bookshelf/Common/Real/Floor.lean

148 lines
4.4 KiB
Plaintext
Raw Permalink Normal View History

import Mathlib.Algebra.BigOperators.Basic
2023-12-14 19:49:31 +00:00
import Mathlib.Data.Real.Archimedean
/-! # Common.Real.Floor
A collection of useful definitions and theorems around the floor function.
-/
namespace Real.Floor
/--
The fractional portion of any real number is always in `[0, 1)`.
-/
theorem fract_mem_Ico_zero_one (x : )
: Int.fract x ∈ Set.Ico 0 1 :=
⟨Int.fract_nonneg x, Int.fract_lt_one x⟩
/-! ## Hermite's Identity
Definitions and theorems in support of proving Hermite's identity.
-/
namespace Hermite
/--
A partition of `[0, 1)` that looks as follows:
```
[0, 1/n), [1/n, 2/n), ..., [(n-1)/n, 1)
```
This is expected to be used as an indexing function of a union of sets, e.g.
` i ∈ Finset.range n, partition n i`.
-/
def partition (n : ) (i : ) : Set := Set.Ico (↑i / n) ((↑i + 1) / n)
/--
The fractional portion of any real number always exists in some member of the
indexed family of sets formed by any `partition`.
-/
theorem fract_mem_partition (r : ) (hr : r ∈ Set.Ico 0 1)
: ∀ n : , ∃ j : ,
j < n ∧ r ∈ Set.Ico (((j : ) : ) / n) ((↑j + 1) / n) := by
sorry
/--
The indexed union of the family of sets of a `partition` is a subset of `[0, 1)`.
-/
theorem partition_subset_Ico_zero_one
: ( i ∈ Finset.range n, partition n i) ⊆ Set.Ico 0 1 := by
simp only [
Finset.mem_range,
gt_iff_lt,
zero_lt_one,
not_true,
ge_iff_le,
2023-05-20 17:11:27 +00:00
Set.iUnion_subset_iff
]
intro i hi x hx
have hn : (0 : ) < n := calc (0 : )
_ ≤ i := Nat.cast_nonneg i
_ < n := Nat.cast_lt.mpr hi
apply And.intro
· have h_zero_le_i_div_n : (0 : ) ≤ i / n := by
rw [← mul_le_mul_right hn, zero_mul, div_mul, div_self, div_one]
· exact Nat.cast_nonneg i
· exact ne_iff_lt_or_gt.mpr (Or.inr hn)
calc (0 : )
_ ≤ i / n := h_zero_le_i_div_n
_ ≤ x := hx.left
· have h_succ_div_n_le_one : (i + 1) / n ≤ (1 : ) := by
rw [div_le_one_iff]
refine Or.inl ?_
exact ⟨hn, by norm_cast⟩
calc x
_ < (i + 1) / n := hx.right
_ ≤ 1 := h_succ_div_n_le_one
/--
`[0, 1)` is a subset of the indexed union of the family of sets of a `partition`.
-/
theorem Ico_zero_one_subset_partition
: Set.Ico 0 1 ⊆ ( i ∈ Finset.range n, partition n i) := by
intro x hx
2023-05-20 17:11:27 +00:00
simp only [Finset.mem_range, Set.mem_iUnion, exists_prop]
unfold partition
exact fract_mem_partition x hx n
/--
The indexed union of the family of sets of a `partition` is equal to `[0, 1)`.
-/
theorem partition_eq_Ico_zero_one
: ( i ∈ Finset.range n, partition n i) = Set.Ico 0 1 :=
Set.Subset.antisymm_iff.mpr
⟨partition_subset_Ico_zero_one, Ico_zero_one_subset_partition⟩
end Hermite
open BigOperators
/-- #### Hermite's Identity
The following decomposes the floor of a multiplication into a sum of floors.
-/
theorem floor_mul_eq_sum_range_floor_add_index_div (n : ) (x : )
: ⌊n * x⌋ = ∑ i in Finset.range n, ⌊x + i / n⌋ := by
let r := Int.fract x
-- Here we see there exists some `j` such that `r ∈ [j / n, (j + 1) / n]`.
have hx : x = ⌊x⌋ + r := Eq.symm (add_eq_of_eq_sub' rfl)
have ⟨j, ⟨hj, hr⟩⟩ :=
Hermite.fract_mem_partition r (fract_mem_Ico_zero_one x) n
-- With the above definitions established, we now show the left- and
-- right-hand sides of the goal evaluate to the same number.
have hlhs : ⌊n * x⌋ = n * ⌊x⌋ + j := by
have hn : (0 : ) < n := calc (0 : )
_ ≤ j := Nat.cast_nonneg j
_ < n := Nat.cast_lt.mpr hj
-- We prove that `nr ∈ [j, j + 1)`. It must then follow `⌊nr⌋ = j`.
have hnr : n * r ∈ Set.Ico ((j : ) : ) (j + 1) := by
apply And.intro
· have := hr.left
rw [← mul_le_mul_right hn, div_mul, div_self, div_one] at this
· rwa [mul_comm]
· exact ne_of_gt hn
· have := hr.right
rw [← mul_lt_mul_right hn, div_mul, div_self, div_one] at this
· rwa [mul_comm]
· exact ne_of_gt hn
have hnr_eq_j : ⌊n * r⌋ = j := by
have := Int.floor_eq_on_Ico' j (n * r) hnr
norm_cast at this
conv =>
lhs
rw [hx, mul_add, add_comm]
norm_cast
rw [Int.floor_add_int, hnr_eq_j, add_comm]
have hrhs : ∑ i in Finset.range n, ⌊x + i / n⌋ = n * ⌊x⌋ + j := by
sorry
-- Close out goal by showing left- and right-hand side equal a common value.
rw [hlhs, hrhs]
2023-12-14 19:49:31 +00:00
end Real.Floor