Compare commits
3 Commits
main
...
finite-set
Author | SHA1 | Date |
---|---|---|
Joshua Potter | 0a3b8f082b | |
Joshua Potter | a8520e74bd | |
Joshua Potter | a368f32558 |
|
@ -1,10 +1,8 @@
|
||||||
# Lean
|
# Lean
|
||||||
build
|
build
|
||||||
lakefile.olean
|
|
||||||
lake-packages
|
lake-packages
|
||||||
_target
|
_target
|
||||||
leanpkg.path
|
leanpkg.path
|
||||||
.lake/
|
|
||||||
|
|
||||||
# TeX
|
# TeX
|
||||||
*.aux
|
*.aux
|
||||||
|
@ -22,9 +20,3 @@ leanpkg.path
|
||||||
*.synctex.gz
|
*.synctex.gz
|
||||||
*.toc
|
*.toc
|
||||||
.*.lb
|
.*.lb
|
||||||
|
|
||||||
# direnv
|
|
||||||
.direnv/
|
|
||||||
|
|
||||||
# nix
|
|
||||||
result
|
|
||||||
|
|
|
@ -1,16 +1,2 @@
|
||||||
import Bookshelf.Apostol.Chapter_I_03
|
import Bookshelf.Apostol.Chapter_I_03
|
||||||
import Bookshelf.Apostol.Chapter_1_11
|
import Bookshelf.Apostol.Chapter_1_11
|
||||||
|
|
||||||
/-! # Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra
|
|
||||||
|
|
||||||
## Apostol, Tom M.
|
|
||||||
|
|
||||||
### LaTeX
|
|
||||||
|
|
||||||
Full set of [proofs and exercises](Bookshelf/Apostol.pdf).
|
|
||||||
|
|
||||||
### Lean
|
|
||||||
|
|
||||||
* [Chapter I.03: A Set of Axioms for the Real-Number System](Bookshelf/Apostol/Chapter_I_03.html)
|
|
||||||
* [Chapter 1.11: Exercises](Bookshelf/Apostol/Chapter_1_11.html)
|
|
||||||
-/
|
|
|
@ -8,21 +8,21 @@ namespace Apostol.Chapter_1_11
|
||||||
|
|
||||||
open BigOperators
|
open BigOperators
|
||||||
|
|
||||||
/-- ### Exercise 4a
|
/-- #### Exercise 4a
|
||||||
|
|
||||||
`⌊x + n⌋ = ⌊x⌋ + n` for every integer `n`.
|
`⌊x + n⌋ = ⌊x⌋ + n` for every integer `n`.
|
||||||
-/
|
-/
|
||||||
theorem exercise_4a (x : ℝ) (n : ℤ) : ⌊x + n⌋ = ⌊x⌋ + n :=
|
theorem exercise_4a (x : ℝ) (n : ℤ) : ⌊x + n⌋ = ⌊x⌋ + n :=
|
||||||
Int.floor_add_int x n
|
Int.floor_add_int x n
|
||||||
|
|
||||||
/-- ### Exercise 4b.1
|
/-- #### Exercise 4b.1
|
||||||
|
|
||||||
`⌊-x⌋ = -⌊x⌋` if `x` is an integer.
|
`⌊-x⌋ = -⌊x⌋` if `x` is an integer.
|
||||||
-/
|
-/
|
||||||
theorem exercise_4b_1 (x : ℤ) : ⌊-x⌋ = -⌊x⌋ := by
|
theorem exercise_4b_1 (x : ℤ) : ⌊-x⌋ = -⌊x⌋ := by
|
||||||
simp only [Int.floor_int, id_eq]
|
simp only [Int.floor_int, id_eq]
|
||||||
|
|
||||||
/-- ### Exercise 4b.2
|
/-- #### Exercise 4b.2
|
||||||
|
|
||||||
`⌊-x⌋ = -⌊x⌋ - 1` otherwise.
|
`⌊-x⌋ = -⌊x⌋ - 1` otherwise.
|
||||||
-/
|
-/
|
||||||
|
@ -42,7 +42,7 @@ theorem exercise_4b_2 (x : ℝ) (h : ∃ n : ℤ, x ∈ Set.Ioo ↑n (↑n + (1
|
||||||
· exact (Set.mem_Ioo.mp hn).left
|
· exact (Set.mem_Ioo.mp hn).left
|
||||||
· exact le_of_lt (Set.mem_Ico.mp hn').right
|
· exact le_of_lt (Set.mem_Ico.mp hn').right
|
||||||
|
|
||||||
/-- ### Exercise 4c
|
/-- #### Exercise 4c
|
||||||
|
|
||||||
`⌊x + y⌋ = ⌊x⌋ + ⌊y⌋` or `⌊x⌋ + ⌊y⌋ + 1`.
|
`⌊x + y⌋ = ⌊x⌋ + ⌊y⌋` or `⌊x⌋ + ⌊y⌋ + 1`.
|
||||||
-/
|
-/
|
||||||
|
@ -50,7 +50,7 @@ theorem exercise_4c (x y : ℝ)
|
||||||
: ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ ∨ ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ + 1 := by
|
: ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ ∨ ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ + 1 := by
|
||||||
have hx : x = Int.floor x + Int.fract x := Eq.symm (add_eq_of_eq_sub' rfl)
|
have hx : x = Int.floor x + Int.fract x := Eq.symm (add_eq_of_eq_sub' rfl)
|
||||||
have hy : y = Int.floor y + Int.fract y := Eq.symm (add_eq_of_eq_sub' rfl)
|
have hy : y = Int.floor y + Int.fract y := Eq.symm (add_eq_of_eq_sub' rfl)
|
||||||
by_cases h : Int.fract x + Int.fract y < 1
|
by_cases Int.fract x + Int.fract y < 1
|
||||||
· refine Or.inl ?_
|
· refine Or.inl ?_
|
||||||
rw [Int.floor_eq_iff]
|
rw [Int.floor_eq_iff]
|
||||||
simp only [Int.cast_add]
|
simp only [Int.cast_add]
|
||||||
|
@ -72,7 +72,7 @@ theorem exercise_4c (x y : ℝ)
|
||||||
rw [← sub_lt_iff_lt_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
rw [← sub_lt_iff_lt_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
||||||
exact add_lt_add (Int.fract_lt_one x) (Int.fract_lt_one y)
|
exact add_lt_add (Int.fract_lt_one x) (Int.fract_lt_one y)
|
||||||
|
|
||||||
/-- ### Exercise 5
|
/-- #### Exercise 5
|
||||||
|
|
||||||
The formulas in Exercises 4(d) and 4(e) suggest a generalization for `⌊nx⌋`.
|
The formulas in Exercises 4(d) and 4(e) suggest a generalization for `⌊nx⌋`.
|
||||||
State and prove such a generalization.
|
State and prove such a generalization.
|
||||||
|
@ -81,7 +81,7 @@ theorem exercise_5 (n : ℕ) (x : ℝ)
|
||||||
: ⌊n * x⌋ = Finset.sum (Finset.range n) (fun i => ⌊x + i/n⌋) :=
|
: ⌊n * x⌋ = Finset.sum (Finset.range n) (fun i => ⌊x + i/n⌋) :=
|
||||||
Real.Floor.floor_mul_eq_sum_range_floor_add_index_div n x
|
Real.Floor.floor_mul_eq_sum_range_floor_add_index_div n x
|
||||||
|
|
||||||
/-- ### Exercise 4d
|
/-- #### Exercise 4d
|
||||||
|
|
||||||
`⌊2x⌋ = ⌊x⌋ + ⌊x + 1/2⌋`
|
`⌊2x⌋ = ⌊x⌋ + ⌊x + 1/2⌋`
|
||||||
-/
|
-/
|
||||||
|
@ -94,7 +94,7 @@ theorem exercise_4d (x : ℝ)
|
||||||
simp
|
simp
|
||||||
rw [add_comm]
|
rw [add_comm]
|
||||||
|
|
||||||
/-- ### Exercise 4e
|
/-- #### Exercise 4e
|
||||||
|
|
||||||
`⌊3x⌋ = ⌊x⌋ + ⌊x + 1/3⌋ + ⌊x + 2/3⌋`
|
`⌊3x⌋ = ⌊x⌋ + ⌊x + 1/3⌋ + ⌊x + 2/3⌋`
|
||||||
-/
|
-/
|
||||||
|
@ -108,7 +108,7 @@ theorem exercise_4e (x : ℝ)
|
||||||
conv => rhs; rw [← add_rotate']; arg 2; rw [add_comm]
|
conv => rhs; rw [← add_rotate']; arg 2; rw [add_comm]
|
||||||
rw [← add_assoc]
|
rw [← add_assoc]
|
||||||
|
|
||||||
/-- ### Exercise 7b
|
/-- #### Exercise 7b
|
||||||
|
|
||||||
If `a` and `b` are positive integers with no common factor, we have the formula
|
If `a` and `b` are positive integers with no common factor, we have the formula
|
||||||
`∑_{n=1}^{b-1} ⌊na / b⌋ = ((a - 1)(b - 1)) / 2`. When `b = 1`, the sum on the
|
`∑_{n=1}^{b-1} ⌊na / b⌋ = ((a - 1)(b - 1)) / 2`. When `b = 1`, the sum on the
|
||||||
|
@ -118,14 +118,14 @@ Derive the result analytically as follows: By changing the index of summation,
|
||||||
note that `Σ_{n=1}^{b-1} ⌊na / b⌋ = Σ_{n=1}^{b-1} ⌊a(b - n) / b⌋`. Now apply
|
note that `Σ_{n=1}^{b-1} ⌊na / b⌋ = Σ_{n=1}^{b-1} ⌊a(b - n) / b⌋`. Now apply
|
||||||
Exercises 4(a) and (b) to the bracket on the right.
|
Exercises 4(a) and (b) to the bracket on the right.
|
||||||
-/
|
-/
|
||||||
theorem exercise_7b (ha : a > 0) (hb : b > 0) (hp : Nat.Coprime a b)
|
theorem exercise_7b (ha : a > 0) (hb : b > 0) (hp : Nat.coprime a b)
|
||||||
: ∑ n in (Finset.range b).filter (· > 0), ⌊n * ((a : ℕ) : ℝ) / b⌋ =
|
: ∑ n in (Finset.range b).filter (· > 0), ⌊n * ((a : ℕ) : ℝ) / b⌋ =
|
||||||
((a - 1) * (b - 1)) / 2 := by
|
((a - 1) * (b - 1)) / 2 := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
||||||
/-- ### Exercise 8
|
/-- #### Exercise 8
|
||||||
|
|
||||||
Let `S` be a set of points on the real line. The *characteristic function* of
|
Let `S` be a set of points on the real line. The *characteristic function* of
|
||||||
`S` is, by definition, the function `Χ` such that `Χₛ(x) = 1` for every `x` in
|
`S` is, by definition, the function `Χ` such that `Χₛ(x) = 1` for every `x` in
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
import Common.Set
|
import Common.Set
|
||||||
import Mathlib.Data.Real.Archimedean
|
import Mathlib.Data.Real.Basic
|
||||||
|
|
||||||
/-! # Apostol.Chapter_I_03
|
/-! # Apostol.Chapter_I_03
|
||||||
|
|
||||||
|
@ -100,7 +100,7 @@ theorem is_lub_neg_set_iff_is_glb_set_neg (S : Set ℝ)
|
||||||
_ = IsGreatest (lowerBounds S) (-x) := by rw [is_least_neg_set_eq_is_greatest_set_neq]
|
_ = IsGreatest (lowerBounds S) (-x) := by rw [is_least_neg_set_eq_is_greatest_set_neq]
|
||||||
_ = IsGLB S (-x) := rfl
|
_ = IsGLB S (-x) := rfl
|
||||||
|
|
||||||
/-- ### Theorem I.27
|
/-- #### Theorem I.27
|
||||||
|
|
||||||
Every nonempty set `S` that is bounded below has a greatest lower bound; that
|
Every nonempty set `S` that is bounded below has a greatest lower bound; that
|
||||||
is, there is a real number `L` such that `L = inf S`.
|
is, there is a real number `L` such that `L = inf S`.
|
||||||
|
@ -143,11 +143,11 @@ lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by
|
||||||
· have h' : ((Int.natAbs ⌈x⌉) : ℝ) ≥ 0 := by simp
|
· have h' : ((Int.natAbs ⌈x⌉) : ℝ) ≥ 0 := by simp
|
||||||
calc x
|
calc x
|
||||||
_ ≤ 0 := le_of_lt (lt_of_not_le h)
|
_ ≤ 0 := le_of_lt (lt_of_not_le h)
|
||||||
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
|
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
|
||||||
|
|
||||||
/-! ## The Archimedean property of the real-number system -/
|
/-! ## The Archimedean property of the real-number system -/
|
||||||
|
|
||||||
/-- ### Theorem I.29
|
/-- #### Theorem I.29
|
||||||
|
|
||||||
For every real `x` there exists a positive integer `n` such that `n > x`.
|
For every real `x` there exists a positive integer `n` such that `n > x`.
|
||||||
-/
|
-/
|
||||||
|
@ -159,7 +159,7 @@ theorem exists_pnat_geq_self (x : ℝ) : ∃ n : ℕ+, ↑n > x := by
|
||||||
_ = n := rfl
|
_ = n := rfl
|
||||||
exact ⟨n, this⟩
|
exact ⟨n, this⟩
|
||||||
|
|
||||||
/-- ### Theorem I.30
|
/-- #### Theorem I.30
|
||||||
|
|
||||||
If `x > 0` and if `y` is an arbitrary real number, there exists a positive
|
If `x > 0` and if `y` is an arbitrary real number, there exists a positive
|
||||||
integer `n` such that `nx > y`.
|
integer `n` such that `nx > y`.
|
||||||
|
@ -174,7 +174,7 @@ theorem exists_pnat_mul_self_geq_of_pos {x y : ℝ}
|
||||||
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
|
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
|
||||||
exact ⟨n, p'⟩
|
exact ⟨n, p'⟩
|
||||||
|
|
||||||
/-- ### Theorem I.31
|
/-- #### Theorem I.31
|
||||||
|
|
||||||
If three real numbers `a`, `x`, and `y` satisfy the inequalities
|
If three real numbers `a`, `x`, and `y` satisfy the inequalities
|
||||||
`a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`.
|
`a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`.
|
||||||
|
@ -243,7 +243,7 @@ theorem forall_pnat_frac_leq_self_leq_imp_eq {x y a : ℝ}
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Every member of a set `S` is less than or equal to some value `ub` if and only
|
Every member of a set `S` is less than or equal to some value `ub` if and only
|
||||||
if `ub` is an upper bound of `S`.
|
if `ub` is an upper bound of `S`.
|
||||||
-/
|
-/
|
||||||
lemma mem_upper_bounds_iff_forall_le {S : Set ℝ}
|
lemma mem_upper_bounds_iff_forall_le {S : Set ℝ}
|
||||||
: ub ∈ upperBounds S ↔ ∀ x ∈ S, x ≤ ub := by
|
: ub ∈ upperBounds S ↔ ∀ x ∈ S, x ≤ ub := by
|
||||||
|
@ -270,7 +270,7 @@ lemma mem_imp_ge_lub {x : ℝ} (h : IsLUB S s) : x ∈ upperBounds S → x ≥ s
|
||||||
intro hx
|
intro hx
|
||||||
exact h.right hx
|
exact h.right hx
|
||||||
|
|
||||||
/-- ### Theorem I.32a
|
/-- #### Theorem I.32a
|
||||||
|
|
||||||
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
|
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
|
||||||
has a supremum, then for some `x` in `S` we have `x > sup S - h`.
|
has a supremum, then for some `x` in `S` we have `x > sup S - h`.
|
||||||
|
@ -294,7 +294,7 @@ theorem sup_imp_exists_gt_sup_sub_delta {S : Set ℝ} {s h : ℝ} (hp : h > 0)
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Every member of a set `S` is greater than or equal to some value `lb` if and
|
Every member of a set `S` is greater than or equal to some value `lb` if and
|
||||||
only if `lb` is a lower bound of `S`.
|
only if `lb` is a lower bound of `S`.
|
||||||
-/
|
-/
|
||||||
lemma mem_lower_bounds_iff_forall_ge {S : Set ℝ}
|
lemma mem_lower_bounds_iff_forall_ge {S : Set ℝ}
|
||||||
: lb ∈ lowerBounds S ↔ ∀ x ∈ S, x ≥ lb := by
|
: lb ∈ lowerBounds S ↔ ∀ x ∈ S, x ≥ lb := by
|
||||||
|
@ -321,7 +321,7 @@ lemma mem_imp_le_glb {x : ℝ} (h : IsGLB S s) : x ∈ lowerBounds S → x ≤ s
|
||||||
intro hx
|
intro hx
|
||||||
exact h.right hx
|
exact h.right hx
|
||||||
|
|
||||||
/-- ### Theorem I.32b
|
/-- #### Theorem I.32b
|
||||||
|
|
||||||
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
|
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
|
||||||
has an infimum, then for some `x` in `S` we have `x < inf S + h`.
|
has an infimum, then for some `x` in `S` we have `x < inf S + h`.
|
||||||
|
@ -343,7 +343,7 @@ theorem inf_imp_exists_lt_inf_add_delta {S : Set ℝ} {s h : ℝ} (hp : h > 0)
|
||||||
exact le_of_not_gt (not_and.mp (nb x) hx)
|
exact le_of_not_gt (not_and.mp (nb x) hx)
|
||||||
rwa [← mem_lower_bounds_iff_forall_ge] at nb'
|
rwa [← mem_lower_bounds_iff_forall_ge] at nb'
|
||||||
|
|
||||||
/-- ### Theorem I.33a (Additive Property)
|
/-- #### Theorem I.33a (Additive Property)
|
||||||
|
|
||||||
Given nonempty subsets `A` and `B` of `ℝ`, let `C` denote the set
|
Given nonempty subsets `A` and `B` of `ℝ`, let `C` denote the set
|
||||||
`C = {a + b : a ∈ A, b ∈ B}`. If each of `A` and `B` has a supremum, then `C`
|
`C = {a + b : a ∈ A, b ∈ B}`. If each of `A` and `B` has a supremum, then `C`
|
||||||
|
@ -393,7 +393,7 @@ theorem sup_minkowski_sum_eq_sup_add_sup (A B : Set ℝ) (a b : ℝ)
|
||||||
_ ≤ a' + b' + 1 / n := le_of_lt hab'
|
_ ≤ a' + b' + 1 / n := le_of_lt hab'
|
||||||
_ ≤ c + 1 / n := add_le_add_right hc' (1 / n)
|
_ ≤ c + 1 / n := add_le_add_right hc' (1 / n)
|
||||||
|
|
||||||
/-- ### Theorem I.33b (Additive Property)
|
/-- #### Theorem I.33b (Additive Property)
|
||||||
|
|
||||||
Given nonempty subsets `A` and `B` of `ℝ`, let `C` denote the set
|
Given nonempty subsets `A` and `B` of `ℝ`, let `C` denote the set
|
||||||
`C = {a + b : a ∈ A, b ∈ B}`. If each of `A` and `B` has an infimum, then `C`
|
`C = {a + b : a ∈ A, b ∈ B}`. If each of `A` and `B` has an infimum, then `C`
|
||||||
|
@ -443,7 +443,7 @@ theorem inf_minkowski_sum_eq_inf_add_inf (A B : Set ℝ)
|
||||||
_ ≤ a + b := le_of_lt hab'
|
_ ≤ a + b := le_of_lt hab'
|
||||||
· exact hc.right hlb
|
· exact hc.right hlb
|
||||||
|
|
||||||
/-- ### Theorem I.34
|
/-- #### Theorem I.34
|
||||||
|
|
||||||
Given two nonempty subsets `S` and `T` of `ℝ` such that `s ≤ t` for every `s` in
|
Given two nonempty subsets `S` and `T` of `ℝ` such that `s ≤ t` for every `s` in
|
||||||
`S` and every `t` in `T`. Then `S` has a supremum, and `T` has an infimum, and
|
`S` and every `t` in `T`. Then `S` has a supremum, and `T` has an infimum, and
|
||||||
|
@ -489,7 +489,7 @@ theorem forall_mem_le_forall_mem_imp_sup_le_inf (S T : Set ℝ)
|
||||||
_ < x := hx.right
|
_ < x := hx.right
|
||||||
simp at this
|
simp at this
|
||||||
|
|
||||||
/-- ### Exercise 1
|
/-- #### Exercise 1
|
||||||
|
|
||||||
If `x` and `y` are arbitrary real numbers with `x < y`, prove that there is at
|
If `x` and `y` are arbitrary real numbers with `x < y`, prove that there is at
|
||||||
least one real `z` satisfying `x < z < y`.
|
least one real `z` satisfying `x < z < y`.
|
||||||
|
@ -506,7 +506,7 @@ theorem exercise_1 (x y : ℝ) (h : x < y) : ∃ z, x < z ∧ z < y := by
|
||||||
_ < x + z := (add_lt_add_iff_left x).mpr hz'
|
_ < x + z := (add_lt_add_iff_left x).mpr hz'
|
||||||
_ = y := hz.right
|
_ = y := hz.right
|
||||||
|
|
||||||
/-- ### Exercise 2
|
/-- #### Exercise 2
|
||||||
|
|
||||||
If `x` is an arbitrary real number, prove that there are integers `m` and `n`
|
If `x` is an arbitrary real number, prove that there are integers `m` and `n`
|
||||||
such that `m < x < n`.
|
such that `m < x < n`.
|
||||||
|
@ -514,7 +514,7 @@ such that `m < x < n`.
|
||||||
theorem exercise_2 (x : ℝ) : ∃ m n : ℝ, m < x ∧ x < n := by
|
theorem exercise_2 (x : ℝ) : ∃ m n : ℝ, m < x ∧ x < n := by
|
||||||
refine ⟨x - 1, ⟨x + 1, ⟨?_, ?_⟩⟩⟩ <;> norm_num
|
refine ⟨x - 1, ⟨x + 1, ⟨?_, ?_⟩⟩⟩ <;> norm_num
|
||||||
|
|
||||||
/-- ### Exercise 3
|
/-- #### Exercise 3
|
||||||
|
|
||||||
If `x > 0`, prove that there is a positive integer `n` such that `1 / n < x`.
|
If `x > 0`, prove that there is a positive integer `n` such that `1 / n < x`.
|
||||||
-/
|
-/
|
||||||
|
@ -525,7 +525,7 @@ theorem exercise_3 (x : ℝ) (h : x > 0) : ∃ n : ℕ+, 1 / n < x := by
|
||||||
conv at hr => arg 2; rw [mul_comm, ← mul_assoc]; simp
|
conv at hr => arg 2; rw [mul_comm, ← mul_assoc]; simp
|
||||||
rwa [one_mul] at hr
|
rwa [one_mul] at hr
|
||||||
|
|
||||||
/-- ### Exercise 4
|
/-- #### Exercise 4
|
||||||
|
|
||||||
If `x` is an arbitrary real number, prove that there is exactly one integer `n`
|
If `x` is an arbitrary real number, prove that there is exactly one integer `n`
|
||||||
which satisfies the inequalities `n ≤ x < n + 1`. This `n` is called the
|
which satisfies the inequalities `n ≤ x < n + 1`. This `n` is called the
|
||||||
|
@ -540,7 +540,7 @@ theorem exercise_4 (x : ℝ) : ∃! n : ℤ, n ≤ x ∧ x < n + 1 := by
|
||||||
rw [← Int.floor_eq_iff] at hy
|
rw [← Int.floor_eq_iff] at hy
|
||||||
exact Eq.symm hy
|
exact Eq.symm hy
|
||||||
|
|
||||||
/-- ### Exercise 5
|
/-- #### Exercise 5
|
||||||
|
|
||||||
If `x` is an arbitrary real number, prove that there is exactly one integer `n`
|
If `x` is an arbitrary real number, prove that there is exactly one integer `n`
|
||||||
which satisfies `x ≤ n < x + 1`.
|
which satisfies `x ≤ n < x + 1`.
|
||||||
|
@ -559,7 +559,7 @@ theorem exercise_5 (x : ℝ) : ∃! n : ℤ, x ≤ n ∧ n < x + 1 := by
|
||||||
rwa [add_sub_cancel] at this
|
rwa [add_sub_cancel] at this
|
||||||
· exact hy.left
|
· exact hy.left
|
||||||
|
|
||||||
/-! ### Exercise 6
|
/-! #### Exercise 6
|
||||||
|
|
||||||
If `x` and `y` are arbitrary real numbers, `x < y`, prove that there exists at
|
If `x` and `y` are arbitrary real numbers, `x < y`, prove that there exists at
|
||||||
least one rational number `r` satisfying `x < r < y`, and hence infinitely many.
|
least one rational number `r` satisfying `x < r < y`, and hence infinitely many.
|
||||||
|
@ -569,7 +569,7 @@ in the real-number system.
|
||||||
###### TODO
|
###### TODO
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-! ### Exercise 7
|
/-! #### Exercise 7
|
||||||
|
|
||||||
If `x` is rational, `x ≠ 0`, and `y` irrational, prove that `x + y`, `x - y`,
|
If `x` is rational, `x ≠ 0`, and `y` irrational, prove that `x + y`, `x - y`,
|
||||||
`xy`, `x / y`, and `y / x` are all irrational.
|
`xy`, `x / y`, and `y / x` are all irrational.
