cast_lt.mpr hi
apply And.intro
· have h_zero_le_i_div_n : (0 : ) ≤ i / n := by
rw [← mul_le_mul_right hn, zero_mul, div_mul, div_self, div_one]
· exact Nat.cast_nonneg i
· exact ne_iff_lt_or_gt.mpr (Or.inr hn)
calc (0 : )
_ ≤ i / n := h_zero_le_i_div_n
_ ≤ x := hx.left
· have h_succ_div_n_le_one : (i + 1) / n ≤ (1 : ) := by
rw [div_le_one_iff]
refine Or.inl ?_
exact ⟨hn, by norm_cast⟩
calc x
_ < (i + 1) / n := hx.right
_ ≤ 1 := h_succ_div_n_le_one
/--
`[0, 1)` is a subset of the indexed union of the family of sets of a `partition`.
-/
theorem Ico_zero_one_subset_partition
: Set.Ico 0 1 ⊆ ( i ∈ Finset.range n, partition n i) := by
intro x hx
simp only [Finset.mem_range, Set.mem_iUnion, exists_prop]
unfold partition
exact fract_mem_partition x hx n
/--
The indexed union of the family of sets of a `partition` is equal to `[0, 1)`.
-/
theorem partition_eq_Ico_zero_one
: ( i ∈ Finset.range n, partition n i) = Set.Ico 0 1 :=
Set.Subset.antisymm_iff.mpr
⟨partition_subset_Ico_zero_one, Ico_zero_one_subset_partition⟩
end Hermite
open BigOperators
/-- #### Hermite's Identity
The following decomposes the floor of a multiplication into a sum of floors.
-/
theorem floor_mul_eq_sum_range_floor_add_index_div (n : ) (x : )
: ⌊n * x⌋ = ∑ i in Finset.range n, ⌊x + i / n⌋ := by
let r := Int.fract x
-- Here we see there exists some `j` such that `r ∈ [j / n, (j + 1) / n]`.
have hx : x = ⌊x⌋ + r := Eq.symm (add_eq_of_eq_sub' rfl)
have ⟨j, ⟨hj, hr⟩⟩ :=
Hermite.fract_mem_partition r (fract_mem_Ico_zero_one x) n
-- With the above definitions established, we now show the left- and
-- right-hand sides of the goal evaluate to the same number.
have hlhs : ⌊n * x⌋ = n * ⌊x⌋ + j := by
have hn : (0 : ) < n := calc (0 : )
_ ≤ j := Nat.cast_nonneg j
_ < n := Nat.cast_lt.mpr hj
-- We prove that `nr ∈ [j, j + 1)`. It must then follow `⌊nr⌋ = j`.
have hnr : n * r ∈ Set.Ico ((j : ) : ) (j + 1) := by
apply And.intro
· have := hr.left
rw [← mul_le_mul_right hn, div_mul, div_self, div_one] at this
· rwa [mul_comm]
· exact ne_of_gt hn
· have := hr.right
rw [← mul_lt_mul_right hn, div_mul, div_self, div_one] at this
· rwa [mul_comm]
· exact ne_of_gt hn
have hnr_eq_j : ⌊n * r⌋ = j := by
have := Int.floor_eq_on_Ico' j (n * r) hnr
norm_cast at this
conv =>
lhs
rw [hx, mul_add, add_comm]
norm_cast
rw [Int.floor_add_int, hnr_eq_j, add_comm]
have hrhs : ∑ i in Finset.range n, ⌊x + i / n⌋ = n * ⌊x⌋ + j := by
sorry
-- Close out goal by showing left- and right-hand side equal a common value.
rw [hlhs, hrhs]
end Real.Floor