|
||||||
|
@ -577,14 +577,14 @@ If `x` is rational, `x ≠ 0`, and `y` irrational, prove that `x + y`, `x - y`,
|
||||||
###### TODO
|
###### TODO
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-! ### Exercise 8
|
/-! #### Exercise 8
|
||||||
|
|
||||||
Is the sum or product of two irrational numbers always irrational?
|
Is the sum or product of two irrational numbers always irrational?
|
||||||
|
|
||||||
###### TODO
|
###### TODO
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-! ### Exercise 9
|
/-! #### Exercise 9
|
||||||
|
|
||||||
If `x` and `y` are arbitrary real numbers, `x < y`, prove that there exists at
|
If `x` and `y` are arbitrary real numbers, `x < y`, prove that there exists at
|
||||||
least one irrational number `z` satisfying `x < z < y`, and hence infinitely
|
least one irrational number `z` satisfying `x < z < y`, and hence infinitely
|
||||||
|
@ -593,7 +593,7 @@ many.
|
||||||
###### TODO
|
###### TODO
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-! ### Exercise 10
|
/-! #### Exercise 10
|
||||||
|
|
||||||
An integer `n` is called *even* if `n = 2m` for some integer `m`, and *odd* if
|
An integer `n` is called *even* if `n = 2m` for some integer `m`, and *odd* if
|
||||||
`n + 1` is even. Prove the following statements:
|
`n + 1` is even. Prove the following statements:
|
||||||
|
@ -618,7 +618,7 @@ def isEven (n : ℤ) := ∃ m : ℤ, n = 2 * m
|
||||||
|
|
||||||
def isOdd (n : ℤ) := isEven (n + 1)
|
def isOdd (n : ℤ) := isEven (n + 1)
|
||||||
|
|
||||||
/-! ### Exercise 11
|
/-! #### Exercise 11
|
||||||
|
|
||||||
Prove that there is no rational number whose square is `2`.
|
Prove that there is no rational number whose square is `2`.
|
||||||
|
|
||||||
|
@ -629,7 +629,7 @@ contradiction.]
|
||||||
###### TODO
|
###### TODO
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-! ### Exercise 12
|
/-! #### Exercise 12
|
||||||
|
|
||||||
The Archimedean property of the real-number system was deduced as a consequence
|
The Archimedean property of the real-number system was deduced as a consequence
|
||||||
of the least-upper-bound axiom. Prove that the set of rational numbers satisfies
|
of the least-upper-bound axiom. Prove that the set of rational numbers satisfies
|
||||||
|
|
|
@ -3,18 +3,4 @@ import Bookshelf.Avigad.Chapter_3
|
||||||
import Bookshelf.Avigad.Chapter_4
|
import Bookshelf.Avigad.Chapter_4
|
||||||
import Bookshelf.Avigad.Chapter_5
|
import Bookshelf.Avigad.Chapter_5
|
||||||
import Bookshelf.Avigad.Chapter_7
|
import Bookshelf.Avigad.Chapter_7
|
||||||
import Bookshelf.Avigad.Chapter_8
|
import Bookshelf.Avigad.Chapter_8
|
||||||
|
|
||||||
/-! # Theorem Proving in Lean
|
|
||||||
|
|
||||||
## Avigad, Jeremy.
|
|
||||||
|
|
||||||
### Lean
|
|
||||||
|
|
||||||
* [Chapter 2: Dependent Type Theory](Bookshelf/Avigad/Chapter_2.html)
|
|
||||||
* [Chapter 3: Propositions and Proofs](Bookshelf/Avigad/Chapter_3.html)
|
|
||||||
* [Chapter 4: Quantifiers and Equality](Bookshelf/Avigad/Chapter_4.html)
|
|
||||||
* [Chapter 5: Tactics](Bookshelf/Avigad/Chapter_5.html)
|
|
||||||
* [Chapter 7: Inductive Types](Bookshelf/Avigad/Chapter_7.html)
|
|
||||||
* [Chapter 8: Induction and Recursion](Bookshelf/Avigad/Chapter_8.html)
|
|
||||||
-/
|
|
|
@ -3,7 +3,7 @@
|
||||||
Dependent Type Theory
|
Dependent Type Theory
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-! ### Exercise 1
|
/-! #### Exercise 1
|
||||||
|
|
||||||
Define the function `Do_Twice`, as described in Section 2.4.
|
Define the function `Do_Twice`, as described in Section 2.4.
|
||||||
-/
|
-/
|
||||||
|
@ -20,7 +20,7 @@ def doTwiceTwice (f : (Nat → Nat) → (Nat → Nat)) (x : Nat → Nat) := f (f
|
||||||
|
|
||||||
end ex1
|
end ex1
|
||||||
|
|
||||||
/-! ### Exercise 2
|
/-! #### Exercise 2
|
||||||
|
|
||||||
Define the functions `curry` and `uncurry`, as described in Section 2.4.
|
Define the functions `curry` and `uncurry`, as described in Section 2.4.
|
||||||
-/
|
-/
|
||||||
|
@ -35,7 +35,7 @@ def uncurry (f : α → β → γ) : (α × β → γ) :=
|
||||||
|
|
||||||
end ex2
|
end ex2
|
||||||
|
|
||||||
/-! ### Exercise 3
|
/-! #### Exercise 3
|
||||||
|
|
||||||
Above, we used the example `vec α n` for vectors of elements of type `α` of
|
Above, we used the example `vec α n` for vectors of elements of type `α` of
|
||||||
length `n`. Declare a constant `vec_add` that could represent a function that
|
length `n`. Declare a constant `vec_add` that could represent a function that
|
||||||
|
@ -70,7 +70,7 @@ variable (c d : vec Prop 2)
|
||||||
|
|
||||||
end ex3
|
end ex3
|
||||||
|
|
||||||
/-! ### Exercise 4
|
/-! #### Exercise 4
|
||||||
|
|
||||||
Similarly, declare a constant `matrix` so that `matrix α m n` could represent
|
Similarly, declare a constant `matrix` so that `matrix α m n` could represent
|
||||||
the type of `m` by `n` matrices. Declare some constants to represent functions
|
the type of `m` by `n` matrices. Declare some constants to represent functions
|
||||||
|
@ -106,4 +106,4 @@ variable (d : ex3.vec Prop 3)
|
||||||
|
|
||||||
end ex4
|
end ex4
|
||||||
|
|
||||||
end Avigad.Chapter2
|
end Avigad.Chapter2
|
|
@ -3,7 +3,7 @@
|
||||||
Propositions and Proofs
|
Propositions and Proofs
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-! ### Exercise 1
|
/-! #### Exercise 1
|
||||||
|
|
||||||
Prove the following identities.
|
Prove the following identities.
|
||||||
-/
|
-/
|
||||||
|
@ -104,7 +104,7 @@ theorem imp_imp_not_imp_not : (p → q) → (¬q → ¬p) :=
|
||||||
|
|
||||||
end ex1
|
end ex1
|
||||||
|
|
||||||
/-! ### Exercise 2
|
/-! #### Exercise 2
|
||||||
|
|
||||||
Prove the following identities. These require classical reasoning.
|
Prove the following identities. These require classical reasoning.
|
||||||
-/
|
-/
|
||||||
|
@ -150,7 +150,7 @@ theorem imp_imp_imp : (((p → q) → p) → p) :=
|
||||||
|
|
||||||
end ex2
|
end ex2
|
||||||
|
|
||||||
/-! ### Exercise 3
|
/-! #### Exercise 3
|
||||||
|
|
||||||
Prove `¬(p ↔ ¬p)` without using classical logic.
|
Prove `¬(p ↔ ¬p)` without using classical logic.
|
||||||
-/
|
-/
|
||||||
|
@ -164,4 +164,4 @@ theorem iff_not_self (hp : p) : ¬(p ↔ ¬p) :=
|
||||||
|
|
||||||
end ex3
|
end ex3
|
||||||
|
|
||||||
end Avigad.Chapter3
|
end Avigad.Chapter3
|
|
@ -40,7 +40,7 @@ theorem forall_or_distrib
|
||||||
|
|
||||||
end ex1
|
end ex1
|
||||||
|
|
||||||
/-! ### Exercise 2
|
/-! #### Exercise 2
|
||||||
|
|
||||||
It is often possible to bring a component of a formula outside a universal
|
It is often possible to bring a component of a formula outside a universal
|
||||||
quantifier, when it does not depend on the quantified variable. Try proving
|
quantifier, when it does not depend on the quantified variable. Try proving
|
||||||
|
@ -78,7 +78,7 @@ theorem forall_swap : (∀ x, r → p x) ↔ (r → ∀ x, p x) :=
|
||||||
|
|
||||||
end ex2
|
end ex2
|
||||||
|
|
||||||
/-! ### Exercise 3
|
/-! #### Exercise 3
|
||||||
|
|
||||||
Consider the "barber paradox," that is, the claim that in a certain town there
|
Consider the "barber paradox," that is, the claim that in a certain town there
|
||||||
is a (male) barber that shaves all and only the men who do not shave themselves.
|
is a (male) barber that shaves all and only the men who do not shave themselves.
|
||||||
|
@ -101,7 +101,7 @@ theorem barber_paradox (h : ∀ x : men, shaves barber x ↔ ¬shaves x x) : Fal
|
||||||
|
|
||||||
end ex3
|
end ex3
|
||||||
|
|
||||||
/-! ### Exercise 4
|
/-! #### Exercise 4
|
||||||
|
|
||||||
Remember that, without any parameters, an expression of type `Prop` is just an
|
Remember that, without any parameters, an expression of type `Prop` is just an
|
||||||
assertion. Fill in the definitions of `prime` and `Fermat_prime` below, and
|
assertion. Fill in the definitions of `prime` and `Fermat_prime` below, and
|
||||||
|
@ -143,7 +143,7 @@ def Fermat'sLastTheorem : Prop :=
|
||||||
|
|
||||||
end ex4
|
end ex4
|
||||||
|
|
||||||
/-! ### Exercise 5
|
/-! #### Exercise 5
|
||||||
|
|
||||||
Prove as many of the identities listed in Section 4.4 as you can.
|
Prove as many of the identities listed in Section 4.4 as you can.
|
||||||
-/
|
-/
|
||||||
|
@ -228,7 +228,7 @@ theorem exists_self_iff_self_exists (a : α) : (∃ x, r → p x) ↔ (r → ∃
|
||||||
|
|
||||||
end ex5
|
end ex5
|
||||||
|
|
||||||
/-! ### Exercise 6
|
/-! #### Exercise 6
|
||||||
|
|
||||||
Give a calculational proof of the theorem `log_mul` below.
|
Give a calculational proof of the theorem `log_mul` below.
|
||||||
-/
|
-/
|
||||||
|
@ -258,4 +258,4 @@ theorem log_mul {x y : Float} (hx : x > 0) (hy : y > 0) :
|
||||||
|
|
||||||
end ex6
|
end ex6
|
||||||
|
|
||||||
end Avigad.Chapter4
|
end Avigad.Chapter4
|
|
@ -13,7 +13,7 @@ namespace Avigad.Chapter5
|
||||||
|
|
||||||
namespace ex1
|
namespace ex1
|
||||||
|
|
||||||
/-! #### Exercises 3.1 -/
|
/-! ##### Exercises 3.1 -/
|
||||||
|
|
||||||
section ex3_1
|
section ex3_1
|
||||||
|
|
||||||
|
@ -154,7 +154,7 @@ theorem imp_imp_not_imp_not : (p → q) → (¬q → ¬p) := by
|
||||||
|
|
||||||
end ex3_1
|
end ex3_1
|
||||||
|
|
||||||
/-! #### Exercises 3.2 -/
|
/-! ##### Exercises 3.2 -/
|
||||||
|
|
||||||
section ex3_2
|
section ex3_2
|
||||||
|
|
||||||
|
@ -223,7 +223,7 @@ theorem imp_imp_imp : (((p → q) → p) → p) := by
|
||||||
|
|
||||||
end ex3_2
|
end ex3_2
|
||||||
|
|
||||||
/-! #### Exercises 3.3 -/
|
/-! ##### Exercises 3.3 -/
|
||||||
|
|
||||||
section ex3_3
|
section ex3_3
|
||||||
|
|
||||||
|
@ -235,7 +235,7 @@ theorem iff_not_self (hp : p) : ¬(p ↔ ¬p) := by
|
||||||
|
|
||||||
end ex3_3
|
end ex3_3
|
||||||
|
|
||||||
/-! #### Exercises 4.1 -/
|
/-! ##### Exercises 4.1 -/
|
||||||
|
|
||||||
section ex4_1
|
section ex4_1
|
||||||
|
|
||||||
|
@ -264,7 +264,7 @@ theorem forall_or_distrib : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x
|
||||||
|
|
||||||
end ex4_1
|
end ex4_1
|
||||||
|
|
||||||
/-! #### Exercises 4.2 -/
|
/-! ##### Exercises 4.2 -/
|
||||||
|
|
||||||
section ex4_2
|
section ex4_2
|
||||||
|
|
||||||
|
@ -316,7 +316,7 @@ theorem forall_swap : (∀ x, r → p x) ↔ (r → ∀ x, p x) := by
|
||||||
|
|
||||||
end ex4_2
|
end ex4_2
|
||||||
|
|
||||||
/-! #### Exercises 4.3 -/
|
/-! ##### Exercises 4.3 -/
|
||||||
|
|
||||||
section ex4_3
|
section ex4_3
|
||||||
|
|
||||||
|
@ -336,7 +336,7 @@ theorem barber_paradox (h : ∀ x : men, shaves barber x ↔ ¬ shaves x x)
|
||||||
|
|
||||||
end ex4_3
|
end ex4_3
|
||||||
|
|
||||||
/-! #### Exercises 4.5 -/
|
/-! ##### Exercises 4.5 -/
|
||||||
|
|
||||||
section ex4_5
|
section ex4_5
|
||||||
|
|
||||||
|
@ -448,7 +448,7 @@ end ex4_5
|
||||||
|
|
||||||
end ex1
|
end ex1
|
||||||
|
|
||||||
/-! ### Exercise 2
|
/-! #### Exercise 2
|
||||||
|
|
||||||
Use tactic combinators to obtain a one line proof of the following:
|
Use tactic combinators to obtain a one line proof of the following:
|
||||||
-/
|
-/
|
||||||
|
@ -461,4 +461,4 @@ theorem or_and_or_and_or (p q r : Prop) (hp : p)
|
||||||
|
|
||||||
end ex2
|
end ex2
|
||||||
|
|
||||||
end Avigad.Chapter5
|
end Avigad.Chapter5
|
|
@ -5,7 +5,7 @@ Inductive Types
|
||||||
|
|
||||||
namespace Avigad.Chapter7
|
namespace Avigad.Chapter7
|
||||||
|
|
||||||
/-! ### Exercise 1
|
/-! #### Exercise 1
|
||||||
|
|
||||||
Try defining other operations on the natural numbers, such as multiplication,
|
Try defining other operations on the natural numbers, such as multiplication,
|
||||||
the predecessor function (with `pred 0 = 0`), truncated subtraction (with
|
the predecessor function (with `pred 0 = 0`), truncated subtraction (with
|
||||||
|
@ -77,7 +77,7 @@ end Nat
|
||||||
|
|
||||||
end ex1
|
end ex1
|
||||||
|
|
||||||
/-! ### Exercise 2
|
/-! #### Exercise 2
|
||||||
|
|
||||||
Define some operations on lists, like a `length` function or the `reverse`
|
Define some operations on lists, like a `length` function or the `reverse`
|
||||||
function. Prove some properties, such as the following:
|
function. Prove some properties, such as the following:
|
||||||
|
@ -178,7 +178,7 @@ theorem reverse_reverse (t : List α)
|
||||||
|
|
||||||
end ex2
|
end ex2
|
||||||
|
|
||||||
/-! ### Exercise 3
|
/-! #### Exercise 3
|
||||||
|
|
||||||
Define an inductive data type consisting of terms built up from the following
|
Define an inductive data type consisting of terms built up from the following
|
||||||
constructors:
|
constructors:
|
||||||
|
@ -217,4 +217,4 @@ def eval_foo : Foo → List Nat → Nat
|
||||||
|
|
||||||
end ex3
|
end ex3
|
||||||
|
|
||||||
end Avigad.Chapter7
|
end Avigad.Chapter7
|
|
@ -5,7 +5,7 @@ Induction and Recursion
|
||||||
|
|
||||||
namespace Avigad.Chapter8
|
namespace Avigad.Chapter8
|
||||||
|
|
||||||
/-! ### Exercise 1
|
/-! #### Exercise 1
|
||||||
|
|
||||||
Open a namespace `Hidden` to avoid naming conflicts, and use the equation
|
Open a namespace `Hidden` to avoid naming conflicts, and use the equation
|
||||||
compiler to define addition, multiplication, and exponentiation on the natural
|
compiler to define addition, multiplication, and exponentiation on the natural
|
||||||
|
@ -29,7 +29,7 @@ def exp : Nat → Nat → Nat
|
||||||
|
|
||||||
end ex1
|
end ex1
|
||||||
|
|
||||||
/-! ### Exercise 2
|
/-! #### Exercise 2
|
||||||
|
|
||||||
Similarly, use the equation compiler to define some basic operations on lists
|
Similarly, use the equation compiler to define some basic operations on lists
|
||||||
(like the reverse function) and prove theorems about lists by induction (such as
|
(like the reverse function) and prove theorems about lists by induction (such as
|
||||||
|
@ -48,7 +48,7 @@ def reverse : List α → List α
|
||||||
|
|
||||||
end ex2
|
end ex2
|
||||||
|
|
||||||
/-! ### Exercise 3
|
/-! #### Exercise 3
|
||||||
|
|
||||||
Define your own function to carry out course-of-value recursion on the natural
|
Define your own function to carry out course-of-value recursion on the natural
|
||||||
numbers. Similarly, see if you can figure out how to define `WellFounded.fix` on
|
numbers. Similarly, see if you can figure out how to define `WellFounded.fix` on
|
||||||
|
@ -86,7 +86,7 @@ noncomputable def brecOn {motive : Nat → Sort u}
|
||||||
|
|
||||||
end ex3
|
end ex3
|
||||||
|
|
||||||
/-! ### Exercise 4
|
/-! #### Exercise 4
|
||||||
|
|
||||||
Following the examples in Section Dependent Pattern Matching, define a function
|
Following the examples in Section Dependent Pattern Matching, define a function
|
||||||
that will append two vectors. This is tricky; you will have to define an
|
that will append two vectors. This is tricky; you will have to define an
|
||||||
|
@ -113,7 +113,7 @@ end Vector
|
||||||
|
|
||||||
end ex4
|
end ex4
|
||||||
|
|
||||||
/-! ### Exercise 5
|
/-! #### Exercise 5
|
||||||
|
|
||||||
Consider the following type of arithmetic expressions.
|
Consider the following type of arithmetic expressions.
|
||||||
-/
|
-/
|
||||||
|
@ -149,7 +149,7 @@ def sampleVal : Nat → Nat
|
||||||
-- Try it out. You should get 47 here.
|
-- Try it out. You should get 47 here.
|
||||||
#eval eval sampleVal sampleExpr
|
#eval eval sampleVal sampleExpr
|
||||||
|
|
||||||
/-! ### Constant Fusion
|
/-! ##### Constant Fusion
|
||||||
|
|
||||||
Implement "constant fusion," a procedure that simplifies subterms like `5 + 7
|
Implement "constant fusion," a procedure that simplifies subterms like `5 + 7
|
||||||
to `12`. Using the auxiliary function `simpConst`, define a function "fuse": to
|
to `12`. Using the auxiliary function `simpConst`, define a function "fuse": to
|
||||||
|
@ -189,7 +189,7 @@ theorem simpConst_eq (v : Nat → Nat)
|
||||||
| times _ (var _)
|
| times _ (var _)
|
||||||
| times _ (plus _ _)
|
| times _ (plus _ _)
|
||||||
| times _ (times _ _) => simp only
|
| times _ (times _ _) => simp only
|
||||||
|
|
||||||
|
|
||||||
theorem fuse_eq (v : Nat → Nat)
|
theorem fuse_eq (v : Nat → Nat)
|
||||||
: ∀ e : Expr, eval v (fuse e) = eval v e := by
|
: ∀ e : Expr, eval v (fuse e) = eval v e := by
|
||||||
|
@ -206,4 +206,4 @@ theorem fuse_eq (v : Nat → Nat)
|
||||||
|
|
||||||
end ex5
|
end ex5
|
||||||
|
|
||||||
end Avigad.Chapter8
|
end Avigad.Chapter8
|
|
@ -1,14 +1 @@
|
||||||
import Bookshelf.Enderton.Logic.Chapter_1
|
import Bookshelf.Enderton.Logic.Chapter_1
|
||||||
|
|
||||||
/-! # A Mathematical Introduction to Logic
|
|
||||||
|
|
||||||
## Enderton, Herbert B.
|
|
||||||
|
|
||||||
### LaTeX
|
|
||||||
|
|
||||||
Full set of [proofs and exercises](Bookshelf/Enderton/Logic.pdf).
|
|
||||||
|
|
||||||
### Lean
|
|
||||||
|
|
||||||
* [Chapter 1: Sentential Logic](Bookshelf/Enderton/Logic/Chapter_1.html)
|
|
||||||
-/
|
|
|
@ -131,7 +131,7 @@ lemma no_neg_sentential_count_eq_binary_count {φ : Wff} (h : ¬φ.hasNotSymbol)
|
||||||
unfold sententialSymbolCount binarySymbolCount
|
unfold sententialSymbolCount binarySymbolCount
|
||||||
rw [ih₁ h.left, ih₂ h.right]
|
rw [ih₁ h.left, ih₂ h.right]
|
||||||
|
|
||||||
/-- ### Parentheses Count
|
/-- #### Parentheses Count
|
||||||
|
|
||||||
Let `φ` be a well-formed formula and `c` be the number of places at which a
|
Let `φ` be a well-formed formula and `c` be the number of places at which a
|
||||||
sentential connective symbol exists. Then there is `2c` parentheses in `φ`.
|
sentential connective symbol exists. Then there is `2c` parentheses in `φ`.
|
||||||
|
@ -180,7 +180,7 @@ theorem length_eq_sum_symbol_count (φ : Wff)
|
||||||
|
|
||||||
end Wff
|
end Wff
|
||||||
|
|
||||||
/-! ### Exercise 1.1.2
|
/-! #### Exercise 1.1.2
|
||||||
|
|
||||||
Show that there are no wffs of length `2`, `3`, or `6`, but that any other
|
Show that there are no wffs of length `2`, `3`, or `6`, but that any other
|
||||||
positive length is possible.
|
positive length is possible.
|
||||||
|
@ -296,7 +296,7 @@ theorem exercise_1_1_2_ii (n : ℕ) (hn : n ≠ 2 ∧ n ≠ 3 ∧ n ≠ 6)
|
||||||
|
|
||||||
end Exercise_1_1_2
|
end Exercise_1_1_2
|
||||||
|
|
||||||
/-- ### Exercise 1.1.3
|
/-- #### Exercise 1.1.3
|
||||||
|
|
||||||
Let `α` be a wff; let `c` be the number of places at which binary connective
|
Let `α` be a wff; let `c` be the number of places at which binary connective
|
||||||
symbols (`∧`, `∨`, `→`, `↔`) occur in `α`; let `s` be the number of places at
|
symbols (`∧`, `∨`, `→`, `↔`) occur in `α`; let `s` be the number of places at
|
||||||
|
@ -320,7 +320,7 @@ theorem exercise_1_1_3 (φ : Wff)
|
||||||
rw [ih₁, ih₂]
|
rw [ih₁, ih₂]
|
||||||
ring
|
ring
|
||||||
|
|
||||||
/-- ### Exercise 1.1.5 (a)
|
/-- #### Exercise 1.1.5 (a)
|
||||||
|
|
||||||
Suppose that `α` is a wff not containing the negation symbol `¬`. Show that the
|
Suppose that `α` is a wff not containing the negation symbol `¬`. Show that the
|
||||||
length of `α` (i.e., the number of symbols in the string) is odd.
|
length of `α` (i.e., the number of symbols in the string) is odd.
|
||||||
|
@ -355,7 +355,7 @@ theorem exercise_1_1_5a (α : Wff) (hα : ¬α.hasNotSymbol)
|
||||||
rw [hk₁, hk₂]
|
rw [hk₁, hk₂]
|
||||||
ring
|
ring
|
||||||
|
|
||||||
/-- ### Exercise 1.1.5 (b)
|
/-- #### Exercise 1.1.5 (b)
|
||||||
|
|
||||||
Suppose that `α` is a wff not containing the negation symbol `¬`. Show that more
|
Suppose that `α` is a wff not containing the negation symbol `¬`. Show that more
|
||||||
than a quarter of the symbols are sentence symbols.
|
than a quarter of the symbols are sentence symbols.
|
||||||
|
@ -390,7 +390,7 @@ theorem exercise_1_1_5b (α : Wff) (hα : ¬α.hasNotSymbol)
|
||||||
]
|
]
|
||||||
exact inv_lt_one (by norm_num)
|
exact inv_lt_one (by norm_num)
|
||||||
|
|
||||||
/-! ### Exercise 1.2.1
|
/-! #### Exercise 1.2.1
|
||||||
|
|
||||||
Show that neither of the following two formulas tautologically implies the
|
Show that neither of the following two formulas tautologically implies the
|
||||||
other:
|
other:
|
||||||
|
@ -430,7 +430,7 @@ theorem exercise_1_2_2a (P Q : Prop)
|
||||||
: (((P → Q) → P) → P) := by
|
: (((P → Q) → P) → P) := by
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
/-! ### Exercise 1.2.2 (b)
|
/-! #### Exercise 1.2.2 (b)
|
||||||
|
|
||||||
Define `σₖ` recursively as follows: `σ₀ = (P → Q)` and `σₖ₊₁ = (σₖ → P)`. For
|
Define `σₖ` recursively as follows: `σ₀ = (P → Q)` and `σₖ₊₁ = (σₖ → P)`. For
|
||||||
which values of `k` is `σₖ` a tautology? (Part (a) corresponds to `k = 2`.)
|
which values of `k` is `σₖ` a tautology? (Part (a) corresponds to `k = 2`.)
|
||||||
|
@ -475,18 +475,18 @@ theorem exercise_1_2_2b_iii {k : ℕ} (h : Odd k)
|
||||||
have ⟨r, hr⟩ := h
|
have ⟨r, hr⟩ := h
|
||||||
refine ⟨r, hr, ?_⟩
|
refine ⟨r, hr, ?_⟩
|
||||||
by_contra nr
|
by_contra nr
|
||||||
have : r = 0 := Nat.eq_zero_of_not_pos nr
|
have : r = 0 := Nat.eq_zero_of_nonpos r nr
|
||||||
rw [this] at hr
|
rw [this] at hr
|
||||||
simp only [mul_zero, zero_add] at hr
|
simp only [mul_zero, zero_add] at hr
|
||||||
exact absurd hr hk
|
exact absurd hr hk
|
||||||
unfold σ
|
unfold σ
|
||||||
rw [hn₁]
|
rw [hn₁]
|
||||||
simp only [Nat.add_eq, add_zero, imp_false, not_not]
|
simp only [Nat.add_eq, add_zero, not_forall, exists_prop, and_true]
|
||||||
exact exercise_1_2_2b_i False Q hn₂
|
exact exercise_1_2_2b_i False Q hn₂
|
||||||
|
|
||||||
end Exercise_1_2_2
|
end Exercise_1_2_2
|
||||||
|
|
||||||
/-- ### Exercise 1.2.3 (a)
|
/-- #### Exercise 1.2.3 (a)
|
||||||
|
|
||||||
Determine whether or not `((P → Q)) ∨ (Q → P)` is a tautology.
|
Determine whether or not `((P → Q)) ∨ (Q → P)` is a tautology.
|
||||||
-/
|
-/
|
||||||
|
@ -494,7 +494,7 @@ theorem exercise_1_2_3a (P Q : Prop)
|
||||||
: ((P → Q) ∨ (Q → P)) := by
|
: ((P → Q) ∨ (Q → P)) := by
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
/-- ### Exercise 1.2.3 (b)
|
/-- #### Exercise 1.2.3 (b)
|
||||||
|
|
||||||
Determine whether or not `((P ∧ Q) → R))` tautologically implies
|
Determine whether or not `((P ∧ Q) → R))` tautologically implies
|
||||||
`((P → R) ∨ (Q → R))`.
|
`((P → R) ∨ (Q → R))`.
|
||||||
|
@ -503,7 +503,7 @@ theorem exercise_1_2_3b (P Q R : Prop)
|
||||||
: ((P ∧ Q) → R) ↔ ((P → R) ∨ (Q → R)) := by
|
: ((P ∧ Q) → R) ↔ ((P → R) ∨ (Q → R)) := by
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
/-! ### Exercise 1.2.5
|
/-! #### Exercise 1.2.5
|
||||||
|
|
||||||
Prove or refute each of the following assertions:
|
Prove or refute each of the following assertions:
|
||||||
|
|
||||||
|
@ -519,7 +519,7 @@ theorem exercise_1_2_6b
|
||||||
: (False ∨ True) ∧ ¬ False := by
|
: (False ∨ True) ∧ ¬ False := by
|
||||||
simp
|
simp
|
||||||
|
|
||||||
/-! ### Exercise 1.2.15
|
/-! #### Exercise 1.2.15
|
||||||
|
|
||||||
Of the following three formulas, which tautologically implies which?
|
Of the following three formulas, which tautologically implies which?
|
||||||
(a) `(A ↔ B)`
|
(a) `(A ↔ B)`
|
||||||
|
|
|
@ -4,21 +4,4 @@ import Bookshelf.Enderton.Set.Chapter_3
|
||||||
import Bookshelf.Enderton.Set.Chapter_4
|
import Bookshelf.Enderton.Set.Chapter_4
|
||||||
import Bookshelf.Enderton.Set.Chapter_6
|
import Bookshelf.Enderton.Set.Chapter_6
|
||||||
import Bookshelf.Enderton.Set.OrderedPair
|
import Bookshelf.Enderton.Set.OrderedPair
|
||||||
import Bookshelf.Enderton.Set.Relation
|
import Bookshelf.Enderton.Set.Relation
|
||||||
|
|
||||||
/-! # Elements of Set Theory
|
|
||||||
|
|
||||||
## Enderton, Herbert B.
|
|
||||||
|
|
||||||
### LaTeX
|
|
||||||
|
|
||||||
Full set of [proofs and exercises](Bookshelf/Enderton/Set.pdf).
|
|
||||||
|
|
||||||
### Lean
|
|
||||||
|
|
||||||
* [Chapter 1: Introduction](Bookshelf/Enderton/Set/Chapter_1.html)
|
|
||||||
* [Chapter 2: Axioms and Operations](Bookshelf/Enderton/Set/Chapter_2.html)
|
|
||||||
* [Chapter 3: Relations and Functions](Bookshelf/Enderton/Set/Chapter_3.html)
|
|
||||||
* [Chapter 4: Natural Numbers](Bookshelf/Enderton/Set/Chapter_4.html)
|
|
||||||
* [Chapter 6: Cardinal Numbers and the Axiom of Choice](Bookshelf/Enderton/Set/Chapter_6.html)
|
|
||||||
-/
|
|
|
@ -94,9 +94,9 @@
|
||||||
Furthermore,
|
Furthermore,
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item For any sets $A$ and $B$,
|
\item For any sets $A$ and $B$,
|
||||||
$$\card{A} = \card{B} \quad\text{iff}\quad A \equin B.$$
|
$$\card{A} = \card{B} \quad\text{iff}\quad \equinumerous{A}{B}.$$
|
||||||
\item For a finite set $A$, $\card{A}$ is the \nameref{ref:natural-number}
|
\item For a finite set $A$, $\card{A}$ is the \nameref{ref:natural-number}
|
||||||
$n$ for which $A \equin n$.
|
$n$ for which $\equinumerous{A}{n}$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
\lean{Mathlib/Data/Finset/Card}
|
\lean{Mathlib/Data/Finset/Card}
|
||||||
|
@ -170,8 +170,9 @@
|
||||||
\section{\defined{Equinumerous}}%
|
\section{\defined{Equinumerous}}%
|
||||||
\hyperlabel{ref:equinumerous}
|
\hyperlabel{ref:equinumerous}
|
||||||
|
|
||||||
A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \equin B$) if and
|
A set $A$ is \textbf{equinumerous} to a set $B$ (written
|
||||||
only if there is a one-to-one \nameref{ref:function} from $A$ onto $B$.
|
$\equinumerous{A}{B}$) if and only if there is a one-to-one
|
||||||
|
\nameref{ref:function} from $A$ onto $B$.
|
||||||
In other words, there exists a one-to-one correspondence between $A$ and $B$.
|
In other words, there exists a one-to-one correspondence between $A$ and $B$.
|
||||||
|
|
||||||
\lean*{Mathlib/Init/Function}
|
\lean*{Mathlib/Init/Function}
|
||||||
|
@ -421,17 +422,6 @@
|
||||||
\lean{Init/Prelude}
|
\lean{Init/Prelude}
|
||||||
{Mul.mul}
|
{Mul.mul}
|
||||||
|
|
||||||
\section{\defined{Natural Map}}%
|
|
||||||
\hyperlabel{ref:natural-map}
|
|
||||||
|
|
||||||
Let $R$ be an \nameref{ref:equivalence-relation} on $A$.
|
|
||||||
Then the \textbf{natural map} (or \textbf{canonical map})
|
|
||||||
$\phi \colon A \rightarrow A / R$ is defined as $$\phi(x) = [x]_R$$ for
|
|
||||||
$x \in A$.
|
|
||||||
|
|
||||||
\lean*{Init/Core}
|
|
||||||
{Quotient.lift}
|
|
||||||
|
|
||||||
\section{\defined{Natural Number}}%
|
\section{\defined{Natural Number}}%
|
||||||
\hyperlabel{ref:natural-number}
|
\hyperlabel{ref:natural-number}
|
||||||
|
|
||||||
|
@ -3083,9 +3073,6 @@
|
||||||
\code{Bookshelf/Enderton/Set/Relation}
|
\code{Bookshelf/Enderton/Set/Relation}
|
||||||
{Set.Relation.one\_to\_one\_comp\_is\_one\_to\_one}
|
{Set.Relation.one\_to\_one\_comp\_is\_one\_to\_one}
|
||||||
|
|
||||||
\lean{Mathlib/Data/Set/Function}
|
|
||||||
{Set.InjOn.comp}
|
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $F \colon B \rightarrow C$ and $G \colon A \rightarrow B$ be
|
Let $F \colon B \rightarrow C$ and $G \colon A \rightarrow B$ be
|
||||||
one-to-one \nameref{ref:function}s from sets $A$, $B$, and $C$.
|
one-to-one \nameref{ref:function}s from sets $A$, $B$, and $C$.
|
||||||
|
@ -3130,93 +3117,91 @@
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 3J (a)}}%
|
\subsection{\verified{Theorem 3J}}%
|
||||||
\hyperlabel{sub:theorem-3j-a}
|
\hyperlabel{sub:theorem-3j}
|
||||||
|
|
||||||
\begin{theorem}[3J(a)]
|
\begin{theorem}[3J]
|
||||||
Assume that $F \colon A \rightarrow B$, and that $A$ is nonempty.
|
Assume that $F \colon A \rightarrow B$, and that $A$ is nonempty.
|
||||||
There exists a function $G \colon B \rightarrow A$ (a "left inverse") such
|
\begin{enumerate}[(a)]
|
||||||
that $G \circ F$ is the identity function $I_A$ on $A$ iff $F$ is
|
\item There exists a function $G \colon B \rightarrow A$
|
||||||
one-to-one.
|
(a "left inverse") such that $G \circ F$ is the identity function $I_A$
|
||||||
|
on $A$ iff $F$ is one-to-one.
|
||||||
|
\item There exists a function $H \colon B \rightarrow A$
|
||||||
|
(a "right inverse") such that $F \circ H$ is the identity function $I_B$
|
||||||
|
on $B$ iff $F$ maps $A$ \textit{onto} $B$.
|
||||||
|
\end{enumerate}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\code{Bookshelf/Enderton/Set/Chapter\_3}
|
\code{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
{Enderton.Set.Chapter\_3.theorem\_3j\_a}
|
{Enderton.Set.Chapter\_3.theorem\_3j\_a}
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
|
|
||||||
Let $F$ be a \nameref{ref:function} from nonempty set $A$ to set $B$.
|
|
||||||
|
|
||||||
\subparagraph{($\Rightarrow$)}%
|
|
||||||
|
|
||||||
Let $G \colon B \rightarrow A$ such that $G \circ F = I_A$.
|
|
||||||
All that remains is to prove $F$ is single-rooted.
|
|
||||||
Let $y \in \ran{F}$.
|
|
||||||
By definition of the \nameref{ref:range} of a function, there exists
|
|
||||||
some $x_1$ such that $\tuple{x_1, y} \in F$.
|
|
||||||
Suppose there exists a set $x_2$ such that $\tuple{x_2, y} \in F$.
|
|
||||||
By hypothesis, $G(F(x_1)) = G(F(x_2))$ implies $I_A(x_1) = I_A(x_2)$.
|
|
||||||
Thus $x_1 = x_2$.
|
|
||||||
Therefore $F$ must be single-rooted.
|
|
||||||
|
|
||||||
\subparagraph{($\Leftarrow$)}%
|
|
||||||
|
|
||||||
Let $F$ be one-to-one.
|
|
||||||
Since $A$ is nonempty, there exists some $a \in A$.
|
|
||||||
Let $G \colon B \rightarrow A$ be given by
|
|
||||||
$$G(y) = \begin{cases}
|
|
||||||
F^{-1}(y) & \text{if } y \in \ran{F} \\
|
|
||||||
a & \text{otherwise}.
|
|
||||||
\end{cases}$$
|
|
||||||
$G$ is a function by virtue of \nameref{sub:one-to-one-inverse} and
|
|
||||||
choice of mapping for all values $y \not\in \ran{F}$.
|
|
||||||
Furthermore, for all $x \in A$, $F(x) \in \ran{F}$.
|
|
||||||
Thus $(G \circ F)(x) = G(F(x)) = F^{-1}(F(x)) = x$ by
|
|
||||||
\nameref{sub:theorem-3g}.
|
|
||||||
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\subsection{\unverified{Theorem 3J (b)}}%
|
|
||||||
\hyperlabel{sub:theorem-3j-b}
|
|
||||||
|
|
||||||
\begin{theorem}[3J(b)]
|
|
||||||
Assume that $F \colon A \rightarrow B$, and that $A$ is nonempty.
|
|
||||||
There exists a function $H \colon B \rightarrow A$ (a "right inverse") such
|
|
||||||
that $F \circ H$ is the identity function $I_B$ on $B$ iff $F$ maps $A$
|
|
||||||
\textit{onto} $B$.
|
|
||||||
\end{theorem}
|
|
||||||
|
|
||||||
\code{Bookshelf/Enderton/Set/Chapter\_3}
|
\code{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
{Enderton.Set.Chapter\_3.theorem\_3j\_b}
|
{Enderton.Set.Chapter\_3.theorem\_3j\_b}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
Let $F$ be a \nameref{ref:function} from nonempty set $A$ to set $B$.
|
Let $F$ be a \nameref{ref:function} from nonempty set $A$ to set $B$.
|
||||||
|
|
||||||
\subparagraph{($\Rightarrow$)}%
|
\paragraph{(a)}%
|
||||||
|
|
||||||
Suppose $H \colon B \rightarrow A$ such that $F \circ H = I_A$.
|
We prove there exists a function $G \colon B \rightarrow A$ such that
|
||||||
All that remains is to prove $\ran{F} = B$.
|
$G \circ F = I_A$ if and only if $F$ is one-to-one.
|
||||||
Note that $\ran{F} \subseteq B$ by hypothesis.
|
|
||||||
Let $y \in B$.
|
|
||||||
But $F(H(y)) = y$ meaning $y \in \ran{F}$.
|
|
||||||
Thus $B \subseteq \ran{F}$.
|
|
||||||
Since $\ran{F} \subseteq B$ and $B \subseteq \ran{F}$, $\ran{F} = B$.
|
|
||||||
|
|
||||||
\subparagraph{($\Leftarrow$)}%
|
\subparagraph{($\Rightarrow$)}%
|
||||||
|
|
||||||
Suppose $F$ maps $A$ \textit{onto} $B$.
|
Let $G \colon B \rightarrow A$ such that $G \circ F = I_A$.
|
||||||
By definition of maps onto, $\ran{F} = B$.
|
All that remains is to prove $F$ is single-rooted.
|
||||||
Then for all $y \in B$, there exists some $x \in A$ such that
|
Let $y \in \ran{F}$.
|
||||||
$\tuple{x, y} \in F$.
|
By definition of the \nameref{ref:range} of a function, there exists
|
||||||
Notice though that $F^{-1}[\{y\}]$ may not be a singleton set.
|
some $x_1$ such that $\tuple{x_1, y} \in F$.
|
||||||
Then there is no obvious way to \textit{choose} an element from each
|
Suppose there exists a set $x_2$ such that $\tuple{x_2, y} \in F$.
|
||||||
preimage to form a function.
|
By hypothesis, $G(F(x_1)) = G(F(x_2))$ implies $I_A(x_1) = I_A(x_2)$.
|
||||||
By the \nameref{ref:axiom-of-choice-1}, there exists a function
|
Thus $x_1 = x_2$.
|
||||||
$H \subseteq F^{-1}$ such that $\dom{H} = \dom{F^{-1}} = B$.
|
Therefore $F$ must be single-rooted.
|
||||||
For all $y \in B$, $\tuple{y, H(y)} \in H \subseteq F^{-1}$
|
|
||||||
meaning $\tuple{H(y), y} \in F$.
|
\subparagraph{($\Leftarrow$)}%
|
||||||
Thus $F(H(y)) = y$ as expected.
|
|
||||||
|
Let $F$ be one-to-one.
|
||||||
|
Since $A$ is nonempty, there exists some $a \in A$.
|
||||||
|
Let $G \colon B \rightarrow A$ be given by
|
||||||
|
$$G(y) = \begin{cases}
|
||||||
|
F^{-1}(y) & \text{if } y \in \ran{F} \\
|
||||||
|
a & \text{otherwise}.
|
||||||
|
\end{cases}$$
|
||||||
|
$G$ is a function by virtue of \nameref{sub:one-to-one-inverse} and
|
||||||
|
choice of mapping for all values $y \not\in \ran{F}$.
|
||||||
|
Furthermore, for all $x \in A$, $F(x) \in \ran{F}$.
|
||||||
|
Thus $(G \circ F)(x) = G(F(x)) = F^{-1}(F(x)) = x$ by
|
||||||
|
\nameref{sub:theorem-3g}.
|
||||||
|
|
||||||
|
\paragraph{(b)}%
|
||||||
|
|
||||||
|
We prove there exists a function $H \colon B \rightarrow A$ such that
|
||||||
|
$F \circ H = I_A$ if and only if $F$ maps $A$ onto $B$.
|
||||||
|
|
||||||
|
\subparagraph{($\Rightarrow$)}%
|
||||||
|
|
||||||
|
Suppose $H \colon B \rightarrow A$ such that $F \circ H = I_A$.
|
||||||
|
All that remains is to prove $\ran{F} = B$.
|
||||||
|
Note that $\ran{F} \subseteq B$ by hypothesis.
|
||||||
|
Let $y \in B$.
|
||||||
|
But $F(H(y)) = y$ meaning $y \in \ran{F}$.
|
||||||
|
Thus $B \subseteq \ran{F}$.
|
||||||
|
Since $\ran{F} \subseteq B$ and $B \subseteq \ran{F}$, $\ran{F} = B$.
|
||||||
|
|
||||||
|
\subparagraph{($\Leftarrow$)}%
|
||||||
|
|
||||||
|
Suppose $F$ maps $A$ \textit{onto} $B$.
|
||||||
|
By definition of maps onto, $\ran{F} = B$.
|
||||||
|
Then for all $y \in B$, there exists some $x \in A$ such that
|
||||||
|
$\tuple{x, y} \in F$.
|
||||||
|
Notice though that $F^{-1}[\{y\}]$ may not be a singleton set.
|
||||||
|
Then there is no obvious way to \textit{choose} an element from each
|
||||||
|
preimage to form a function.
|
||||||
|
By the \nameref{ref:axiom-of-choice-1}, there exists a function
|
||||||
|
$H \subseteq F^{-1}$ such that $\dom{H} = \dom{F^{-1}} = B$.
|
||||||
|
For all $y \in B$, $\tuple{y, H(y)} \in H \subseteq F^{-1}$
|
||||||
|
meaning $\tuple{H(y), y} \in F$.
|
||||||
|
Thus $F(H(y)) = y$ as expected.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -3231,9 +3216,9 @@
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
By definition, a one-to-one correspondence $f$ between sets $A$ and $B$ must
|
By definition, a one-to-one correspondence $f$ between sets $A$ and $B$ must
|
||||||
be both one-to-one and onto.
|
be both one-to-one and onto.
|
||||||
By \nameref{sub:theorem-3j-a}, $f$ is one-to-one if and only if it has a
|
By \nameref{sub:theorem-3j}, $f$ is one-to-one if and only if it has a left
|
||||||
left inverse.
|
inverse.
|
||||||
By \nameref{sub:theorem-3j-b}, $f$ is onto $B$ if and only if it has a right
|
The same theorem states that $f$ is onto $B$ if and only if it has a right
|
||||||
inverse.
|
inverse.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -8812,9 +8797,10 @@
|
||||||
\begin{theorem}[6A]
|
\begin{theorem}[6A]
|
||||||
For any sets $A$, $B$, and $C$,
|
For any sets $A$, $B$, and $C$,
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item $A \equin A$.
|
\item $\equinumerous{A}{A}$.
|
||||||
\item If $A \equin B$, then $B \equin A$.
|
\item If $\equinumerous{A}{B}$, then $\equinumerous{B}{A}$.
|
||||||
\item If $A \equin B$ and $B \equin C$, then $A \equin C$.
|
\item If $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$, then
|
||||||
|
$\equinumerous{A}{C}$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
@ -8840,18 +8826,18 @@
|
||||||
|
|
||||||
\paragraph{(b)}%
|
\paragraph{(b)}%
|
||||||
|
|
||||||
Suppose $A \equin B$.
|
Suppose $\equinumerous{A}{B}$.
|
||||||
Then there exists a one-to-one correspondence $F$ between $A$ and $B$.
|
Then there exists a one-to-one correspondence $F$ between $A$ and $B$.
|
||||||
Consider now \nameref{ref:inverse} $$F^{-1} = \{\tuple{u, v} \mid vFu\}.$$
|
Consider now \nameref{ref:inverse} $$F^{-1} = \{\tuple{u, v} \mid vFu\}.$$
|
||||||
By \nameref{sub:one-to-one-inverse}, $F^{-1}$ is a one-to-one function.
|
By \nameref{sub:one-to-one-inverse}, $F^{-1}$ is a one-to-one function.
|
||||||
For all $y \in A$, $\tuple{y, F(y)} \in F$.
|
For all $y \in A$, $\tuple{y, F(y)} \in F$.
|
||||||
Then $\tuple{F(y), y} \in F^{-1}$ meaning $F^{-1}$ is onto $A$.
|
Then $\tuple{F(y), y} \in F^{-1}$ meaning $F^{-1}$ is onto $A$.
|
||||||
Hence $F^{-1}$ is a one-to-one correspondence between $B$ and $A$, i.e.
|
Hence $F^{-1}$ is a one-to-one correspondence between $B$ and $A$, i.e.
|
||||||
$B \equin A$.
|
$\equinumerous{B}{A}$.
|
||||||
|
|
||||||
\paragraph{(c)}%
|
\paragraph{(c)}%
|
||||||
|
|
||||||
Suppose $A \equin B$ and $B \equin C$.
|
Suppose $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$.
|
||||||
Then there exists a one-to-one correspondence $G$ between $A$ and $B$ and
|
Then there exists a one-to-one correspondence $G$ between $A$ and $B$ and
|
||||||
a one-to-one correspondence $F$ between $B$ and $C$.
|
a one-to-one correspondence $F$ between $B$ and $C$.
|
||||||
By \nameref{sub:one-to-one-composition}, $F \circ G$ is a one-to-one
|
By \nameref{sub:one-to-one-composition}, $F \circ G$ is a one-to-one
|
||||||
|
@ -8865,7 +8851,7 @@
|
||||||
Then $F(G(x)) = y$.
|
Then $F(G(x)) = y$.
|
||||||
Thus $\ran{(F \circ G)} = C$ meaning $F \circ G$ is onto $C$.
|
Thus $\ran{(F \circ G)} = C$ meaning $F \circ G$ is onto $C$.
|
||||||
Hence $F \circ G$ is a one-to-one correspondence function between $A$ and
|
Hence $F \circ G$ is a one-to-one correspondence function between $A$ and
|
||||||
$C$, i.e. $A \equin C$.
|
$C$, i.e. $\equinumerous{A}{C}$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -8999,13 +8985,13 @@
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $S$ be a \nameref{ref:finite-set} and $S'$ be a
|
Let $S$ be a \nameref{ref:finite-set} and $S'$ be a
|
||||||
\nameref{ref:proper-subset} of $S$.
|
\nameref{ref:proper-subset} $S'$ of $S$.
|
||||||
Then there exists some set $T$, disjoint from $S'$, such that
|
Then there exists some set $T$, disjoint from $S'$, such that
|
||||||
$S' \cup T = S$.
|
$S' \cup T = S$.
|
||||||
By definition of a \nameref{ref:finite-set}, $S$ is
|
By definition of a \nameref{ref:finite-set}, $S$ is
|
||||||
\nameref{ref:equinumerous} to a natural number $n$.
|
\nameref{ref:equinumerous} to a natural number $n$.
|
||||||
By \nameref{sub:theorem-6a}, $S' \cup T \equin S$ which, by the same
|
By \nameref{sub:theorem-6a}, $\equinumerous{S' \cup T}{S}$ which, by the
|
||||||
theorem, implies $S' \cup T \equin n$.
|
same theorem, implies $\equinumerous{S' \cup T}{n}$.
|
||||||
|
|
||||||
Let $f$ be a one-to-one correspondence between $S' \cup T$ and $n$.
|
Let $f$ be a one-to-one correspondence between $S' \cup T$ and $n$.
|
||||||
Then $f \restriction S'$ is a one-to-one correspondence between $S'$ and a
|
Then $f \restriction S'$ is a one-to-one correspondence between $S'$ and a
|
||||||
|
@ -9102,8 +9088,8 @@
|
||||||
By \nameref{sub:trichotomy-law-natural-numbers}, exactly one of three
|
By \nameref{sub:trichotomy-law-natural-numbers}, exactly one of three
|
||||||
situations is possible: $n = m$, $n < m$, or $m < n$.
|
situations is possible: $n = m$, $n < m$, or $m < n$.
|
||||||
|
|
||||||
If $n < m$, then $m \equin S$ and $S \equin n$.
|
If $n < m$, then $\equinumerous{m}{S}$ and $\equinumerous{S}{n}$.
|
||||||
By \nameref{sub:theorem-6a}, it follows $m \equin n$.
|
By \nameref{sub:theorem-6a}, it follows $\equinumerous{m}{n}$.
|
||||||
But \nameref{sub:pigeonhole-principle} indicates no natural number is
|
But \nameref{sub:pigeonhole-principle} indicates no natural number is
|
||||||
equinumerous to a proper subset of itself, a contradiction.
|
equinumerous to a proper subset of itself, a contradiction.
|
||||||
If $m < n$, a parallel argument applies.
|
If $m < n$, a parallel argument applies.
|
||||||
|
@ -9115,7 +9101,7 @@
|
||||||
\hyperlabel{sub:lemma-6f}
|
\hyperlabel{sub:lemma-6f}
|
||||||
|
|
||||||
\begin{lemma}[6F]
|
\begin{lemma}[6F]
|
||||||
If $C$ is a proper subset of a natural number $n$, then $C \equin m$ for
|
If $C$ is a proper subset of a natural number $n$, then $C \approx m$ for
|
||||||
some $m$ less than $n$.
|
some $m$ less than $n$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
|
@ -9128,7 +9114,7 @@
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\hyperlabel{sub:lemma-6f-eq1}
|
\hyperlabel{sub:lemma-6f-eq1}
|
||||||
S = \{n \in \omega \mid \forall C \subset n,
|
S = \{n \in \omega \mid \forall C \subset n,
|
||||||
\exists m < n \text{ such that } C \equin m\}.
|
\exists m < n \text{ such that } \equinumerous{C}{m}\}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
||||||
Afterward we prove (iii) the lemma statement.
|
Afterward we prove (iii) the lemma statement.
|
||||||
|
@ -9185,7 +9171,7 @@
|
||||||
\nameref{ref:inductive-set}.
|
\nameref{ref:inductive-set}.
|
||||||
By \nameref{sub:theorem-4b}, $S = \omega$.
|
By \nameref{sub:theorem-4b}, $S = \omega$.
|
||||||
Therefore, for every proper subset $C$ of a natural number $n$, there
|
Therefore, for every proper subset $C$ of a natural number $n$, there
|
||||||
exists some $m < n$ such that $C \equin n$.
|
exists some $m < n$ such that $\equinumerous{C}{n}$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -9204,232 +9190,26 @@
|
||||||
Clearly, if $S' = S$, then $S'$ is finite.
|
Clearly, if $S' = S$, then $S'$ is finite.
|
||||||
Therefore suppose $S'$ is a proper subset of $S$.
|
Therefore suppose $S'$ is a proper subset of $S$.
|
||||||
|
|
||||||
By definition of a finite set, $S$ is \nameref{ref:equinumerous} to some
|
By definition of finite set, $S$ is \nameref{ref:equinumerous} to some
|
||||||
natural number $n$.
|
natural number $n$.
|
||||||
Let $f$ be a one-to-one correspondence between $S$ and $n$.
|
Let $f$ be a one-to-one correspondence between $S$ and $n$.
|
||||||
Then $f \restriction S'$ is a one-to-one correspondence between $S'$ and
|
Then $f \restriction S'$ is a one-to-one correspondence between $S'$ and
|
||||||
some proper subset of $n$.
|
some proper subset of $n$.
|
||||||
By \nameref{sub:lemma-6f}, $\ran{(f \restriction S')}$ is equinumerous to
|
By \nameref{sub:lemma-6f}, $\ran{(f \restriction S')}$ is equinumerous to
|
||||||
some $m < n$.
|
some $m < n$.
|
||||||
Then \nameref{sub:theorem-6a} indicates $S' \equin m$.
|
Then \nameref{sub:theorem-6a} indicates $\equinumerous{S'}{m}$.
|
||||||
Hence $S'$ is a finite set.
|
Hence $S'$ is a finite set.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Subset Size}}%
|
|
||||||
\hyperlabel{sub:subset-size}
|
|
||||||
|
|
||||||
\begin{lemma}
|
|
||||||
Let $A$ be a finite set and $B \subseteq A$.
|
|
||||||
Then there exist natural numbers $m, n \in \omega$ such that
|
|
||||||
$B \equin m$, $A \equin n$, and $m \leq n$.
|
|
||||||
\end{lemma}
|
|
||||||
|
|
||||||
\code{Bookshelf/Enderton/Set/Chapter\_6}
|
|
||||||
{Enderton.Set.Chapter\_6.subset\_size}
|
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
|
|
||||||
Let $A$ be a \nameref{ref:finite-set} and $B$ be a subset of $A$.
|
|
||||||
By \nameref{sub:corollary-6g}, $B$ must be finite.
|
|
||||||
By definition of a finite set, there exists natural numbers
|
|
||||||
$m, n \in \omega$ such that $B \equin m$ and $A \equin n$.
|
|
||||||
By \nameref{sub:trichotomy-law-natural-numbers}, it suffices to prove that
|
|
||||||
$m > n$ is not possible for then either $m < n$ or $m = n$.
|
|
||||||
|
|
||||||
For the sake of contradiction, assume $m > n$.
|
|
||||||
By definition of \nameref{ref:equinumerous}, there exists a one-to-one
|
|
||||||
correspondence between $B$ and $m$.
|
|
||||||
\nameref{sub:theorem-6a} indicates there then exists a one-to-one
|
|
||||||
correspondence $f$ between $m$ and $B$.
|
|
||||||
Likewise, there exists a one-to-one correspondence $g$ between $A$ and
|
|
||||||
$n$.
|
|
||||||
|
|
||||||
Define $h \colon A \rightarrow B$ as $h(x) = f(g(x))$ for all $x \in A$.
|
|
||||||
Since $n \subset m$ by \nameref{sub:corollary-4m}, $h$ is well-defined.
|
|
||||||
By \nameref{sub:one-to-one-composition}, $h$ must be one-to-one.
|
|
||||||
Thus $h$ is a one-to-one correspondence between $A$ and $\ran{h}$, i.e.
|
|
||||||
$A \equin \ran{h}$.
|
|
||||||
But $n < m$ meaning $\ran{h} \subset B$ which in turn is a proper subset
|
|
||||||
of $A$ by hypothesis.
|
|
||||||
\nameref{sub:corollary-6c} states no finite set is equinumerous to a
|
|
||||||
proper subset of itself, a contradiction.
|
|
||||||
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\subsection{\pending{Finite Domain and Range Size}}%
|
|
||||||
\hyperlabel{sub:finite-domain-range-size}
|
|
||||||
|
|
||||||
\begin{lemma}
|
|
||||||
Let $A$ and $B$ be finite sets and $f \colon A \rightarrow B$ be a function.
|
|
||||||
Then there exist natural numbers $m, n \in \omega$ such that
|
|
||||||
$\dom{f} \equin m$, $\ran{f} \equin n$, and $m \geq n$.
|
|
||||||
\end{lemma}
|
|
||||||
|
|
||||||
\begin{note}
|
|
||||||
This proof avoids the \nameref{ref:axiom-of-choice-1} because $A$ and $B$
|
|
||||||
are finite.
|
|
||||||
In particular, we are able to choose a "smallest" element of each preimage
|
|
||||||
set.
|
|
||||||
Contrast this to \nameref{sub:theorem-3j-b}.
|
|
||||||
\end{note}
|
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
Let $A$ and $B$ be \nameref{ref:finite-set}s and $f \colon A \rightarrow B$
|
|
||||||
be a function.
|
|
||||||
By definition of finite sets, there exists \nameref{ref:natural-number}s
|
|
||||||
$m, p \in \omega$ such that $A \equin m$ and $B \equin p$.
|
|
||||||
By definition of the \nameref{ref:domain} of a function, $\dom{f} = A$.
|
|
||||||
Thus $\dom{f} \equin m$.
|
|
||||||
|
|
||||||
By \nameref{sub:theorem-6a}, there exists a one-to-one correspondence $g$
|
|
||||||
between $m$ and $\dom{f} = A$.
|
|
||||||
For all $y \in \ran{f}$, consider $\img{f^{-1}}{\{y\}}$.
|
|
||||||
Let $$A_y = \{ x \in m \mid f(g(x)) = y \}.$$
|
|
||||||
Since $g$ is a one-to-one correspondence, it follows that
|
|
||||||
$A_y \equin \img{f^{-1}}{\{y\}}$.
|
|
||||||
Since $A_y$ is a nonempty subset of natural numbers, the
|
|
||||||
\nameref{sub:well-ordering-natural-numbers} implies there exists a least
|
|
||||||
element, say $q_y$.
|
|
||||||
Define $C = \{q_y \mid y \in \ran{f}\}$.
|
|
||||||
Thus $h \colon C \rightarrow \ran{f}$ given by $h(x) = f(g(x))$ is a
|
|
||||||
one-to-one correspondence between $C$ and $\ran{f}$ by construction.
|
|
||||||
That is, $C \equin \ran{f}$.
|
|
||||||
By \nameref{sub:lemma-6f}, there exists some $n \leq m$ such that
|
|
||||||
$C \equin n$.
|
|
||||||
By \nameref{sub:theorem-6a}, $n \equin \ran{f}$.
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\subsection{\verified{Set Difference Size}}%
|
|
||||||
\hyperlabel{sub:set-difference-size}
|
|
||||||
|
|
||||||
\begin{lemma}
|
|
||||||
Let $A \equin m$ for some natural number $m$ and $B \subseteq A$.
|
|
||||||
Then there exists some $n \in \omega$ such that $n \leq m$, $B \equin n$,
|
|
||||||
and $A - B \equin m - n$.
|
|
||||||
\end{lemma}
|
|
||||||
|
|
||||||
\code{Bookshelf/Enderton/Set/Chapter\_6}
|
|
||||||
{Enderton.Set.Chapter\_6.sdiff\_size}
|
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
|
|
||||||
Let
|
|
||||||
\begin{equation}
|
|
||||||
\hyperlabel{sub:set-difference-size-ih}
|
|
||||||
S = \{m \in \omega \mid
|
|
||||||
\forall A \equin m, \forall B \subseteq A, \exists n
|
|
||||||
\in \omega (n \leq m \land B \equin n \land A - B \equin m - n)\}.
|
|
||||||
\end{equation}
|
|
||||||
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
|
||||||
Afterward we prove (iii) the lemma statement.
|
|
||||||
|
|
||||||
\paragraph{(i)}%
|
|
||||||
\hyperlabel{par:set-difference-size-i}
|
|
||||||
|
|
||||||
Let $A \equin 0$ and $B \subseteq A$.
|
|
||||||
Then it follows $A = B = \emptyset = 0$.
|
|
||||||
Since $0 \leq 0$, $B \equin 0$, and $A - B = \emptyset \equin 0 = 0 - 0$,
|
|
||||||
it follows $0 \in S$.
|
|
||||||
|
|
||||||
\paragraph{(ii)}%
|
|
||||||
\hyperlabel{par:set-difference-size-ii}
|
|
||||||
|
|
||||||
Suppose $m \in S$ and consider $m^+$.
|
|
||||||
Let $A \equin m^+$ and let $B \subseteq A$.
|
|
||||||
By definition of \nameref{ref:equinumerous}, there exists a one-to-one
|
|
||||||
correspondence $f$ between $A$ and $m^+$.
|
|
||||||
Since $f$ is one-to-one and onto, there exists a unique value $a \in A$
|
|
||||||
such that $f(a) = m$.
|
|
||||||
Then $B - \{a\} \subseteq A - \{a\}$ and $f$ is a one-to-one
|
|
||||||
correspondence between $A - \{a\}$ and $m$.
|
|
||||||
By \ihref{sub:set-difference-size-ih}, there exists some $n \in \omega$
|
|
||||||
such that $n \leq m$, $B - \{a\} \equin n$ and
|
|
||||||
\begin{equation}
|
|
||||||
\hyperlabel{par:set-difference-size-ii-eq1}
|
|
||||||
(A - \{a\}) - (B - \{a\}) \equin m - n.
|
|
||||||
\end{equation}
|
|
||||||
There are two cases to consider:
|
|
||||||
|
|
||||||
\subparagraph{Case 1}%
|
|
||||||
|
|
||||||
Assume $a \in B$.
|
|
||||||
Then $B \equin n^+$.
|
|
||||||
Furthermore, by definition of the set difference,
|
|
||||||
\begin{align}
|
|
||||||
(A - \{a\}) & - (B - \{a\}) \nonumber \\
|
|
||||||
& = \{x \mid
|
|
||||||
x \in A - \{a\} \land x \not\in B - \{a\}\} \nonumber \\
|
|
||||||
& = \{x \mid
|
|
||||||
(x \in A \land x \neq a) \land
|
|
||||||
\neg(x \in B \land x \neq a)\} \nonumber \\
|
|
||||||
& = \{x \mid
|
|
||||||
(x \in A \land x \neq a) \land
|
|
||||||
(x \not\in B \lor x = a)\} \nonumber \\
|
|
||||||
& = \{x \mid
|
|
||||||
(x \in A \land x \neq a \land x \not\in B) \lor
|
|
||||||
(x \in A \land x \neq a \land x = a)\} \nonumber \\
|
|
||||||
& = \{x \mid
|
|
||||||
(x \in A \land x \neq a \land x \not\in B) \lor F\} \nonumber \\
|
|
||||||
& = \{x \mid
|
|
||||||
(x \in A \land x \neq a \land x \not\in B)\} \nonumber \\
|
|
||||||
& = \{x \mid x \in A - B \land x \neq a\} \nonumber \\
|
|
||||||
& = \{x \mid x \in A - B \land x \not\in \{a\}\} \nonumber \\
|
|
||||||
& = (A - B) - \{a\}.
|
|
||||||
\hyperlabel{par:set-difference-size-ii-eq2}
|
|
||||||
\end{align}
|
|
||||||
Since $a \in A$ and $a \in B$, $(A - B) - \{a\} = A - B$.
|
|
||||||
Thus
|
|
||||||
\begin{align*}
|
|
||||||
(A - \{a\} - (B - \{a\})
|
|
||||||
& = (A - B) - \{a\} & \eqref{par:set-difference-size-ii-eq2} \\
|
|
||||||
& = A - B \\
|
|
||||||
& \equin m - n & \eqref{par:set-difference-size-ii-eq1} \\
|
|
||||||
& \equin m^+ - n^+.
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
\subparagraph{Case 2}%
|
|
||||||
|
|
||||||
Assume $a \not\in B$.
|
|
||||||
Then $B - \{a\} = B$ (i.e. $B \approx n$) and
|
|
||||||
\begin{align*}
|
|
||||||
(A - \{a\}) - (B - \{a\})
|
|
||||||
& = (A - \{a\}) - B \\
|
|
||||||
& \equin m - n. & \eqref{par:set-difference-size-ii-eq1}
|
|
||||||
\end{align*}
|
|
||||||
The above implies that there exists a one-to-one correspondence $g$
|
|
||||||
between $(A - \{a\}) - B$ and $m - n$.
|
|
||||||
Therefore $g \cup \{\tuple{a, m}\}$ is a one-to-one correspondence
|
|
||||||
between $A - B$ and $(m - n) \cup \{m\}$.
|
|
||||||
Hence $$A - B \equin (m - n) \cup \{m\} \equin m^+ - n.$$
|
|
||||||
|
|
||||||
\subparagraph{Subconclusion}%
|
|
||||||
|
|
||||||
The above two cases are exhaustive and both conclude the existence of
|
|
||||||
some $n \in \omega$ such that $n \leq m^+$, $B \equin n$ and
|
|
||||||
$A - B \equin m^+ - n$.
|
|
||||||
Hence $m^+ \in S$.
|
|
||||||
|
|
||||||
\paragraph{(iii)}%
|
|
||||||
|
|
||||||
By \nameref{par:set-difference-size-i} and
|
|
||||||
\nameref{par:set-difference-size-ii}, $S \subseteq \omega$ is an
|
|
||||||
\nameref{ref:inductive-set}.
|
|
||||||
Thus \nameref{sub:theorem-4b} implies $S = \omega$.
|
|
||||||
Hence, for all $A \equin m$ for some $m \in \omega$, if $B \subseteq A$,
|
|
||||||
then there exists some $n \in \omega$ such that $n \leq m$,
|
|
||||||
$B \equin n$, and $A - B \equin m - n$.
|
|
||||||
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\subsection{\sorry{Theorem 6H}}%
|
\subsection{\sorry{Theorem 6H}}%
|
||||||
\hyperlabel{sub:theorem-6h}
|
\hyperlabel{sub:theorem-6h}
|
||||||
|
|
||||||
Assume that $K_1 \equin K_2$ and $L_1 \equin L_2$.
|
Assume that $\equinumerous{K_1}{K_2}$ and $\equinumerous{L_1}{L_2}$.
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item If $K_1 \cap L_1 = K_2 \cap L_2 = \emptyset$, then
|
\item If $K_1 \cap L_1 = K_2 \cap L_2 = \emptyset$, then
|
||||||
$K_1 \cup L_1 \equin K_2 \cup L_2$.
|
$\equinumerous{K_1 \cup L_1}{K_2 \cup L_2}$.
|
||||||
\item $K_1 \times L_1 \equin K_2 \times L_2$.
|
\item $\equinumerous{K_1 \times L_1}{K_2 \times L_2}$.
|
||||||
\item $^{(L_1)}{K_1} \equin ^{(L_2)}{K_2}$.
|
\item $\equinumerous{^{(L_1)}{K_1}}{^{(L_2)}{K_2}}$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
@ -9814,7 +9594,7 @@
|
||||||
|
|
||||||
Suppose $f$ is one-to-one.
|
Suppose $f$ is one-to-one.
|
||||||
Then $f$ is a one-to-one correspondence between $A$ and $\ran{f}$.
|
Then $f$ is a one-to-one correspondence between $A$ and $\ran{f}$.
|
||||||
That is, $A \equin \ran{f}$.
|
That is, $\equinumerous{A}{\ran{f}}$.
|
||||||
Because $f$ maps $A$ onto $A$, $\ran{f} \subseteq A$.
|
Because $f$ maps $A$ onto $A$, $\ran{f} \subseteq A$.
|
||||||
Hence $\ran{f} \subset A$ or $\ran{f} = A$.
|
Hence $\ran{f} \subset A$ or $\ran{f} = A$.
|
||||||
But, by \nameref{sub:corollary-6c}, $\ran{f}$ cannot be a proper subset of
|
But, by \nameref{sub:corollary-6c}, $\ran{f}$ cannot be a proper subset of
|
||||||
|
@ -9823,33 +9603,8 @@
|
||||||
|
|
||||||
\paragraph{($\Leftarrow$)}%
|
\paragraph{($\Leftarrow$)}%
|
||||||
|
|
||||||
If $A = \emptyset$, then $f$ is trivially one-to-one.
|
Suppose $\ran{f} = A$.
|
||||||
Assume now $A \neq \emptyset$ and $\ran{f} = A$.
|
TODO: by induction?
|
||||||
Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2) = y$ for some $y \in A$.
|
|
||||||
We must prove that $x_1 = x_2$.
|
|
||||||
|
|
||||||
Let $B = \img{f^{-1}}{\{y\}}$.
|
|
||||||
Then $x_1, x_2 \in B$.
|
|
||||||
Since $B \subseteq A$, \nameref{sub:subset-size} indicates that there
|
|
||||||
exist natural numbers $m_1, n_1 \in \omega$ such that $B \equin m_1$,
|
|
||||||
$A \equin n_1$, and $m_1 \leq n_1$.
|
|
||||||
Define $f' \colon (A - B) \rightarrow (A - \{y\})$ as the
|
|
||||||
\nameref{ref:restriction} of $f$ to $A - B$.
|
|
||||||
Since $\ran{f} = A$, it follows $\ran{f'} = A - \{y\}$.
|
|
||||||
Since \nameref{sub:corollary-6g} implies $A - B$ and $A - \{y\}$ are
|
|
||||||
finite sets, \nameref{sub:finite-domain-range-size} implies the
|
|
||||||
existence of natural numbers $m_2, n_2 \in \omega$ such that
|
|
||||||
$\dom{f'} \equin m_2$, $\ran{f'} \equin n_2$, and $m_2 \geq n_2$.
|
|
||||||
Thus, by \nameref{sub:set-difference-size},
|
|
||||||
\begin{align*}
|
|
||||||
m_2 & \equin \dom{f'} \equin A - B \equin n_1 - m_1 \\
|
|
||||||
n_2 & \equin \ran{f'} \equin A - \{y\} \equin n_1 - 1.
|
|
||||||
\end{align*}
|
|
||||||
By \nameref{sub:corollary-6e}, $m_2 = n_1 - m_1$ and $n_2 = n_1 - 1$.
|
|
||||||
Since $m_2 \geq n_2$, $n_1 - m_1 \geq n_1 - 1$.
|
|
||||||
But $1 \leq m_1 \leq n_1$ meaning $m_1 = 1$.
|
|
||||||
Hence $B$ is a singleton.
|
|
||||||
Therefore $x_1 = x_2$, i.e. $f$ is one-to-one.
|
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
|
@ -19,7 +19,7 @@ The `∅` does not equal the singleton set containing `∅`.
|
||||||
lemma empty_ne_singleton_empty (h : ∅ = ({∅} : Set (Set α))) : False :=
|
lemma empty_ne_singleton_empty (h : ∅ = ({∅} : Set (Set α))) : False :=
|
||||||
absurd h (Ne.symm $ Set.singleton_ne_empty (∅ : Set α))
|
absurd h (Ne.symm $ Set.singleton_ne_empty (∅ : Set α))
|
||||||
|
|
||||||
/-- ### Exercise 1.1a
|
/-- #### Exercise 1.1a
|
||||||
|
|
||||||
`{∅} ___ {∅, {∅}}`
|
`{∅} ___ {∅, {∅}}`
|
||||||
-/
|
-/
|
||||||
|
@ -27,7 +27,7 @@ theorem exercise_1_1a
|
||||||
: {∅} ∈ ({∅, {∅}} : Set (Set (Set α)))
|
: {∅} ∈ ({∅, {∅}} : Set (Set (Set α)))
|
||||||
∧ {∅} ⊆ ({∅, {∅}} : Set (Set (Set α))) := ⟨by simp, by simp⟩
|
∧ {∅} ⊆ ({∅, {∅}} : Set (Set (Set α))) := ⟨by simp, by simp⟩
|
||||||
|
|
||||||
/-- ### Exercise 1.1b
|
/-- #### Exercise 1.1b
|
||||||
|
|
||||||
`{∅} ___ {∅, {{∅}}}`
|
`{∅} ___ {∅, {{∅}}}`
|
||||||
-/
|
-/
|
||||||
|
@ -39,7 +39,7 @@ theorem exercise_1_1b
|
||||||
simp at h
|
simp at h
|
||||||
exact empty_ne_singleton_empty h
|
exact empty_ne_singleton_empty h
|
||||||
|
|
||||||
/-- ### Exercise 1.1c
|
/-- #### Exercise 1.1c
|
||||||
|
|
||||||
`{{∅}} ___ {∅, {∅}}`
|
`{{∅}} ___ {∅, {∅}}`
|
||||||
-/
|
-/
|
||||||
|
@ -47,7 +47,7 @@ theorem exercise_1_1c
|
||||||
: {{∅}} ∉ ({∅, {∅}} : Set (Set (Set (Set α))))
|
: {{∅}} ∉ ({∅, {∅}} : Set (Set (Set (Set α))))
|
||||||
∧ {{∅}} ⊆ ({∅, {∅}} : Set (Set (Set (Set α)))) := ⟨by simp, by simp⟩
|
∧ {{∅}} ⊆ ({∅, {∅}} : Set (Set (Set (Set α)))) := ⟨by simp, by simp⟩
|
||||||
|
|
||||||
/-- ### Exercise 1.1d
|
/-- #### Exercise 1.1d
|
||||||
|
|
||||||
`{{∅}} ___ {∅, {{∅}}}`
|
`{{∅}} ___ {∅, {{∅}}}`
|
||||||
-/
|
-/
|
||||||
|
@ -59,7 +59,7 @@ theorem exercise_1_1d
|
||||||
simp at h
|
simp at h
|
||||||
exact empty_ne_singleton_empty h
|
exact empty_ne_singleton_empty h
|
||||||
|
|
||||||
/-- ### Exercise 1.1e
|
/-- #### Exercise 1.1e
|
||||||
|
|
||||||
`{{∅}} ___ {∅, {∅, {∅}}}`
|
`{{∅}} ___ {∅, {∅, {∅}}}`
|
||||||
-/
|
-/
|
||||||
|
@ -126,4 +126,4 @@ theorem exercise_1_4 (x y : α) (hx : x ∈ B) (hy : y ∈ B)
|
||||||
(Set.singleton_subset_iff.mpr hx)
|
(Set.singleton_subset_iff.mpr hx)
|
||||||
(Set.singleton_subset_iff.mpr hy)
|
(Set.singleton_subset_iff.mpr hy)
|
||||||
|
|
||||||
end Enderton.Set.Chapter_1
|
end Enderton.Set.Chapter_1
|
|
@ -10,7 +10,7 @@ Axioms and Operations
|
||||||
|
|
||||||
namespace Enderton.Set.Chapter_2
|
namespace Enderton.Set.Chapter_2
|
||||||
|
|
||||||
/-! ### Commutative Laws
|
/-! #### Commutative Laws
|
||||||
|
|
||||||
For any sets `A` and `B`,
|
For any sets `A` and `B`,
|
||||||
```
|
```
|
||||||
|
@ -20,8 +20,7 @@ A ∩ B = B ∩ A
|
||||||
-/
|
-/
|
||||||
|
|
||||||
theorem commutative_law_i (A B : Set α)
|
theorem commutative_law_i (A B : Set α)
|
||||||
: A ∪ B = B ∪ A :=
|
: A ∪ B = B ∪ A := calc A ∪ B
|
||||||
calc A ∪ B
|
|
||||||
_ = { x | x ∈ A ∨ x ∈ B } := rfl
|
_ = { x | x ∈ A ∨ x ∈ B } := rfl
|
||||||
_ = { x | x ∈ B ∨ x ∈ A } := by
|
_ = { x | x ∈ B ∨ x ∈ A } := by
|
||||||
ext
|
ext
|
||||||
|
@ -40,7 +39,7 @@ theorem commutative_law_ii (A B : Set α)
|
||||||
|
|
||||||
#check Set.inter_comm
|
#check Set.inter_comm
|
||||||
|
|
||||||
/-! ### Associative Laws
|
/-! #### Associative Laws
|
||||||
|
|
||||||
For any sets `A`, `B`, and `C`,
|
For any sets `A`, `B`, and `C`,
|
||||||
```
|
```
|
||||||
|
@ -75,7 +74,7 @@ theorem associative_law_ii (A B C : Set α)
|
||||||
|
|
||||||
#check Set.inter_assoc
|
#check Set.inter_assoc
|
||||||
|
|
||||||
/-! ### Distributive Laws
|
/-! #### Distributive Laws
|
||||||
|
|
||||||
For any sets `A`, `B`, and `C`,
|
For any sets `A`, `B`, and `C`,
|
||||||
```
|
```
|
||||||
|
@ -108,7 +107,7 @@ theorem distributive_law_ii (A B C : Set α)
|
||||||
|
|
||||||
#check Set.union_distrib_left
|
#check Set.union_distrib_left
|
||||||
|
|
||||||
/-! ### De Morgan's Laws
|
/-! #### De Morgan's Laws
|
||||||
|
|
||||||
For any sets `A`, `B`, and `C`,
|
For any sets `A`, `B`, and `C`,
|
||||||
```
|
```
|
||||||
|
@ -149,7 +148,7 @@ theorem de_morgans_law_ii (A B C : Set α)
|
||||||
|
|
||||||
#check Set.diff_inter
|
#check Set.diff_inter
|
||||||
|
|
||||||
/-! ### Identities Involving ∅
|
/-! #### Identities Involving ∅
|
||||||
|
|
||||||
For any set `A`,
|
For any set `A`,
|
||||||
```
|
```
|
||||||
|
@ -172,7 +171,8 @@ theorem emptyset_identity_ii (A : Set α)
|
||||||
: A ∩ ∅ = ∅ := calc A ∩ ∅
|
: A ∩ ∅ = ∅ := calc A ∩ ∅
|
||||||
_ = { x | x ∈ A ∧ x ∈ ∅ } := rfl
|
_ = { x | x ∈ A ∧ x ∈ ∅ } := rfl
|
||||||
_ = { x | x ∈ A ∧ False } := rfl
|
_ = { x | x ∈ A ∧ False } := rfl
|
||||||
_ = ∅ := by simp
|
_ = { x | False } := by simp
|
||||||
|
_ = ∅ := rfl
|
||||||
|
|
||||||
#check Set.inter_empty
|
#check Set.inter_empty
|
||||||
|
|
||||||
|
@ -181,11 +181,12 @@ theorem emptyset_identity_iii (A C : Set α)
|
||||||
_ = { x | x ∈ A ∧ x ∈ C \ A } := rfl
|
_ = { x | x ∈ A ∧ x ∈ C \ A } := rfl
|
||||||
_ = { x | x ∈ A ∧ (x ∈ C ∧ x ∉ A) } := rfl
|
_ = { x | x ∈ A ∧ (x ∈ C ∧ x ∉ A) } := rfl
|
||||||
_ = { x | x ∈ C ∧ False } := by simp
|
_ = { x | x ∈ C ∧ False } := by simp
|
||||||
_ = ∅ := by simp
|
_ = { x | False } := by simp
|
||||||
|
_ = ∅ := rfl
|
||||||
|
|
||||||
#check Set.inter_diff_self
|
#check Set.inter_diff_self
|
||||||
|
|
||||||
/-! ### Monotonicity
|
/-! #### Monotonicity
|
||||||
|
|
||||||
For any sets `A`, `B`, and `C`,
|
For any sets `A`, `B`, and `C`,
|
||||||
```
|
```
|
||||||
|
@ -229,7 +230,7 @@ theorem monotonicity_iii (A B : Set (Set α)) (h : A ⊆ B)
|
||||||
|
|
||||||
#check Set.sUnion_mono
|
#check Set.sUnion_mono
|
||||||
|
|
||||||
/-! ### Anti-monotonicity
|
/-! #### Anti-monotonicity
|
||||||
|
|
||||||
For any sets `A`, `B`, and `C`,
|
For any sets `A`, `B`, and `C`,
|
||||||
```
|
```
|
||||||
|
@ -261,7 +262,7 @@ theorem anti_monotonicity_ii (A B : Set (Set α)) (h : A ⊆ B)
|
||||||
|
|
||||||
#check Set.sInter_subset_sInter
|
#check Set.sInter_subset_sInter
|
||||||
|
|
||||||
/-- ### Intersection/Difference Associativity
|
/-- #### Intersection/Difference Associativity
|
||||||
|
|
||||||
Let `A`, `B`, and `C` be sets. Then `A ∩ (B - C) = (A ∩ B) - C`.
|
Let `A`, `B`, and `C` be sets. Then `A ∩ (B - C) = (A ∩ B) - C`.
|
||||||
-/
|
-/
|
||||||
|
@ -278,7 +279,7 @@ theorem inter_diff_assoc (A B C : Set α)
|
||||||
|
|
||||||
#check Set.inter_diff_assoc
|
#check Set.inter_diff_assoc
|
||||||
|
|
||||||
/-- ### Exercise 2.1
|
/-- #### Exercise 2.1
|
||||||
|
|
||||||
Assume that `A` is the set of integers divisible by `4`. Similarly assume that
|
Assume that `A` is the set of integers divisible by `4`. Similarly assume that
|
||||||
`B` and `C` are the sets of integers divisible by `9` and `10`, respectively.
|
`B` and `C` are the sets of integers divisible by `9` and `10`, respectively.
|
||||||
|
@ -300,7 +301,7 @@ theorem exercise_2_1 {A B C : Set ℤ}
|
||||||
· rw [hC] at hc
|
· rw [hC] at hc
|
||||||
exact Set.mem_setOf.mp hc
|
exact Set.mem_setOf.mp hc
|
||||||
|
|
||||||
/-- ### Exercise 2.2
|
/-- #### Exercise 2.2
|
||||||
|
|
||||||
Give an example of sets `A` and `B` for which `⋃ A = ⋃ B` but `A ≠ B`.
|
Give an example of sets `A` and `B` for which `⋃ A = ⋃ B` but `A ≠ B`.
|
||||||
-/
|
-/
|
||||||
|
@ -339,7 +340,7 @@ theorem exercise_2_2 {A B : Set (Set ℕ)}
|
||||||
have h₂ := h₁ 2
|
have h₂ := h₁ 2
|
||||||
simp at h₂
|
simp at h₂
|
||||||
|
|
||||||
/-- ### Exercise 2.3
|
/-- #### Exercise 2.3
|
||||||
|
|
||||||
Show that every member of a set `A` is a subset of `U A`. (This was stated as an
|
Show that every member of a set `A` is a subset of `U A`. (This was stated as an
|
||||||
example in this section.)
|
example in this section.)
|
||||||
|
@ -352,7 +353,7 @@ theorem exercise_2_3 {A : Set (Set α)}
|
||||||
rw [Set.mem_setOf_eq]
|
rw [Set.mem_setOf_eq]
|
||||||
exact ⟨x, ⟨hx, hy⟩⟩
|
exact ⟨x, ⟨hx, hy⟩⟩
|
||||||
|
|
||||||
/-- ### Exercise 2.4
|
/-- #### Exercise 2.4
|
||||||
|
|
||||||
Show that if `A ⊆ B`, then `⋃ A ⊆ ⋃ B`.
|
Show that if `A ⊆ B`, then `⋃ A ⊆ ⋃ B`.
|
||||||
-/
|
-/
|
||||||
|
@ -364,7 +365,7 @@ theorem exercise_2_4 {A B : Set (Set α)} (h : A ⊆ B) : ⋃₀ A ⊆ ⋃₀ B
|
||||||
rw [Set.mem_setOf_eq]
|
rw [Set.mem_setOf_eq]
|
||||||
exact ⟨t, ⟨h ht, hxt⟩⟩
|
exact ⟨t, ⟨h ht, hxt⟩⟩
|
||||||
|
|
||||||
/-- ### Exercise 2.5
|
/-- #### Exercise 2.5
|
||||||
|
|
||||||
Assume that every member of `𝓐` is a subset of `B`. Show that `⋃ 𝓐 ⊆ B`.
|
Assume that every member of `𝓐` is a subset of `B`. Show that `⋃ 𝓐 ⊆ B`.
|
||||||
-/
|
-/
|
||||||
|
@ -376,7 +377,7 @@ theorem exercise_2_5 {𝓐 : Set (Set α)} (h : ∀ x ∈ 𝓐, x ⊆ B)
|
||||||
have ⟨t, ⟨ht𝓐, hyt⟩⟩ := hy
|
have ⟨t, ⟨ht𝓐, hyt⟩⟩ := hy
|
||||||
exact (h t ht𝓐) hyt
|
exact (h t ht𝓐) hyt
|
||||||
|
|
||||||
/-- ### Exercise 2.6a
|
/-- #### Exercise 2.6a
|
||||||
|
|
||||||
Show that for any set `A`, `⋃ 𝓟 A = A`.
|
Show that for any set `A`, `⋃ 𝓟 A = A`.
|
||||||
-/
|
-/
|
||||||
|
@ -393,7 +394,7 @@ theorem exercise_2_6a : ⋃₀ (𝒫 A) = A := by
|
||||||
rw [Set.mem_setOf_eq]
|
rw [Set.mem_setOf_eq]
|
||||||
exact ⟨A, ⟨by rw [Set.mem_setOf_eq], hx⟩⟩
|
exact ⟨A, ⟨by rw [Set.mem_setOf_eq], hx⟩⟩
|
||||||
|
|
||||||
/-- ### Exercise 2.6b
|
/-- #### Exercise 2.6b
|
||||||
|
|
||||||
Show that `A ⊆ 𝓟 ⋃ A`. Under what conditions does equality hold?
|
Show that `A ⊆ 𝓟 ⋃ A`. Under what conditions does equality hold?
|
||||||
-/
|
-/
|
||||||
|
@ -412,7 +413,7 @@ theorem exercise_2_6b
|
||||||
conv => rhs; rw [hB, exercise_2_6a]
|
conv => rhs; rw [hB, exercise_2_6a]
|
||||||
exact hB
|
exact hB
|
||||||
|
|
||||||
/-- ### Exercise 2.7a
|
/-- #### Exercise 2.7a
|
||||||
|
|
||||||
Show that for any sets `A` and `B`, `𝓟 A ∩ 𝓟 B = 𝓟 (A ∩ B)`.
|
Show that for any sets `A` and `B`, `𝓟 A ∩ 𝓟 B = 𝓟 (A ∩ B)`.
|
||||||
-/
|
-/
|
||||||
|
@ -430,7 +431,7 @@ theorem exercise_2_7A
|
||||||
intro x hA _
|
intro x hA _
|
||||||
exact hA
|
exact hA
|
||||||
|
|
||||||
/-- ### Exercise 2.7b (i)
|
/-- #### Exercise 2.7b (i)
|
||||||
|
|
||||||
Show that `𝓟 A ∪ 𝓟 B ⊆ 𝓟 (A ∪ B)`.
|
Show that `𝓟 A ∪ 𝓟 B ⊆ 𝓟 (A ∪ B)`.
|
||||||
-/
|
-/
|
||||||
|
@ -447,7 +448,7 @@ theorem exercise_2_7b_i
|
||||||
rw [Set.mem_setOf_eq]
|
rw [Set.mem_setOf_eq]
|
||||||
exact Set.subset_union_of_subset_right hB A
|
exact Set.subset_union_of_subset_right hB A
|
||||||
|
|
||||||
/-- ### Exercise 2.7b (ii)
|
/-- #### Exercise 2.7b (ii)
|
||||||
|
|
||||||
Under what conditions does `𝓟 A ∪ 𝓟 B = 𝓟 (A ∪ B)`.?
|
Under what conditions does `𝓟 A ∪ 𝓟 B = 𝓟 (A ∪ B)`.?
|
||||||
-/
|
-/
|
||||||
|
@ -499,7 +500,7 @@ theorem exercise_2_7b_ii
|
||||||
refine Or.inl (Set.Subset.trans hx ?_)
|
refine Or.inl (Set.Subset.trans hx ?_)
|
||||||
exact subset_of_eq (Set.right_subset_union_eq_self hB)
|
exact subset_of_eq (Set.right_subset_union_eq_self hB)
|
||||||
|
|
||||||
/-- ### Exercise 2.9
|
/-- #### Exercise 2.9
|
||||||
|
|
||||||
Give an example of sets `a` and `B` for which `a ∈ B` but `𝓟 a ∉ 𝓟 B`.
|
Give an example of sets `a` and `B` for which `a ∈ B` but `𝓟 a ∉ 𝓟 B`.
|
||||||
-/
|
-/
|
||||||
|
@ -527,7 +528,7 @@ theorem exercise_2_9 (ha : a = {1}) (hB : B = {{1}})
|
||||||
have := h 1
|
have := h 1
|
||||||
simp at this
|
simp at this
|
||||||
|
|
||||||
/-- ### Exercise 2.10
|
/-- #### Exercise 2.10
|
||||||
|
|
||||||
Show that if `a ∈ B`, then `𝓟 a ∈ 𝓟 𝓟 ⋃ B`.
|
Show that if `a ∈ B`, then `𝓟 a ∈ 𝓟 𝓟 ⋃ B`.
|
||||||
-/
|
-/
|
||||||
|
@ -540,7 +541,7 @@ theorem exercise_2_10 {B : Set (Set α)} (ha : a ∈ B)
|
||||||
rw [← hb, Set.mem_setOf_eq]
|
rw [← hb, Set.mem_setOf_eq]
|
||||||
exact h₂
|
exact h₂
|
||||||
|
|
||||||
/-- ### Exercise 2.11 (i)
|
/-- #### Exercise 2.11 (i)
|
||||||
|
|
||||||
Show that for any sets `A` and `B`, `A = (A ∩ B) ∪ (A - B)`.
|
Show that for any sets `A` and `B`, `A = (A ∩ B) ∪ (A - B)`.
|
||||||
-/
|
-/
|
||||||
|
@ -557,7 +558,7 @@ theorem exercise_2_11_i {A B : Set α}
|
||||||
· intro hx
|
· intro hx
|
||||||
exact ⟨hx, em (B x)⟩
|
exact ⟨hx, em (B x)⟩
|
||||||
|
|
||||||
/-- ### Exercise 2.11 (ii)
|
/-- #### Exercise 2.11 (ii)
|
||||||
|
|
||||||
Show that for any sets `A` and `B`, `A ∪ (B - A) = A ∪ B`.
|
Show that for any sets `A` and `B`, `A ∪ (B - A) = A ∪ B`.
|
||||||
-/
|
-/
|
||||||
|
@ -616,7 +617,7 @@ lemma right_diff_eq_insert_one_three : A \ (B \ C) = {1, 3} := by
|
||||||
rw [hy] at hz
|
rw [hy] at hz
|
||||||
unfold Membership.mem Set.instMembershipSet Set.Mem at hz
|
unfold Membership.mem Set.instMembershipSet Set.Mem at hz
|
||||||
unfold singleton Set.instSingletonSet Set.singleton setOf at hz
|
unfold singleton Set.instSingletonSet Set.singleton setOf at hz
|
||||||
simp at hz
|
simp only at hz
|
||||||
· intro hy
|
· intro hy
|
||||||
refine ⟨Or.inr (Or.inr hy), ?_⟩
|
refine ⟨Or.inr (Or.inr hy), ?_⟩
|
||||||
intro hz
|
intro hz
|
||||||
|
@ -635,7 +636,7 @@ lemma left_diff_eq_singleton_one : (A \ B) \ C = {1} := by
|
||||||
have ⟨⟨ha, hb⟩, hc⟩ := hx
|
have ⟨⟨ha, hb⟩, hc⟩ := hx
|
||||||
rw [not_or_de_morgan] at hb hc
|
rw [not_or_de_morgan] at hb hc
|
||||||
apply Or.elim ha
|
apply Or.elim ha
|
||||||
· simp
|
· simp
|
||||||
· intro hy
|
· intro hy
|
||||||
apply Or.elim hy
|
apply Or.elim hy
|
||||||
· intro hz
|
· intro hz
|
||||||
|
@ -651,7 +652,7 @@ lemma left_diff_eq_singleton_one : (A \ B) \ C = {1} := by
|
||||||
| inl y => rw [hx] at y; simp at y
|
| inl y => rw [hx] at y; simp at y
|
||||||
| inr y => rw [hx] at y; simp at y
|
| inr y => rw [hx] at y; simp at y
|
||||||
|
|
||||||
/-- ### Exercise 2.14
|
/-- #### Exercise 2.14
|
||||||
|
|
||||||
Show by example that for some sets `A`, `B`, and `C`, the set `A - (B - C)` is
|
Show by example that for some sets `A`, `B`, and `C`, the set `A - (B - C)` is
|
||||||
different from `(A - B) - C`.
|
different from `(A - B) - C`.
|
||||||
|
@ -668,7 +669,7 @@ theorem exercise_2_14 : A \ (B \ C) ≠ (A \ B) \ C := by
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
/-- ### Exercise 2.15 (a)
|
/-- #### Exercise 2.15 (a)
|
||||||
|
|
||||||
Show that `A ∩ (B + C) = (A ∩ B) + (A ∩ C)`.
|
Show that `A ∩ (B + C) = (A ∩ B) + (A ∩ C)`.
|
||||||
-/
|
-/
|
||||||
|
@ -696,7 +697,7 @@ theorem exercise_2_15a (A B C : Set α)
|
||||||
|
|
||||||
#check Set.inter_symmDiff_distrib_left
|
#check Set.inter_symmDiff_distrib_left
|
||||||
|
|
||||||
/-- ### Exercise 2.15 (b)
|
/-- #### Exercise 2.15 (b)
|
||||||
|
|
||||||
Show that `A + (B + C) = (A + B) + C`.
|
Show that `A + (B + C) = (A + B) + C`.
|
||||||
-/
|
-/
|
||||||
|
@ -749,7 +750,7 @@ theorem exercise_2_15b (A B C : Set α)
|
||||||
|
|
||||||
#check symmDiff_assoc
|
#check symmDiff_assoc
|
||||||
|
|
||||||
/-- ### Exercise 2.16
|
/-- #### Exercise 2.16
|
||||||
|
|
||||||
Simplify:
|
Simplify:
|
||||||
`[(A ∪ B ∪ C) ∩ (A ∪ B)] - [(A ∪ (B - C)) ∩ A]`
|
`[(A ∪ B ∪ C) ∩ (A ∪ B)] - [(A ∪ (B - C)) ∩ A]`
|
||||||
|
@ -761,7 +762,7 @@ theorem exercise_2_16 {A B C : Set α}
|
||||||
_ = (A ∪ B) \ A := by rw [Set.union_inter_cancel_left]
|
_ = (A ∪ B) \ A := by rw [Set.union_inter_cancel_left]
|
||||||
_ = B \ A := by rw [Set.union_diff_left]
|
_ = B \ A := by rw [Set.union_diff_left]
|
||||||
|
|
||||||
/-! ### Exercise 2.17
|
/-! #### Exercise 2.17
|
||||||
|
|
||||||
Show that the following four conditions are equivalent.
|
Show that the following four conditions are equivalent.
|
||||||
|
|
||||||
|
@ -791,13 +792,13 @@ theorem exercise_2_17_ii {A B : Set α} (h : A \ B = ∅)
|
||||||
|
|
||||||
theorem exercise_2_17_iii {A B : Set α} (h : A ∪ B = B)
|
theorem exercise_2_17_iii {A B : Set α} (h : A ∪ B = B)
|
||||||
: A ∩ B = A := by
|
: A ∩ B = A := by
|
||||||
suffices A ⊆ B from Set.inter_eq_left.mpr this
|
suffices A ⊆ B from Set.inter_eq_left_iff_subset.mpr this
|
||||||
exact Set.union_eq_right.mp h
|
exact Set.union_eq_right_iff_subset.mp h
|
||||||
|
|
||||||
theorem exercise_2_17_iv {A B : Set α} (h : A ∩ B = A)
|
theorem exercise_2_17_iv {A B : Set α} (h : A ∩ B = A)
|
||||||
: A ⊆ B := Set.inter_eq_left.mp h
|
: A ⊆ B := Set.inter_eq_left_iff_subset.mp h
|
||||||
|
|
||||||
/-- ### Exercise 2.19
|
/-- #### Exercise 2.19
|
||||||
|
|
||||||
Is `𝒫 (A - B)` always equal to `𝒫 A - 𝒫 B`? Is it ever equal to `𝒫 A - 𝒫 B`?
|
Is `𝒫 (A - B)` always equal to `𝒫 A - 𝒫 B`? Is it ever equal to `𝒫 A - 𝒫 B`?
|
||||||
-/
|
-/
|
||||||
|
@ -810,7 +811,7 @@ theorem exercise_2_19 {A B : Set α}
|
||||||
have := h ∅
|
have := h ∅
|
||||||
exact absurd (this.mp he) ne
|
exact absurd (this.mp he) ne
|
||||||
|
|
||||||
/-- ### Exercise 2.20
|
/-- #### Exercise 2.20
|
||||||
|
|
||||||
Let `A`, `B`, and `C` be sets such that `A ∪ B = A ∪ C` and `A ∩ B = A ∩ C`.
|
Let `A`, `B`, and `C` be sets such that `A ∪ B = A ∪ C` and `A ∩ B = A ∩ C`.
|
||||||
Show that `B = C`.
|
Show that `B = C`.
|
||||||
|
@ -836,7 +837,7 @@ theorem exercise_2_20 {A B C : Set α}
|
||||||
rw [← hu] at this
|
rw [← hu] at this
|
||||||
exact Or.elim this (absurd · hA) (by simp)
|
exact Or.elim this (absurd · hA) (by simp)
|
||||||
|
|
||||||
/-- ### Exercise 2.21
|
/-- #### Exercise 2.21
|
||||||
|
|
||||||
Show that `⋃ (A ∪ B) = (⋃ A) ∪ (⋃ B)`.
|
Show that `⋃ (A ∪ B) = (⋃ A) ∪ (⋃ B)`.
|
||||||
-/
|
-/
|
||||||
|
@ -860,7 +861,7 @@ theorem exercise_2_21 {A B : Set (Set α)}
|
||||||
have ⟨t, ht⟩ : ∃ t, t ∈ B ∧ x ∈ t := hB
|
have ⟨t, ht⟩ : ∃ t, t ∈ B ∧ x ∈ t := hB
|
||||||
exact ⟨t, ⟨Set.mem_union_right A ht.left, ht.right⟩⟩
|
exact ⟨t, ⟨Set.mem_union_right A ht.left, ht.right⟩⟩
|
||||||
|
|
||||||
/-- ### Exercise 2.22
|
/-- #### Exercise 2.22
|
||||||
|
|
||||||
Show that if `A` and `B` are nonempty sets, then `⋂ (A ∪ B) = ⋂ A ∩ ⋂ B`.
|
Show that if `A` and `B` are nonempty sets, then `⋂ (A ∪ B) = ⋂ A ∩ ⋂ B`.
|
||||||
-/
|
-/
|
||||||
|
@ -889,7 +890,7 @@ theorem exercise_2_22 {A B : Set (Set α)}
|
||||||
· intro hB
|
· intro hB
|
||||||
exact (this t).right hB
|
exact (this t).right hB
|
||||||
|
|
||||||
/-- ### Exercise 2.24a
|
/-- #### Exercise 2.24a
|
||||||
|
|
||||||
Show that is `𝓐` is nonempty, then `𝒫 (⋂ 𝓐) = ⋂ { 𝒫 X | X ∈ 𝓐 }`.
|
Show that is `𝓐` is nonempty, then `𝒫 (⋂ 𝓐) = ⋂ { 𝒫 X | X ∈ 𝓐 }`.
|
||||||
-/
|
-/
|
||||||
|
@ -908,7 +909,7 @@ theorem exercise_2_24a {𝓐 : Set (Set α)}
|
||||||
_ = { x | ∀ t ∈ { 𝒫 X | X ∈ 𝓐 }, x ∈ t} := by simp
|
_ = { x | ∀ t ∈ { 𝒫 X | X ∈ 𝓐 }, x ∈ t} := by simp
|
||||||
_ = ⋂₀ { 𝒫 X | X ∈ 𝓐 } := rfl
|
_ = ⋂₀ { 𝒫 X | X ∈ 𝓐 } := rfl
|
||||||
|
|
||||||
/-- ### Exercise 2.24b
|
/-- #### Exercise 2.24b
|
||||||
|
|
||||||
Show that
|
Show that
|
||||||
```
|
```
|
||||||
|
@ -950,10 +951,10 @@ theorem exercise_2_24b {𝓐 : Set (Set α)}
|
||||||
simp only [Set.mem_setOf_eq, exists_exists_and_eq_and, Set.mem_powerset_iff]
|
simp only [Set.mem_setOf_eq, exists_exists_and_eq_and, Set.mem_powerset_iff]
|
||||||
exact ⟨⋃₀ 𝓐, ⟨hA, hx⟩⟩
|
exact ⟨⋃₀ 𝓐, ⟨hA, hx⟩⟩
|
||||||
|
|
||||||
/-- ### Exercise 2.25
|
/-- #### Exercise 2.25
|
||||||
|
|
||||||
Is `A ∪ (⋃ 𝓑)` always the same as `⋃ { A ∪ X | X ∈ 𝓑 }`? If not, then under
|
Is `A ∪ (⋃ 𝓑)` always the same as `⋃ { A ∪ X | X ∈ 𝓑 }`? If not, then under
|
||||||
what conditions does equality hold?
|
what conditions does equality hold?
|
||||||
-/
|
-/
|
||||||
theorem exercise_2_25 {A : Set α} (𝓑 : Set (Set α))
|
theorem exercise_2_25 {A : Set α} (𝓑 : Set (Set α))
|
||||||
: (A ∪ (⋃₀ 𝓑) = ⋃₀ { A ∪ X | X ∈ 𝓑 }) ↔ (A = ∅ ∨ Set.Nonempty 𝓑) := by
|
: (A ∪ (⋃₀ 𝓑) = ⋃₀ { A ∪ X | X ∈ 𝓑 }) ↔ (A = ∅ ∨ Set.Nonempty 𝓑) := by
|
||||||
|
@ -994,4 +995,4 @@ theorem exercise_2_25 {A : Set α} (𝓑 : Set (Set α))
|
||||||
_ = { x | ∃ t, t ∈ { y | ∃ X, X ∈ 𝓑 ∧ A ∪ X = y } ∧ x ∈ t } := by simp
|
_ = { x | ∃ t, t ∈ { y | ∃ X, X ∈ 𝓑 ∧ A ∪ X = y } ∧ x ∈ t } := by simp
|
||||||
_ = ⋃₀ { A ∪ X | X ∈ 𝓑 } := rfl
|
_ = ⋃₀ { A ∪ X | X ∈ 𝓑 } := rfl
|
||||||
|
|
||||||
end Enderton.Set.Chapter_2
|
end Enderton.Set.Chapter_2
|
|
@ -17,51 +17,30 @@ namespace Enderton.Set.Chapter_3
|
||||||
|
|
||||||
open Set.Relation
|
open Set.Relation
|
||||||
|
|
||||||
/-- ### Lemma 3B
|
/-- #### Lemma 3B
|
||||||
|
|
||||||
If `x ∈ C` and `y ∈ C`, then `⟨x, y⟩ ∈ 𝒫 𝒫 C`.
|
If `x ∈ C` and `y ∈ C`, then `⟨x, y⟩ ∈ 𝒫 𝒫 C`.
|
||||||
-/
|
-/
|
||||||
lemma lemma_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C)
|
lemma lemma_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C)
|
||||||
: OrderedPair x y ∈ 𝒫 𝒫 C := by
|
: OrderedPair x y ∈ 𝒫 𝒫 C := by
|
||||||
/-
|
|
||||||
> Let `C` be an arbitrary set and `x, y ∈ C`. Then by definition of the power
|
|
||||||
> set, `{x}` and `{x, y}` are members of `𝒫 C`.
|
|
||||||
-/
|
|
||||||
have hxs : {x} ⊆ C := Set.singleton_subset_iff.mpr hx
|
have hxs : {x} ⊆ C := Set.singleton_subset_iff.mpr hx
|
||||||
have hxys : {x, y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy
|
have hxys : {x, y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy
|
||||||
/-
|
|
||||||
> Likewise `{{x}, {x, y}}` is a member of `𝒫 𝒫 C`. By definition of an ordered
|
|
||||||
> pair, `⟨x, y⟩ = {{x}, {x, y}}`. This concludes our proof.
|
|
||||||
-/
|
|
||||||
exact Set.mem_mem_imp_pair_subset hxs hxys
|
exact Set.mem_mem_imp_pair_subset hxs hxys
|
||||||
|
|
||||||
/-- ### Theorem 3D
|
/-- #### Theorem 3D
|
||||||
|
|
||||||
If `⟨x, y⟩ ∈ A`, then `x` and `y` belong to `⋃ ⋃ A`.
|
If `⟨x, y⟩ ∈ A`, then `x` and `y` belong to `⋃ ⋃ A`.
|
||||||
-/
|
-/
|
||||||
theorem theorem_3d {A : Set (Set (Set α))} (h : OrderedPair x y ∈ A)
|
theorem theorem_3d {A : Set (Set (Set α))} (h : OrderedPair x y ∈ A)
|
||||||
: x ∈ ⋃₀ (⋃₀ A) ∧ y ∈ ⋃₀ (⋃₀ A) := by
|
: x ∈ ⋃₀ (⋃₀ A) ∧ y ∈ ⋃₀ (⋃₀ A) := by
|
||||||
/-
|
|
||||||
> Let `A` be a set and `⟨x, y⟩ ∈ A`. By definition of an ordered pair,
|
|
||||||
>
|
|
||||||
> `⟨x, y⟩ = {{x}, {x, y}}`.
|
|
||||||
>
|
|
||||||
> By Exercise 2.3, `{{x}, {x, y}} ⊆ ∪ A`. Then `{x, y} ∈ ∪ A`.
|
|
||||||
-/
|
|
||||||
have hp := Chapter_2.exercise_2_3 (OrderedPair x y) h
|
have hp := Chapter_2.exercise_2_3 (OrderedPair x y) h
|
||||||
unfold OrderedPair at hp
|
unfold OrderedPair at hp
|
||||||
have hq : {x, y} ∈ ⋃₀ A := hp (by simp)
|
have hq : {x, y} ∈ ⋃₀ A := hp (by simp)
|
||||||
/-
|
|
||||||
> Another application of Exercise 2.3 implies `{x, y} ∈ ∪ ∪ A`.
|
|
||||||
-/
|
|
||||||
have : {x, y} ⊆ ⋃₀ ⋃₀ A := Chapter_2.exercise_2_3 {x, y} hq
|
have : {x, y} ⊆ ⋃₀ ⋃₀ A := Chapter_2.exercise_2_3 {x, y} hq
|
||||||
/-
|
|
||||||
> Therefore `x, y ∈ ∪ ∪ A`.
|
|
||||||
-/
|
|
||||||
exact ⟨this (by simp), this (by simp)⟩
|
exact ⟨this (by simp), this (by simp)⟩
|
||||||
|
|
||||||
|
|
||||||
/-- ### Theorem 3G (i)
|
/-- #### Theorem 3G (i)
|
||||||
|
|
||||||
Assume that `F` is a one-to-one function. If `x ∈ dom F`, then `F⁻¹(F(x)) = x`.
|
Assume that `F` is a one-to-one function. If `x ∈ dom F`, then `F⁻¹(F(x)) = x`.
|
||||||
-/
|
-/
|
||||||
|
@ -75,7 +54,7 @@ theorem theorem_3g_i {F : Set.HRelation α β}
|
||||||
unfold isOneToOne at hF
|
unfold isOneToOne at hF
|
||||||
exact (single_valued_eq_unique hF.left hy hy₁).symm
|
exact (single_valued_eq_unique hF.left hy hy₁).symm
|
||||||
|
|
||||||
/-- ### Theorem 3G (ii)
|
/-- #### Theorem 3G (ii)
|
||||||
|
|
||||||
Assume that `F` is a one-to-one function. If `y ∈ ran F`, then `F(F⁻¹(y)) = y`.
|
Assume that `F` is a one-to-one function. If `y ∈ ran F`, then `F(F⁻¹(y)) = y`.
|
||||||
-/
|
-/
|
||||||
|
@ -89,7 +68,7 @@ theorem theorem_3g_ii {F : Set.HRelation α β}
|
||||||
unfold isOneToOne at hF
|
unfold isOneToOne at hF
|
||||||
exact (single_rooted_eq_unique hF.right hx hx₁).symm
|
exact (single_rooted_eq_unique hF.right hx hx₁).symm
|
||||||
|
|
||||||
/-- ### Theorem 3H
|
/-- #### Theorem 3H
|
||||||
|
|
||||||
Assume that `F` and `G` are functions. Then
|
Assume that `F` and `G` are functions. Then
|
||||||
```
|
```
|
||||||
|
@ -128,7 +107,7 @@ theorem theorem_3h_dom {F : Set.HRelation β γ} {G : Set.HRelation α β}
|
||||||
simp only [Set.mem_setOf_eq]
|
simp only [Set.mem_setOf_eq]
|
||||||
exact ⟨a, ha.left.left, hb⟩
|
exact ⟨a, ha.left.left, hb⟩
|
||||||
|
|
||||||
/-- ### Theorem 3J (a)
|
/-- #### Theorem 3J (a)
|
||||||
|
|
||||||
Assume that `F : A → B`, and that `A` is nonempty. There exists a function
|
Assume that `F : A → B`, and that `A` is nonempty. There exists a function
|
||||||
`G : B → A` (a "left inverse") such that `G ∘ F` is the identity function on `A`
|
`G : B → A` (a "left inverse") such that `G ∘ F` is the identity function on `A`
|
||||||
|
@ -220,7 +199,7 @@ theorem theorem_3j_a {F : Set.HRelation α β}
|
||||||
Set.mem_union,
|
Set.mem_union,
|
||||||
Prod.mk.injEq
|
Prod.mk.injEq
|
||||||
] at ht
|
] at ht
|
||||||
have ⟨a₁, ha₁⟩ := ht
|
have ⟨a₁, ha₁⟩ := ht
|
||||||
apply Or.elim ha₁
|
apply Or.elim ha₁
|
||||||
· intro ⟨⟨a, b, hab⟩, _⟩
|
· intro ⟨⟨a, b, hab⟩, _⟩
|
||||||
have := mem_pair_imp_fst_mem_dom hab.left
|
have := mem_pair_imp_fst_mem_dom hab.left
|
||||||
|
@ -281,11 +260,11 @@ theorem theorem_3j_a {F : Set.HRelation α β}
|
||||||
rw [← single_valued_eq_unique hF.is_func hx₂.right ht₂.left] at ht₂
|
rw [← single_valued_eq_unique hF.is_func hx₂.right ht₂.left] at ht₂
|
||||||
exact single_valued_eq_unique hG₁.is_func ht₂.right ht₁.right
|
exact single_valued_eq_unique hG₁.is_func ht₂.right ht₁.right
|
||||||
|
|
||||||
/-- ### Theorem 3J (b)
|
/-- #### Theorem 3J (b)
|
||||||
|
|
||||||
Assume that `F : A → B`, and that `A` is nonempty. There exists a function
|
Assume that `F : A → B`, and that `A` is nonempty. There exists a function
|
||||||
`H : B → A` (a "right inverse") such that `F ∘ H` is the identity function on
|
`H : B → A` (a "right inverse") such that `F ∘ H` is the identity function on
|
||||||
`B` only if `F` maps `A` onto `B`.
|
`B` **iff** `F` maps `A` onto `B`.
|
||||||
-/
|
-/
|
||||||
theorem theorem_3j_b {F : Set.HRelation α β} (hF : mapsInto F A B)
|
theorem theorem_3j_b {F : Set.HRelation α β} (hF : mapsInto F A B)
|
||||||
: (∃ H, mapsInto H B A ∧ comp F H = { p | p.1 ∈ B ∧ p.1 = p.2 }) →
|
: (∃ H, mapsInto H B A ∧ comp F H = { p | p.1 ∈ B ∧ p.1 = p.2 }) →
|
||||||
|
@ -300,7 +279,7 @@ theorem theorem_3j_b {F : Set.HRelation α β} (hF : mapsInto F A B)
|
||||||
simp only [Set.mem_setOf_eq, Prod.exists, exists_eq_right, Set.setOf_mem_eq]
|
simp only [Set.mem_setOf_eq, Prod.exists, exists_eq_right, Set.setOf_mem_eq]
|
||||||
exact hy
|
exact hy
|
||||||
|
|
||||||
/-- ### Theorem 3K (a)
|
/-- #### Theorem 3K (a)
|
||||||
|
|
||||||
The following hold for any sets. (`F` need not be a function.)
|
The following hold for any sets. (`F` need not be a function.)
|
||||||
The image of a union is the union of the images:
|
The image of a union is the union of the images:
|
||||||
|
@ -335,7 +314,7 @@ theorem theorem_3k_a {F : Set.HRelation α β} {𝓐 : Set (Set α)}
|
||||||
simp only [Set.mem_sUnion, Set.mem_setOf_eq]
|
simp only [Set.mem_sUnion, Set.mem_setOf_eq]
|
||||||
exact ⟨u, ⟨A, hA.left, hu.left⟩, hu.right⟩
|
exact ⟨u, ⟨A, hA.left, hu.left⟩, hu.right⟩
|
||||||
|
|
||||||
/-! ### Theorem 3K (b)
|
/-! #### Theorem 3K (b)
|
||||||
|
|
||||||
The following hold for any sets. (`F` need not be a function.)
|
The following hold for any sets. (`F` need not be a function.)
|
||||||
The image of an intersection is included in the intersection of the images:
|
The image of an intersection is included in the intersection of the images:
|
||||||
|
@ -395,7 +374,7 @@ theorem theorem_3k_b_ii {F : Set.HRelation α β} {𝓐 : Set (Set α)}
|
||||||
simp only [Set.mem_sInter, Set.mem_setOf_eq]
|
simp only [Set.mem_sInter, Set.mem_setOf_eq]
|
||||||
exact ⟨u, hu⟩
|
exact ⟨u, hu⟩
|
||||||
|
|
||||||
/-! ### Theorem 3K (c)
|
/-! #### Theorem 3K (c)
|
||||||
|
|
||||||
The following hold for any sets. (`F` need not be a function.)
|
The following hold for any sets. (`F` need not be a function.)
|
||||||
The image of a difference includes the difference of the images:
|
The image of a difference includes the difference of the images:
|
||||||
|
@ -449,7 +428,7 @@ theorem theorem_3k_c_ii {F : Set.HRelation α β} {A B : Set α}
|
||||||
exact absurd hu₁.left hu.left.right
|
exact absurd hu₁.left hu.left.right
|
||||||
exact ⟨hv₁, hv₂⟩
|
exact ⟨hv₁, hv₂⟩
|
||||||
|
|
||||||
/-! ### Corollary 3L
|
/-! #### Corollary 3L
|
||||||
|
|
||||||
For any function `G` and sets `A`, `B`, and `𝓐`:
|
For any function `G` and sets `A`, `B`, and `𝓐`:
|
||||||
|
|
||||||
|
@ -477,7 +456,7 @@ theorem corollary_3l_iii {G : Set.HRelation β α} {A B : Set α}
|
||||||
single_valued_self_iff_single_rooted_inv.mp hG
|
single_valued_self_iff_single_rooted_inv.mp hG
|
||||||
exact (theorem_3k_c_ii hG').symm
|
exact (theorem_3k_c_ii hG').symm
|
||||||
|
|
||||||
/-- ### Theorem 3M
|
/-- #### Theorem 3M
|
||||||
|
|
||||||
If `R` is a symmetric and transitive relation, then `R` is an equivalence
|
If `R` is a symmetric and transitive relation, then `R` is an equivalence
|
||||||
relation on `fld R`.
|
relation on `fld R`.
|
||||||
|
@ -497,7 +476,7 @@ theorem theorem_3m {R : Set.Relation α}
|
||||||
have := hS ht
|
have := hS ht
|
||||||
exact hT this ht
|
exact hT this ht
|
||||||
|
|
||||||
/-- ### Theorem 3R
|
/-- #### Theorem 3R
|
||||||
|
|
||||||
Let `R` be a linear ordering on `A`.
|
Let `R` be a linear ordering on `A`.
|
||||||
|
|
||||||
|
@ -521,7 +500,7 @@ theorem theorem_3r {R : Rel α α} (hR : IsStrictTotalOrder α R)
|
||||||
right
|
right
|
||||||
exact h₂
|
exact h₂
|
||||||
|
|
||||||
/-- ### Exercise 3.1
|
/-- #### Exercise 3.1
|
||||||
|
|
||||||
Suppose that we attempted to generalize the Kuratowski definitions of ordered
|
Suppose that we attempted to generalize the Kuratowski definitions of ordered
|
||||||
pairs to ordered triples by defining
|
pairs to ordered triples by defining
|
||||||
|
@ -542,9 +521,9 @@ theorem exercise_3_1 {x y z u v w : ℕ}
|
||||||
· rw [hx, hy, hz, hu, hv, hw]
|
· rw [hx, hy, hz, hu, hv, hw]
|
||||||
simp
|
simp
|
||||||
· rw [hy, hv]
|
· rw [hy, hv]
|
||||||
simp
|
simp only
|
||||||
|
|
||||||
/-- ### Exercise 3.2a
|
/-- #### Exercise 3.2a
|
||||||
|
|
||||||
Show that `A × (B ∪ C) = (A × B) ∪ (A × C)`.
|
Show that `A × (B ∪ C) = (A × B) ∪ (A × C)`.
|
||||||
-/
|
-/
|
||||||
|
@ -560,7 +539,7 @@ theorem exercise_3_2a {A : Set α} {B C : Set β}
|
||||||
_ = { p | p ∈ Set.prod A B ∨ (p ∈ Set.prod A C) } := rfl
|
_ = { p | p ∈ Set.prod A B ∨ (p ∈ Set.prod A C) } := rfl
|
||||||
_ = (Set.prod A B) ∪ (Set.prod A C) := rfl
|
_ = (Set.prod A B) ∪ (Set.prod A C) := rfl
|
||||||
|
|
||||||
/-- ### Exercise 3.2b
|
/-- #### Exercise 3.2b
|
||||||
|
|
||||||
Show that if `A × B = A × C` and `A ≠ ∅`, then `B = C`.
|
Show that if `A × B = A × C` and `A ≠ ∅`, then `B = C`.
|
||||||
-/
|
-/
|
||||||
|
@ -589,7 +568,7 @@ theorem exercise_3_2b {A : Set α} {B C : Set β}
|
||||||
have ⟨c, hc⟩ := Set.nonempty_iff_ne_empty.mpr (Ne.symm nC)
|
have ⟨c, hc⟩ := Set.nonempty_iff_ne_empty.mpr (Ne.symm nC)
|
||||||
exact (h (a, c)).mpr ⟨ha, hc⟩
|
exact (h (a, c)).mpr ⟨ha, hc⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.3
|
/-- #### Exercise 3.3
|
||||||
|
|
||||||
Show that `A × ⋃ 𝓑 = ⋃ {A × X | X ∈ 𝓑}`.
|
Show that `A × ⋃ 𝓑 = ⋃ {A × X | X ∈ 𝓑}`.
|
||||||
-/
|
-/
|
||||||
|
@ -617,7 +596,7 @@ theorem exercise_3_3 {A : Set (Set α)} {𝓑 : Set (Set β)}
|
||||||
· intro ⟨b, h₁, h₂, h₃⟩
|
· intro ⟨b, h₁, h₂, h₃⟩
|
||||||
exact ⟨b, h₁, h₂, h₃⟩
|
exact ⟨b, h₁, h₂, h₃⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.5a
|
/-- #### Exercise 3.5a
|
||||||
|
|
||||||
Assume that `A` and `B` are given sets, and show that there exists a set `C`
|
Assume that `A` and `B` are given sets, and show that there exists a set `C`
|
||||||
such that for any `y`,
|
such that for any `y`,
|
||||||
|
@ -685,7 +664,7 @@ theorem exercise_3_5a {A : Set α} {B : Set β}
|
||||||
rw [hab.right]
|
rw [hab.right]
|
||||||
exact ⟨hab.left, hb⟩
|
exact ⟨hab.left, hb⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.5b
|
/-- #### Exercise 3.5b
|
||||||
|
|
||||||
With `A`, `B`, and `C` as above, show that `A × B = ∪ C`.
|
With `A`, `B`, and `C` as above, show that `A × B = ∪ C`.
|
||||||
-/
|
-/
|
||||||
|
@ -718,7 +697,7 @@ theorem exercise_3_5b {A : Set α} (B : Set β)
|
||||||
exact ⟨h, hb⟩
|
exact ⟨h, hb⟩
|
||||||
|
|
||||||
|
|
||||||
/-- ### Exercise 3.6
|
/-- #### Exercise 3.6
|
||||||
|
|
||||||
Show that a set `A` is a relation **iff** `A ⊆ dom A × ran A`.
|
Show that a set `A` is a relation **iff** `A ⊆ dom A × ran A`.
|
||||||
-/
|
-/
|
||||||
|
@ -736,7 +715,7 @@ theorem exercise_3_6 {A : Set.HRelation α β}
|
||||||
]
|
]
|
||||||
exact ⟨⟨b, ht⟩, ⟨a, ht⟩⟩
|
exact ⟨⟨b, ht⟩, ⟨a, ht⟩⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.7
|
/-- #### Exercise 3.7
|
||||||
|
|
||||||
Show that if `R` is a relation, then `fld R = ⋃ ⋃ R`.
|
Show that if `R` is a relation, then `fld R = ⋃ ⋃ R`.
|
||||||
-/
|
-/
|
||||||
|
@ -815,7 +794,7 @@ theorem exercise_3_7 {R : Set.Relation α}
|
||||||
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at this
|
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at this
|
||||||
exact hxy_mem this
|
exact hxy_mem this
|
||||||
|
|
||||||
/-- ### Exercise 3.8 (i)
|
/-- #### Exercise 3.8 (i)
|
||||||
|
|
||||||
Show that for any set `𝓐`:
|
Show that for any set `𝓐`:
|
||||||
```
|
```
|
||||||
|
@ -841,7 +820,7 @@ theorem exercise_3_8_i {A : Set (Set.HRelation α β)}
|
||||||
· intro ⟨t, ht, y, hx⟩
|
· intro ⟨t, ht, y, hx⟩
|
||||||
exact ⟨y, t, ht, hx⟩
|
exact ⟨y, t, ht, hx⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.8 (ii)
|
/-- #### Exercise 3.8 (ii)
|
||||||
|
|
||||||
Show that for any set `𝓐`:
|
Show that for any set `𝓐`:
|
||||||
```
|
```
|
||||||
|
@ -866,7 +845,7 @@ theorem exercise_3_8_ii {A : Set (Set.HRelation α β)}
|
||||||
· intro ⟨y, ⟨hy, ⟨t, ht⟩⟩⟩
|
· intro ⟨y, ⟨hy, ⟨t, ht⟩⟩⟩
|
||||||
exact ⟨t, ⟨y, ⟨hy, ht⟩⟩⟩
|
exact ⟨t, ⟨y, ⟨hy, ht⟩⟩⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.9 (i)
|
/-- #### Exercise 3.9 (i)
|
||||||
|
|
||||||
Discuss the result of replacing the union operation by the intersection
|
Discuss the result of replacing the union operation by the intersection
|
||||||
operation in the preceding problem.
|
operation in the preceding problem.
|
||||||
|
@ -892,7 +871,7 @@ theorem exercise_3_9_i {A : Set (Set.HRelation α β)}
|
||||||
intro _ y hy R hR
|
intro _ y hy R hR
|
||||||
exact ⟨y, hy R hR⟩
|
exact ⟨y, hy R hR⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.9 (ii)
|
/-- #### Exercise 3.9 (ii)
|
||||||
|
|
||||||
Discuss the result of replacing the union operation by the intersection
|
Discuss the result of replacing the union operation by the intersection
|
||||||
operation in the preceding problem.
|
operation in the preceding problem.
|
||||||
|
@ -918,7 +897,7 @@ theorem exercise_3_9_ii {A : Set (Set.HRelation α β)}
|
||||||
intro _ y hy R hR
|
intro _ y hy R hR
|
||||||
exact ⟨y, hy R hR⟩
|
exact ⟨y, hy R hR⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.12
|
/-- #### Exercise 3.12
|
||||||
|
|
||||||
Assume that `f` and `g` are functions and show that
|
Assume that `f` and `g` are functions and show that
|
||||||
```
|
```
|
||||||
|
@ -948,7 +927,7 @@ theorem exercise_3_12 {f g : Set.HRelation α β}
|
||||||
rw [single_valued_eq_unique hf hp hy₁.left.left]
|
rw [single_valued_eq_unique hf hp hy₁.left.left]
|
||||||
exact hy₁.left.right
|
exact hy₁.left.right
|
||||||
|
|
||||||
/-- ### Exercise 3.13
|
/-- #### Exercise 3.13
|
||||||
|
|
||||||
Assume that `f` and `g` are functions with `f ⊆ g` and `dom g ⊆ dom f`. Show
|
Assume that `f` and `g` are functions with `f ⊆ g` and `dom g ⊆ dom f`. Show
|
||||||
that `f = g`.
|
that `f = g`.
|
||||||
|
@ -972,7 +951,7 @@ theorem exercise_3_13 {f g : Set.HRelation α β}
|
||||||
rw [single_valued_eq_unique hg hp hx.left.right]
|
rw [single_valued_eq_unique hg hp hx.left.right]
|
||||||
exact hx.left.left
|
exact hx.left.left
|
||||||
|
|
||||||
/-- ### Exercise 3.14 (a)
|
/-- #### Exercise 3.14 (a)
|
||||||
|
|
||||||
Assume that `f` and `g` are functions. Show that `f ∩ g` is a function.
|
Assume that `f` and `g` are functions. Show that `f ∩ g` is a function.
|
||||||
-/
|
-/
|
||||||
|
@ -981,7 +960,7 @@ theorem exercise_3_14_a {f g : Set.HRelation α β}
|
||||||
: isSingleValued (f ∩ g) :=
|
: isSingleValued (f ∩ g) :=
|
||||||
single_valued_subset hf (Set.inter_subset_left f g)
|
single_valued_subset hf (Set.inter_subset_left f g)
|
||||||
|
|
||||||
/-- ### Exercise 3.14 (b)
|
/-- #### Exercise 3.14 (b)
|
||||||
|
|
||||||
Assume that `f` and `g` are functions. Show that `f ∪ g` is a function **iff**
|
Assume that `f` and `g` are functions. Show that `f ∪ g` is a function **iff**
|
||||||
`f(x) = g(x)` for every `x` in `(dom f) ∩ (dom g)`.
|
`f(x) = g(x)` for every `x` in `(dom f) ∩ (dom g)`.
|
||||||
|
@ -1061,7 +1040,7 @@ theorem exercise_3_14_b {f g : Set.HRelation α β}
|
||||||
· intro hz
|
· intro hz
|
||||||
exact absurd (mem_pair_imp_fst_mem_dom hz) hgx
|
exact absurd (mem_pair_imp_fst_mem_dom hz) hgx
|
||||||
|
|
||||||
/-- ### Exercise 3.15
|
/-- #### Exercise 3.15
|
||||||
|
|
||||||
Let `𝓐` be a set of functions such that for any `f` and `g` in `𝓐`, either
|
Let `𝓐` be a set of functions such that for any `f` and `g` in `𝓐`, either
|
||||||
`f ⊆ g` or `g ⊆ f`. Show that `⋃ 𝓐` is a function.
|
`f ⊆ g` or `g ⊆ f`. Show that `⋃ 𝓐` is a function.
|
||||||
|
@ -1084,7 +1063,7 @@ theorem exercise_3_15 {𝓐 : Set (Set.HRelation α β)}
|
||||||
have := hg' hg.right
|
have := hg' hg.right
|
||||||
exact single_valued_eq_unique (h𝓐 f hf.left) this hf.right
|
exact single_valued_eq_unique (h𝓐 f hf.left) this hf.right
|
||||||
|
|
||||||
/-! ### Exercise 3.17
|
/-! #### Exercise 3.17
|
||||||
|
|
||||||
Show that the composition of two single-rooted sets is again single-rooted.
|
Show that the composition of two single-rooted sets is again single-rooted.
|
||||||
Conclude that the composition of two one-to-one functions is again one-to-one.
|
Conclude that the composition of two one-to-one functions is again one-to-one.
|
||||||
|
@ -1094,7 +1073,7 @@ theorem exercise_3_17_i {F : Set.HRelation β γ} {G : Set.HRelation α β}
|
||||||
(hF : isSingleRooted F) (hG : isSingleRooted G)
|
(hF : isSingleRooted F) (hG : isSingleRooted G)
|
||||||
: isSingleRooted (comp F G):= by
|
: isSingleRooted (comp F G):= by
|
||||||
intro v hv
|
intro v hv
|
||||||
|
|
||||||
have ⟨u₁, hu₁⟩ := ran_exists hv
|
have ⟨u₁, hu₁⟩ := ran_exists hv
|
||||||
have hu₁' := hu₁
|
have hu₁' := hu₁
|
||||||
unfold comp at hu₁'
|
unfold comp at hu₁'
|
||||||
|
@ -1102,13 +1081,13 @@ theorem exercise_3_17_i {F : Set.HRelation β γ} {G : Set.HRelation α β}
|
||||||
have ⟨t₁, ht₁⟩ := hu₁'
|
have ⟨t₁, ht₁⟩ := hu₁'
|
||||||
unfold ExistsUnique
|
unfold ExistsUnique
|
||||||
refine ⟨u₁, ⟨mem_pair_imp_fst_mem_dom hu₁, hu₁⟩, ?_⟩
|
refine ⟨u₁, ⟨mem_pair_imp_fst_mem_dom hu₁, hu₁⟩, ?_⟩
|
||||||
|
|
||||||
intro u₂ hu₂
|
intro u₂ hu₂
|
||||||
have hu₂' := hu₂
|
have hu₂' := hu₂
|
||||||
unfold comp at hu₂'
|
unfold comp at hu₂'
|
||||||
simp only [Set.mem_setOf_eq] at hu₂'
|
simp only [Set.mem_setOf_eq] at hu₂'
|
||||||
have ⟨_, ⟨t₂, ht₂⟩⟩ := hu₂'
|
have ⟨_, ⟨t₂, ht₂⟩⟩ := hu₂'
|
||||||
|
|
||||||
have ht : t₁ = t₂ := single_rooted_eq_unique hF ht₁.right ht₂.right
|
have ht : t₁ = t₂ := single_rooted_eq_unique hF ht₁.right ht₂.right
|
||||||
rw [ht] at ht₁
|
rw [ht] at ht₁
|
||||||
exact single_rooted_eq_unique hG ht₂.left ht₁.left
|
exact single_rooted_eq_unique hG ht₂.left ht₁.left
|
||||||
|
@ -1119,7 +1098,7 @@ theorem exercise_3_17_ii {F : Set.HRelation β γ} {G : Set.HRelation α β}
|
||||||
(single_valued_comp_is_single_valued hF.left hG.left)
|
(single_valued_comp_is_single_valued hF.left hG.left)
|
||||||
(exercise_3_17_i hF.right hG.right)
|
(exercise_3_17_i hF.right hG.right)
|
||||||
|
|
||||||
/-! ### Exercise 3.18
|
/-! #### Exercise 3.18
|
||||||
|
|
||||||
Let `R` be the set
|
Let `R` be the set
|
||||||
```
|
```
|
||||||
|
@ -1252,7 +1231,7 @@ theorem exercise_3_18_v
|
||||||
|
|
||||||
end Exercise_3_18
|
end Exercise_3_18
|
||||||
|
|
||||||
/-! ### Exercise 3.19
|
/-! #### Exercise 3.19
|
||||||
|
|
||||||
Let
|
Let
|
||||||
```
|
```
|
||||||
|
@ -1456,7 +1435,7 @@ theorem exercise_3_19_x
|
||||||
apply Or.elim ht₁
|
apply Or.elim ht₁
|
||||||
· intro ht
|
· intro ht
|
||||||
rw [← ht] at ht₂
|
rw [← ht] at ht₂
|
||||||
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at ht₂
|
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at ht₂
|
||||||
apply Or.elim ht₂
|
apply Or.elim ht₂
|
||||||
· intro ha
|
· intro ha
|
||||||
rw [ha] at hx
|
rw [ha] at hx
|
||||||
|
@ -1502,7 +1481,7 @@ theorem exercise_3_19_x
|
||||||
|
|
||||||
end Exercise_3_19
|
end Exercise_3_19
|
||||||
|
|
||||||
/-- ### Exercise 3.20
|
/-- #### Exercise 3.20
|
||||||
|
|
||||||
Show that `F ↾ A = F ∩ (A × ran F)`.
|
Show that `F ↾ A = F ∩ (A × ran F)`.
|
||||||
-/
|
-/
|
||||||
|
@ -1522,7 +1501,7 @@ theorem exercise_3_20 {F : Set.HRelation α β} {A : Set α}
|
||||||
_ = F ∩ {p | p.fst ∈ A ∧ p.snd ∈ ran F} := rfl
|
_ = F ∩ {p | p.fst ∈ A ∧ p.snd ∈ ran F} := rfl
|
||||||
_ = F ∩ (Set.prod A (ran F)) := rfl
|
_ = F ∩ (Set.prod A (ran F)) := rfl
|
||||||
|
|
||||||
/-- ### Exercise 3.22 (a)
|
/-- #### Exercise 3.22 (a)
|
||||||
|
|
||||||
Show that the following is correct for any sets.
|
Show that the following is correct for any sets.
|
||||||
```
|
```
|
||||||
|
@ -1537,7 +1516,7 @@ theorem exercise_3_22_a {A B : Set α} {F : Set.HRelation α β} (h : A ⊆ B)
|
||||||
have := h hu.left
|
have := h hu.left
|
||||||
exact ⟨u, this, hu.right⟩
|
exact ⟨u, this, hu.right⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.22 (b)
|
/-- #### Exercise 3.22 (b)
|
||||||
|
|
||||||
Show that the following is correct for any sets.
|
Show that the following is correct for any sets.
|
||||||
```
|
```
|
||||||
|
@ -1567,7 +1546,7 @@ theorem exercise_3_22_b {A B : Set α} {F : Set.HRelation α β}
|
||||||
_ = { v | ∃ a ∈ image G A, (a, v) ∈ F } := rfl
|
_ = { v | ∃ a ∈ image G A, (a, v) ∈ F } := rfl
|
||||||
_ = image F (image G A) := rfl
|
_ = image F (image G A) := rfl
|
||||||
|
|
||||||
/-- ### Exercise 3.22 (c)
|
/-- #### Exercise 3.22 (c)
|
||||||
|
|
||||||
Show that the following is correct for any sets.
|
Show that the following is correct for any sets.
|
||||||
```
|
```
|
||||||
|
@ -1585,7 +1564,7 @@ theorem exercise_3_22_c {A B : Set α} {Q : Set.Relation α}
|
||||||
_ = { p | p ∈ Q ∧ p.1 ∈ A} ∪ { p | p ∈ Q ∧ p.1 ∈ B } := rfl
|
_ = { p | p ∈ Q ∧ p.1 ∈ A} ∪ { p | p ∈ Q ∧ p.1 ∈ B } := rfl
|
||||||
_ = (restriction Q A) ∪ (restriction Q B) := rfl
|
_ = (restriction Q A) ∪ (restriction Q B) := rfl
|
||||||
|
|
||||||
/-- ### Exercise 3.23 (i)
|
/-- #### Exercise 3.23 (i)
|
||||||
|
|
||||||
Let `I` be the identity function on the set `A`. Show that for any sets `B` and
|
Let `I` be the identity function on the set `A`. Show that for any sets `B` and
|
||||||
`C`, `B ∘ I = B ↾ A`.
|
`C`, `B ∘ I = B ↾ A`.
|
||||||
|
@ -1609,7 +1588,7 @@ theorem exercise_3_23_i {A : Set α} {B : Set.HRelation α β} {I : Set.Relation
|
||||||
intro (x, y) hp
|
intro (x, y) hp
|
||||||
refine ⟨x, ⟨hp.right, rfl⟩, hp.left⟩
|
refine ⟨x, ⟨hp.right, rfl⟩, hp.left⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.23 (ii)
|
/-- #### Exercise 3.23 (ii)
|
||||||
|
|
||||||
Let `I` be the identity function on the set `A`. Show that for any sets `B` and
|
Let `I` be the identity function on the set `A`. Show that for any sets `B` and
|
||||||
`C`, `I⟦C⟧ = A ∩ C`.
|
`C`, `I⟦C⟧ = A ∩ C`.
|
||||||
|
@ -1641,7 +1620,7 @@ theorem exercise_3_23_ii {A C : Set α} {I : Set.Relation α}
|
||||||
_ = C ∩ A := rfl
|
_ = C ∩ A := rfl
|
||||||
_ = A ∩ C := Set.inter_comm C A
|
_ = A ∩ C := Set.inter_comm C A
|
||||||
|
|
||||||
/-- ### Exercise 3.24
|
/-- #### Exercise 3.24
|
||||||
|
|
||||||
Show that for a function `F`, `F⁻¹⟦A⟧ = { x ∈ dom F | F(x) ∈ A }`.
|
Show that for a function `F`, `F⁻¹⟦A⟧ = { x ∈ dom F | F(x) ∈ A }`.
|
||||||
-/
|
-/
|
||||||
|
@ -1671,7 +1650,7 @@ theorem exercise_3_24 {F : Set.HRelation α β} {A : Set β}
|
||||||
· intro ⟨y, hy⟩
|
· intro ⟨y, hy⟩
|
||||||
exact ⟨y, hy.left⟩
|
exact ⟨y, hy.left⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.25 (b)
|
/-- #### Exercise 3.25 (b)
|
||||||
|
|
||||||
Show that the result of part (a) holds for any function `G`, not necessarily
|
Show that the result of part (a) holds for any function `G`, not necessarily
|
||||||
one-to-one.
|
one-to-one.
|
||||||
|
@ -1694,7 +1673,7 @@ theorem exercise_3_25_b {G : Set.HRelation α β} (hG : isSingleValued G)
|
||||||
have ⟨t, ht⟩ := ran_exists h.left
|
have ⟨t, ht⟩ := ran_exists h.left
|
||||||
exact ⟨t, ⟨t, x, ht, rfl, rfl⟩, by rwa [← h.right]⟩
|
exact ⟨t, ⟨t, x, ht, rfl, rfl⟩, by rwa [← h.right]⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.25 (a)
|
/-- #### Exercise 3.25 (a)
|
||||||
|
|
||||||
Assume that `G` is a one-to-one function. Show that `G ∘ G⁻¹` is the identity
|
Assume that `G` is a one-to-one function. Show that `G ∘ G⁻¹` is the identity
|
||||||
function on `ran G`.
|
function on `ran G`.
|
||||||
|
@ -1703,7 +1682,7 @@ theorem exercise_3_25_a {G : Set.HRelation α β} (hG : isOneToOne G)
|
||||||
: comp G (inv G) = { p | p.1 ∈ ran G ∧ p.1 = p.2 } :=
|
: comp G (inv G) = { p | p.1 ∈ ran G ∧ p.1 = p.2 } :=
|
||||||
exercise_3_25_b hG.left
|
exercise_3_25_b hG.left
|
||||||
|
|
||||||
/-- ### Exercise 3.27
|
/-- #### Exercise 3.27
|
||||||
|
|
||||||
Show that `dom (F ∘ G) = G⁻¹⟦dom F⟧` for any sets `F` and `G`. (`F` and `G` need
|
Show that `dom (F ∘ G) = G⁻¹⟦dom F⟧` for any sets `F` and `G`. (`F` and `G` need
|
||||||
not be functions.)
|
not be functions.)
|
||||||
|
@ -1737,7 +1716,7 @@ theorem exercise_3_27 {F : Set.HRelation β γ} {G : Set.HRelation α β}
|
||||||
]
|
]
|
||||||
exact ⟨t, u, hu.right, ht⟩
|
exact ⟨t, u, hu.right, ht⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.28
|
/-- #### Exercise 3.28
|
||||||
|
|
||||||
Assume that `f` is a one-to-one function from `A` into `B`, and that `G` is the
|
Assume that `f` is a one-to-one function from `A` into `B`, and that `G` is the
|
||||||
function with `dom G = 𝒫 A` defined by the equation `G(X) = f⟦X⟧`. Show that `G`
|
function with `dom G = 𝒫 A` defined by the equation `G(X) = f⟦X⟧`. Show that `G`
|
||||||
|
@ -1801,7 +1780,7 @@ theorem exercise_3_28 {A : Set α} {B : Set β}
|
||||||
have hX₁sub := mem_pair_imp_fst_mem_dom hX₁
|
have hX₁sub := mem_pair_imp_fst_mem_dom hX₁
|
||||||
rw [dG] at hX₁sub
|
rw [dG] at hX₁sub
|
||||||
simp only [Set.mem_powerset_iff] at hX₁sub
|
simp only [Set.mem_powerset_iff] at hX₁sub
|
||||||
|
|
||||||
have ht' := hX₁sub ht
|
have ht' := hX₁sub ht
|
||||||
rw [← hf.right.dom_eq] at ht'
|
rw [← hf.right.dom_eq] at ht'
|
||||||
have ⟨ft, hft⟩ := dom_exists ht'
|
have ⟨ft, hft⟩ := dom_exists ht'
|
||||||
|
@ -1832,7 +1811,7 @@ theorem exercise_3_28 {A : Set α} {B : Set β}
|
||||||
have hz := mem_pair_imp_snd_mem_ran hb.right
|
have hz := mem_pair_imp_snd_mem_ran hb.right
|
||||||
exact hf.right.ran_ss hz
|
exact hf.right.ran_ss hz
|
||||||
|
|
||||||
/-- ### Exercise 3.29
|
/-- #### Exercise 3.29
|
||||||
|
|
||||||
Assume that `f : A → B` and define a function `G : B → 𝒫 A` by
|
Assume that `f : A → B` and define a function `G : B → 𝒫 A` by
|
||||||
```
|
```
|
||||||
|
@ -1875,7 +1854,7 @@ theorem exercise_3_29 {f : Set.HRelation α β} {G : Set.HRelation β (Set α)}
|
||||||
rw [heq] at this
|
rw [heq] at this
|
||||||
exact single_valued_eq_unique hf.is_func this.right ht
|
exact single_valued_eq_unique hf.is_func this.right ht
|
||||||
|
|
||||||
/-! ### Exercise 3.30
|
/-! #### Exercise 3.30
|
||||||
|
|
||||||
Assume that `F : 𝒫 A → 𝒫 A` and that `F` has the monotonicity property:
|
Assume that `F : 𝒫 A → 𝒫 A` and that `F` has the monotonicity property:
|
||||||
```
|
```
|
||||||
|
@ -1892,7 +1871,7 @@ variable {F : Set α → Set α} {A B C : Set α}
|
||||||
(hB : B = ⋂₀ { X | X ⊆ A ∧ F X ⊆ X })
|
(hB : B = ⋂₀ { X | X ⊆ A ∧ F X ⊆ X })
|
||||||
(hC : C = ⋃₀ { X | X ⊆ A ∧ X ⊆ F X })
|
(hC : C = ⋃₀ { X | X ⊆ A ∧ X ⊆ F X })
|
||||||
|
|
||||||
/-- #### Exercise 3.30 (a)
|
/-- ##### Exercise 3.30 (a)
|
||||||
|
|
||||||
Show that `F(B) = B` and `F(C) = C`.
|
Show that `F(B) = B` and `F(C) = C`.
|
||||||
-/
|
-/
|
||||||
|
@ -1906,12 +1885,12 @@ theorem exercise_3_30_a : F B = B ∧ F C = C := by
|
||||||
show ∀ t, t ∈ B → t ∈ X
|
show ∀ t, t ∈ B → t ∈ X
|
||||||
intro t ht
|
intro t ht
|
||||||
rw [hB] at ht
|
rw [hB] at ht
|
||||||
simp only [Set.mem_sInter] at ht
|
simp only [Set.mem_sInter] at ht
|
||||||
exact ht X ⟨hX₁, hX₂⟩
|
exact ht X ⟨hX₁, hX₂⟩
|
||||||
exact hX₂ (hMono B X ⟨hB₁, hX₁⟩ hx)
|
exact hX₂ (hMono B X ⟨hB₁, hX₁⟩ hx)
|
||||||
rw [hB]
|
rw [hB]
|
||||||
exact this
|
exact this
|
||||||
|
|
||||||
have hC_supset : C ⊆ F C := by
|
have hC_supset : C ⊆ F C := by
|
||||||
intro x hx
|
intro x hx
|
||||||
rw [hC] at hx
|
rw [hC] at hx
|
||||||
|
@ -1931,7 +1910,7 @@ theorem exercise_3_30_a : F B = B ∧ F C = C := by
|
||||||
have ⟨T, hT⟩ := ht
|
have ⟨T, hT⟩ := ht
|
||||||
exact hT.left.left hT.right
|
exact hT.left.left hT.right
|
||||||
exact hMono X C ⟨hC₁, hC₂⟩ (hX.left.right hX.right)
|
exact hMono X C ⟨hC₁, hC₂⟩ (hX.left.right hX.right)
|
||||||
|
|
||||||
have hC_sub_A : C ⊆ A := by
|
have hC_sub_A : C ⊆ A := by
|
||||||
show ∀ t, t ∈ C → t ∈ A
|
show ∀ t, t ∈ C → t ∈ A
|
||||||
intro t ht
|
intro t ht
|
||||||
|
@ -1957,7 +1936,7 @@ theorem exercise_3_30_a : F B = B ∧ F C = C := by
|
||||||
intro t ht
|
intro t ht
|
||||||
simp only [Set.mem_sUnion, Set.mem_setOf_eq]
|
simp only [Set.mem_sUnion, Set.mem_setOf_eq]
|
||||||
exact ⟨X, hX, ht⟩
|
exact ⟨X, hX, ht⟩
|
||||||
|
|
||||||
have hB_sub_A : B ⊆ A := by
|
have hB_sub_A : B ⊆ A := by
|
||||||
show ∀ t, t ∈ B → t ∈ A
|
show ∀ t, t ∈ B → t ∈ A
|
||||||
intro t ht
|
intro t ht
|
||||||
|
@ -1972,11 +1951,11 @@ theorem exercise_3_30_a : F B = B ∧ F C = C := by
|
||||||
· exact hB_subset
|
· exact hB_subset
|
||||||
· have hInter : ∀ X, X ∈ {X | X ⊆ A ∧ F X ⊆ X} → B ⊆ X := by
|
· have hInter : ∀ X, X ∈ {X | X ⊆ A ∧ F X ⊆ X} → B ⊆ X := by
|
||||||
intro X hX
|
intro X hX
|
||||||
simp only [Set.mem_setOf_eq] at hX
|
simp only [Set.mem_setOf_eq] at hX
|
||||||
rw [hB]
|
rw [hB]
|
||||||
show ∀ t, t ∈ ⋂₀ {X | X ⊆ A ∧ F X ⊆ X} → t ∈ X
|
show ∀ t, t ∈ ⋂₀ {X | X ⊆ A ∧ F X ⊆ X} → t ∈ X
|
||||||
intro t ht
|
intro t ht
|
||||||
simp only [Set.mem_sInter, Set.mem_setOf_eq] at ht
|
simp only [Set.mem_sInter, Set.mem_setOf_eq] at ht
|
||||||
exact ht X hX
|
exact ht X hX
|
||||||
refine hInter (F B) ⟨?_, ?_⟩
|
refine hInter (F B) ⟨?_, ?_⟩
|
||||||
· show ∀ t, t ∈ F B → t ∈ A
|
· show ∀ t, t ∈ F B → t ∈ A
|
||||||
|
@ -1988,7 +1967,7 @@ theorem exercise_3_30_a : F B = B ∧ F C = C := by
|
||||||
· rw [Set.Subset.antisymm_iff]
|
· rw [Set.Subset.antisymm_iff]
|
||||||
exact ⟨hC_subset, hC_supset⟩
|
exact ⟨hC_subset, hC_supset⟩
|
||||||
|
|
||||||
/-- #### Exercise 3.30 (b)
|
/-- ##### Exercise 3.30 (b)
|
||||||
|
|
||||||
Show that if `F(X) = X`, then `B ⊆ X ⊆ C`.
|
Show that if `F(X) = X`, then `B ⊆ X ⊆ C`.
|
||||||
-/
|
-/
|
||||||
|
@ -1999,7 +1978,7 @@ theorem exercise_3_30_b : ∀ X, X ⊆ A ∧ F X = X → B ⊆ X ∧ X ⊆ C :=
|
||||||
rw [hB]
|
rw [hB]
|
||||||
show ∀ t, t ∈ ⋂₀ {X | X ⊆ A ∧ F X ⊆ X} → t ∈ X
|
show ∀ t, t ∈ ⋂₀ {X | X ⊆ A ∧ F X ⊆ X} → t ∈ X
|
||||||
intro t ht
|
intro t ht
|
||||||
simp only [Set.mem_sInter, Set.mem_setOf_eq] at ht
|
simp only [Set.mem_sInter, Set.mem_setOf_eq] at ht
|
||||||
exact ht X ⟨hX₁, this⟩
|
exact ht X ⟨hX₁, this⟩
|
||||||
· have : X ⊆ F X := Eq.subset (id (Eq.symm hX₂))
|
· have : X ⊆ F X := Eq.subset (id (Eq.symm hX₂))
|
||||||
rw [hC]
|
rw [hC]
|
||||||
|
@ -2010,7 +1989,7 @@ theorem exercise_3_30_b : ∀ X, X ⊆ A ∧ F X = X → B ⊆ X ∧ X ⊆ C :=
|
||||||
|
|
||||||
end Exercise_3_30
|
end Exercise_3_30
|
||||||
|
|
||||||
/-- ### Exercise 3.32 (a)
|
/-- #### Exercise 3.32 (a)
|
||||||
|
|
||||||
Show that `R` is symmetric **iff** `R⁻¹ ⊆ R`.
|
Show that `R` is symmetric **iff** `R⁻¹ ⊆ R`.
|
||||||
-/
|
-/
|
||||||
|
@ -2028,7 +2007,7 @@ theorem exercise_3_32_a {R : Set.Relation α}
|
||||||
rw [← mem_self_comm_mem_inv] at hp
|
rw [← mem_self_comm_mem_inv] at hp
|
||||||
exact hR hp
|
exact hR hp
|
||||||
|
|
||||||
/-- ### Exercise 3.32 (b)
|
/-- #### Exercise 3.32 (b)
|
||||||
|
|
||||||
Show that `R` is transitive **iff** `R ∘ R ⊆ R`.
|
Show that `R` is transitive **iff** `R ∘ R ⊆ R`.
|
||||||
-/
|
-/
|
||||||
|
@ -2045,7 +2024,7 @@ theorem exercise_3_32_b {R : Set.Relation α}
|
||||||
have : (x, z) ∈ comp R R := ⟨y, hx, hz⟩
|
have : (x, z) ∈ comp R R := ⟨y, hx, hz⟩
|
||||||
exact hR this
|
exact hR this
|
||||||
|
|
||||||
/-- ### Exercise 3.33
|
/-- #### Exercise 3.33
|
||||||
|
|
||||||
Show that `R` is a symmetric and transitive relation **iff** `R = R⁻¹ ∘ R`.
|
Show that `R` is a symmetric and transitive relation **iff** `R = R⁻¹ ∘ R`.
|
||||||
-/
|
-/
|
||||||
|
@ -2095,7 +2074,7 @@ theorem exercise_3_33 {R : Set.Relation α}
|
||||||
rw [h, hR]
|
rw [h, hR]
|
||||||
exact ⟨y, hx, this⟩
|
exact ⟨y, hx, this⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.34 (a)
|
/-- #### Exercise 3.34 (a)
|
||||||
|
|
||||||
Assume that `𝓐` is a nonempty set, every member of which is a transitive
|
Assume that `𝓐` is a nonempty set, every member of which is a transitive
|
||||||
relation. Is the set `⋂ 𝓐` a transitive relation?
|
relation. Is the set `⋂ 𝓐` a transitive relation?
|
||||||
|
@ -2110,7 +2089,7 @@ theorem exercise_3_34_a {𝓐 : Set (Set.Relation α)}
|
||||||
have hy' := hy A hA
|
have hy' := hy A hA
|
||||||
exact h𝓐 A hA hx' hy'
|
exact h𝓐 A hA hx' hy'
|
||||||
|
|
||||||
/-- ### Exercise 3.34 (b)
|
/-- #### Exercise 3.34 (b)
|
||||||
|
|
||||||
Assume that `𝓐` is a nonempty set, every member of which is a transitive
|
Assume that `𝓐` is a nonempty set, every member of which is a transitive
|
||||||
relation. Is `⋃ 𝓐` a transitive relation?
|
relation. Is `⋃ 𝓐` a transitive relation?
|
||||||
|
@ -2157,7 +2136,7 @@ theorem exercise_3_34_b {𝓐 : Set (Set.Relation ℕ)}
|
||||||
simp at this
|
simp at this
|
||||||
exact absurd (h h₁ h₂) h₃
|
exact absurd (h h₁ h₂) h₃
|
||||||
|
|
||||||
/-- ### Exercise 3.35
|
/-- #### Exercise 3.35
|
||||||
|
|
||||||
Show that for any `R` and `x`, we have `[x]_R = R⟦{x}⟧`.
|
Show that for any `R` and `x`, we have `[x]_R = R⟦{x}⟧`.
|
||||||
-/
|
-/
|
||||||
|
@ -2168,7 +2147,7 @@ theorem exercise_3_35 {R : Set.Relation α} {x : α}
|
||||||
_ = { t | ∃ u ∈ ({x} : Set α), (u, t) ∈ R } := by simp
|
_ = { t | ∃ u ∈ ({x} : Set α), (u, t) ∈ R } := by simp
|
||||||
_ = image R {x} := rfl
|
_ = image R {x} := rfl
|
||||||
|
|
||||||
/-- ### Exercise 3.36
|
/-- #### Exercise 3.36
|
||||||
|
|
||||||
Assume that `f : A → B` and that `R` is an equivalence relation on `B`. Define
|
Assume that `f : A → B` and that `R` is an equivalence relation on `B`. Define
|
||||||
`Q` to be the set `{⟨x, y⟩ ∈ A × A | ⟨f(x), f(y)⟩ ∈ R}`. Show that `Q` is an
|
`Q` to be the set `{⟨x, y⟩ ∈ A × A | ⟨f(x), f(y)⟩ ∈ R}`. Show that `Q` is an
|
||||||
|
@ -2194,7 +2173,7 @@ theorem exercise_3_36 {f : Set.HRelation α β}
|
||||||
Prod.exists,
|
Prod.exists,
|
||||||
exists_and_right,
|
exists_and_right,
|
||||||
exists_eq_right
|
exists_eq_right
|
||||||
] at hx
|
] at hx
|
||||||
apply Or.elim hx
|
apply Or.elim hx
|
||||||
· intro ⟨_, _, hx₁⟩
|
· intro ⟨_, _, hx₁⟩
|
||||||
rw [← hf.dom_eq]
|
rw [← hf.dom_eq]
|
||||||
|
@ -2234,7 +2213,7 @@ theorem exercise_3_36 {f : Set.HRelation α β}
|
||||||
simp only [exists_and_left, Set.mem_setOf_eq]
|
simp only [exists_and_left, Set.mem_setOf_eq]
|
||||||
exact ⟨fx, hfx, fz, hfz, hR.trans h₁ h₂⟩
|
exact ⟨fx, hfx, fz, hfz, hR.trans h₁ h₂⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.37
|
/-- #### Exercise 3.37
|
||||||
|
|
||||||
Assume that `P` is a partition of a set `A`. Define the relation `Rₚ` as
|
Assume that `P` is a partition of a set `A`. Define the relation `Rₚ` as
|
||||||
follows:
|
follows:
|
||||||
|
@ -2311,7 +2290,7 @@ theorem exercise_3_37 {P : Set (Set α)} {A : Set α}
|
||||||
simp only [Set.mem_setOf_eq]
|
simp only [Set.mem_setOf_eq]
|
||||||
exact ⟨B₁, hB₁.left, hB₁.right.left, by rw [hB]; exact hB₂.right.right⟩
|
exact ⟨B₁, hB₁.left, hB₁.right.left, by rw [hB]; exact hB₂.right.right⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.38
|
/-- #### Exercise 3.38
|
||||||
|
|
||||||
Theorem 3P shows that `A / R` is a partition of `A` whenever `R` is an
|
Theorem 3P shows that `A / R` is a partition of `A` whenever `R` is an
|
||||||
equivalence relation on `A`. Show that if we start with the equivalence relation
|
equivalence relation on `A`. Show that if we start with the equivalence relation
|
||||||
|
@ -2379,7 +2358,7 @@ theorem exercise_3_38 {P : Set (Set α)} {A : Set α}
|
||||||
simp only [Set.mem_setOf_eq]
|
simp only [Set.mem_setOf_eq]
|
||||||
_ = neighborhood Rₚ x := rfl
|
_ = neighborhood Rₚ x := rfl
|
||||||
|
|
||||||
/-- ### Exercise 3.39
|
/-- #### Exercise 3.39
|
||||||
|
|
||||||
Assume that we start with an equivalence relation `R` on `A` and define `P` to
|
Assume that we start with an equivalence relation `R` on `A` and define `P` to
|
||||||
be the partition `A / R`. Show that `Rₚ`, as defined in Exercise 37, is just
|
be the partition `A / R`. Show that `Rₚ`, as defined in Exercise 37, is just
|
||||||
|
@ -2417,7 +2396,7 @@ theorem exercise_3_39 {P : Set (Set α)} {R Rₚ : Set.Relation α} {A : Set α}
|
||||||
rw [hP]
|
rw [hP]
|
||||||
exact ⟨x, hxA, rfl⟩
|
exact ⟨x, hxA, rfl⟩
|
||||||
|
|
||||||
/-- ### Exercise 3.41 (a)
|
/-- #### Exercise 3.41 (a)
|
||||||
|
|
||||||
Let `ℝ` be the set of real numbers and define the realtion `Q` on `ℝ × ℝ` by
|
Let `ℝ` be the set of real numbers and define the realtion `Q` on `ℝ × ℝ` by
|
||||||
`⟨u, v⟩ Q ⟨x, y⟩` **iff** `u + y = x + v`. Show that `Q` is an equivalence
|
`⟨u, v⟩ Q ⟨x, y⟩` **iff** `u + y = x + v`. Show that `Q` is an equivalence
|
||||||
|
@ -2470,7 +2449,7 @@ theorem exercise_3_41_a {Q : Set.Relation (ℝ × ℝ)}
|
||||||
conv => right; rw [add_comm]
|
conv => right; rw [add_comm]
|
||||||
exact this
|
exact this
|
||||||
|
|
||||||
/-- ### Exercise 3.43
|
/-- #### Exercise 3.43
|
||||||
|
|
||||||
Assume that `R` is a linear ordering on a set `A`. Show that `R⁻¹` is also a
|
Assume that `R` is a linear ordering on a set `A`. Show that `R⁻¹` is also a
|
||||||
linear ordering on `A`.
|
linear ordering on `A`.
|
||||||
|
@ -2493,7 +2472,7 @@ theorem exercise_3_43 {R : Rel α α} (hR : IsStrictTotalOrder α R)
|
||||||
unfold Rel.inv flip at *
|
unfold Rel.inv flip at *
|
||||||
exact hR.trans c b a hac hab
|
exact hR.trans c b a hac hab
|
||||||
|
|
||||||
/-! ### Exercise 3.44
|
/-! #### Exercise 3.44
|
||||||
|
|
||||||
Assume that `<` is a linear ordering on a set `A`. Assume that `f : A → A` and
|
Assume that `<` is a linear ordering on a set `A`. Assume that `f : A → A` and
|
||||||
that `f` has the property that whenever `x < y`, then `f(x) < f(y)`. Show that
|
that `f` has the property that whenever `x < y`, then `f(x) < f(y)`. Show that
|
||||||
|
@ -2537,7 +2516,7 @@ theorem exercise_3_44_ii {R : Rel α α} (hR : IsStrictTotalOrder α R)
|
||||||
have := hR.trans (f x) (f y) (f x) h (hf y x h₂)
|
have := hR.trans (f x) (f y) (f x) h (hf y x h₂)
|
||||||
exact absurd this (hR.irrefl (f x))
|
exact absurd this (hR.irrefl (f x))
|
||||||
|
|
||||||
/-- ### Exercise 3.45
|
/-- #### Exercise 3.45
|
||||||
|
|
||||||
Assume that `<_A` and `<_B` are linear orderings on `A` and `B`, respectively.
|
Assume that `<_A` and `<_B` are linear orderings on `A` and `B`, respectively.
|
||||||
Define the binary relation `<_L` on the Cartesian product `A × B` by:
|
Define the binary relation `<_L` on the Cartesian product `A × B` by:
|
||||||
|
@ -2616,4 +2595,4 @@ theorem exercise_3_45 {A : Rel α α} {B : Rel β β} {R : Rel (α × β) (α ×
|
||||||
have := hB.trans b₁ b₂ b₃ ha₁.right hb₂
|
have := hB.trans b₁ b₂ b₃ ha₁.right hb₂
|
||||||
exact (hR a₁ b₁ a₃ b₃).mpr (Or.inr ⟨ha₂, this⟩)
|
exact (hR a₁ b₁ a₃ b₃).mpr (Or.inr ⟨ha₂, this⟩)
|
||||||
|
|
||||||
end Enderton.Set.Chapter_3
|
end Enderton.Set.Chapter_3
|
|
@ -11,7 +11,7 @@ Natural Numbers
|
||||||
|
|
||||||
namespace Enderton.Set.Chapter_4
|
namespace Enderton.Set.Chapter_4
|
||||||
|
|
||||||
/-- ### Theorem 4C
|
/-- #### Theorem 4C
|
||||||
|
|
||||||
Every natural number except `0` is the successor of some natural number.
|
Every natural number except `0` is the successor of some natural number.
|
||||||
-/
|
-/
|
||||||
|
@ -23,7 +23,7 @@ theorem theorem_4c (n : ℕ)
|
||||||
|
|
||||||
#check Nat.exists_eq_succ_of_ne_zero
|
#check Nat.exists_eq_succ_of_ne_zero
|
||||||
|
|
||||||
/-- ### Theorem 4I
|
/-- #### Theorem 4I
|
||||||
|
|
||||||
For natural numbers `m` and `n`,
|
For natural numbers `m` and `n`,
|
||||||
```
|
```
|
||||||
|
@ -34,7 +34,7 @@ m + n⁺ = (m + n)⁺
|
||||||
theorem theorem_4i (m n : ℕ)
|
theorem theorem_4i (m n : ℕ)
|
||||||
: m + 0 = m ∧ m + n.succ = (m + n).succ := ⟨rfl, rfl⟩
|
: m + 0 = m ∧ m + n.succ = (m + n).succ := ⟨rfl, rfl⟩
|
||||||
|
|
||||||
/-- ### Theorem 4J
|
/-- #### Theorem 4J
|
||||||
|
|
||||||
For natural numbers `m` and `n`,
|
For natural numbers `m` and `n`,
|
||||||
```
|
```
|
||||||
|
@ -45,7 +45,7 @@ m ⬝ n⁺ = m ⬝ n + m .
|
||||||
theorem theorem_4j (m n : ℕ)
|
theorem theorem_4j (m n : ℕ)
|
||||||
: m * 0 = 0 ∧ m * n.succ = m * n + m := ⟨rfl, rfl⟩
|
: m * 0 = 0 ∧ m * n.succ = m * n + m := ⟨rfl, rfl⟩
|
||||||
|
|
||||||
/-- ### Left Additive Identity
|
/-- #### Left Additive Identity
|
||||||
|
|
||||||
For all `n ∈ ω`, `A₀(n) = n`. In other words, `0 + n = n`.
|
For all `n ∈ ω`, `A₀(n) = n`. In other words, `0 + n = n`.
|
||||||
-/
|
-/
|
||||||
|
@ -60,7 +60,7 @@ lemma left_additive_identity (n : ℕ)
|
||||||
|
|
||||||
#check Nat.zero_add
|
#check Nat.zero_add
|
||||||
|
|
||||||
/-- ### Lemma 2
|
/-- #### Lemma 2
|
||||||
|
|
||||||
For all `m, n ∈ ω`, `Aₘ₊(n) = Aₘ(n⁺)`. In other words, `m⁺ + n = m + n⁺`.
|
For all `m, n ∈ ω`, `Aₘ₊(n) = Aₘ(n⁺)`. In other words, `m⁺ + n = m + n⁺`.
|
||||||
-/
|
-/
|
||||||
|
@ -76,7 +76,7 @@ lemma lemma_2 (m n : ℕ)
|
||||||
|
|
||||||
#check Nat.succ_add_eq_succ_add
|
#check Nat.succ_add_eq_succ_add
|
||||||
|
|
||||||
/-- ### Theorem 4K-1
|
/-- #### Theorem 4K-1
|
||||||
|
|
||||||
Associatve law for addition. For `m, n, p ∈ ω`,
|
Associatve law for addition. For `m, n, p ∈ ω`,
|
||||||
```
|
```
|
||||||
|
@ -99,7 +99,7 @@ theorem theorem_4k_1 {m n p : ℕ}
|
||||||
|
|
||||||
#check Nat.add_assoc
|
#check Nat.add_assoc
|
||||||
|
|
||||||
/-- ### Theorem 4K-2
|
/-- #### Theorem 4K-2
|
||||||
|
|
||||||
Commutative law for addition. For `m, n ∈ ω`,
|
Commutative law for addition. For `m, n ∈ ω`,
|
||||||
```
|
```
|
||||||
|
@ -119,7 +119,7 @@ theorem theorem_4k_2 {m n : ℕ}
|
||||||
|
|
||||||
#check Nat.add_comm
|
#check Nat.add_comm
|
||||||
|
|
||||||
/-- ### Zero Multiplicand
|
/-- #### Zero Multiplicand
|
||||||
|
|
||||||
For all `n ∈ ω`, `M₀(n) = 0`. In other words, `0 ⬝ n = 0`.
|
For all `n ∈ ω`, `M₀(n) = 0`. In other words, `0 ⬝ n = 0`.
|
||||||
-/
|
-/
|
||||||
|
@ -135,7 +135,7 @@ theorem zero_multiplicand (n : ℕ)
|
||||||
|
|
||||||
#check Nat.zero_mul
|
#check Nat.zero_mul
|
||||||
|
|
||||||
/-- ### Successor Distribution
|
/-- #### Successor Distribution
|
||||||
|
|
||||||
For all `m, n ∈ ω`, `Mₘ₊(n) = Mₘ(n) + n`. In other words,
|
For all `m, n ∈ ω`, `Mₘ₊(n) = Mₘ(n) + n`. In other words,
|
||||||
```
|
```
|
||||||
|
@ -159,7 +159,7 @@ theorem succ_distrib (m n : ℕ)
|
||||||
|
|
||||||
#check Nat.succ_mul
|
#check Nat.succ_mul
|
||||||
|
|
||||||
/-- ### Theorem 4K-3
|
/-- #### Theorem 4K-3
|
||||||
|
|
||||||
Distributive law. For `m, n, p ∈ ω`,
|
Distributive law. For `m, n, p ∈ ω`,
|
||||||
```
|
```
|
||||||
|
@ -181,7 +181,7 @@ theorem theorem_4k_3 (m n p : ℕ)
|
||||||
_ = (m * n + n) + (m * p + p) := by rw [theorem_4k_1, theorem_4k_1]
|
_ = (m * n + n) + (m * p + p) := by rw [theorem_4k_1, theorem_4k_1]
|
||||||
_ = m.succ * n + m.succ * p := by rw [succ_distrib, succ_distrib]
|
_ = m.succ * n + m.succ * p := by rw [succ_distrib, succ_distrib]
|
||||||
|
|
||||||
/-- ### Successor Identity
|
/-- #### Successor Identity
|
||||||
|
|
||||||
For all `m ∈ ω`, `Aₘ(1) = m⁺`. In other words, `m + 1 = m⁺`.
|
For all `m ∈ ω`, `Aₘ(1) = m⁺`. In other words, `m + 1 = m⁺`.
|
||||||
-/
|
-/
|
||||||
|
@ -197,7 +197,7 @@ theorem succ_identity (m : ℕ)
|
||||||
|
|
||||||
#check Nat.succ_eq_one_add
|
#check Nat.succ_eq_one_add
|
||||||
|
|
||||||
/-- ### Right Multiplicative Identity
|
/-- #### Right Multiplicative Identity
|
||||||
|
|
||||||
For all `m ∈ ω`, `Mₘ(1) = m`. In other words, `m ⬝ 1 = m`.
|
For all `m ∈ ω`, `Mₘ(1) = m`. In other words, `m ⬝ 1 = m`.
|
||||||
-/
|
-/
|
||||||
|
@ -213,9 +213,9 @@ theorem right_mul_id (m : ℕ)
|
||||||
|
|
||||||
#check Nat.mul_one
|
#check Nat.mul_one
|
||||||
|
|
||||||
/-- ### Theorem 4K-5
|
/-- #### Theorem 4K-5
|
||||||
|
|
||||||
Commutative law for multiplication. For `m, n ∈ ω`, `m ⬝ n = n ⬝ m`.
|
Commutative law for multiplication. For `m, n ∈ ω`, `m ⬝ n = n ⬝ m`.
|
||||||
-/
|
-/
|
||||||
theorem theorem_4k_5 (m n : ℕ)
|
theorem theorem_4k_5 (m n : ℕ)
|
||||||
: m * n = n * m := by
|
: m * n = n * m := by
|
||||||
|
@ -232,7 +232,7 @@ theorem theorem_4k_5 (m n : ℕ)
|
||||||
|
|
||||||
#check Nat.mul_comm
|
#check Nat.mul_comm
|
||||||
|
|
||||||
/-- ### Theorem 4K-4
|
/-- #### Theorem 4K-4
|
||||||
|
|
||||||
Associative law for multiplication. For `m, n, p ∈ ω`,
|
Associative law for multiplication. For `m, n, p ∈ ω`,
|
||||||
```
|
```
|
||||||
|
@ -254,7 +254,7 @@ theorem theorem_4k_4 (m n p : ℕ)
|
||||||
|
|
||||||
#check Nat.mul_assoc
|
#check Nat.mul_assoc
|
||||||
|
|
||||||
/-- ### Lemma 4L(b)
|
/-- #### Lemma 4L(b)
|
||||||
|
|
||||||
No natural number is a member of itself.
|
No natural number is a member of itself.
|
||||||
-/
|
-/
|
||||||
|
@ -269,7 +269,7 @@ lemma lemma_4l_b (n : ℕ)
|
||||||
|
|
||||||
#check Nat.lt_irrefl
|
#check Nat.lt_irrefl
|
||||||
|
|
||||||
/-- ### Lemma 10
|
/-- #### Lemma 10
|
||||||
|
|
||||||
For every natural number `n ≠ 0`, `0 ∈ n`.
|
For every natural number `n ≠ 0`, `0 ∈ n`.
|
||||||
-/
|
-/
|
||||||
|
@ -285,7 +285,7 @@ theorem zero_least_nat (n : ℕ)
|
||||||
|
|
||||||
#check Nat.pos_of_ne_zero
|
#check Nat.pos_of_ne_zero
|
||||||
|
|
||||||
/-! ### Theorem 4N
|
/-! #### Theorem 4N
|
||||||
|
|
||||||
For any natural numbers `n`, `m`, and `p`,
|
For any natural numbers `n`, `m`, and `p`,
|
||||||
```
|
```
|
||||||
|
@ -299,25 +299,9 @@ m ∈ n ↔ m ⬝ p ∈ n ⬝ p.
|
||||||
|
|
||||||
theorem theorem_4n_i (m n p : ℕ)
|
theorem theorem_4n_i (m n p : ℕ)
|
||||||
: m < n ↔ m + p < n + p := by
|
: m < n ↔ m + p < n + p := by
|
||||||
/-
|
|
||||||
> Let `m` and `n` be natural numbers.
|
|
||||||
>
|
|
||||||
> ##### (⇒)
|
|
||||||
> Suppose `m ∈ n`. Let
|
|
||||||
>
|
|
||||||
> `S = {p ∈ ω | m + p ∈ n + p}`
|
|
||||||
-/
|
|
||||||
have hf : ∀ m n : ℕ, m < n → m + p < n + p := by
|
have hf : ∀ m n : ℕ, m < n → m + p < n + p := by
|
||||||
induction p with
|
induction p with
|
||||||
/-
|
|
||||||
> It trivially follows that `0 ∈ S`.
|
|
||||||
-/
|
|
||||||
| zero => simp
|
| zero => simp
|
||||||
/-
|
|
||||||
> Next, suppose `p ∈ S`. That is, suppose `m + p ∈ n + p`. By *Lemma 4L(a)*,
|
|
||||||
> this holds if and only if `(m + p)⁺ ∈ (n + p)⁺`. *Theorem 4I* then implies
|
|
||||||
> that `m + p⁺ ∈ n + p⁺` meaning `p⁺ ∈ S`.
|
|
||||||
-/
|
|
||||||
| succ p ih =>
|
| succ p ih =>
|
||||||
intro m n hp
|
intro m n hp
|
||||||
have := ih m n hp
|
have := ih m n hp
|
||||||
|
@ -326,76 +310,29 @@ theorem theorem_4n_i (m n p : ℕ)
|
||||||
have h₂ : (n + p).succ = n + p.succ := rfl
|
have h₂ : (n + p).succ = n + p.succ := rfl
|
||||||
rwa [← h₁, ← h₂]
|
rwa [← h₁, ← h₂]
|
||||||
apply Iff.intro
|
apply Iff.intro
|
||||||
/-
|
|
||||||
> Thus `S` is an inductive set. Hence *Theorem 4B* implies `S = ω`. Therefore,
|
|
||||||
> for all `p ∈ ω`, `m ∈n` implies `m + p ∈ n + p`.
|
|
||||||
-/
|
|
||||||
· exact hf m n
|
· exact hf m n
|
||||||
/-
|
|
||||||
> ##### (⇐)
|
|
||||||
> Let `p` be a natural number and suppose `m + p ∈ n + p`. By the
|
|
||||||
> *Trichotomy Law for `ω`*, there are two cases to consider regarding how `m`
|
|
||||||
> and `n` relate to one another:
|
|
||||||
-/
|
|
||||||
· intro h
|
· intro h
|
||||||
match @trichotomous ℕ LT.lt _ m n with
|
match @trichotomous ℕ LT.lt _ m n with
|
||||||
|
| Or.inl h₁ =>
|
||||||
|
exact h₁
|
||||||
| Or.inr (Or.inl h₁) =>
|
| Or.inr (Or.inl h₁) =>
|
||||||
/-
|
|
||||||
> ###### Case 1
|
|
||||||
> Suppose `m = n`. Then `m + p ∈ n + p = m + p`. *Lemma 4L(b)* shows this is
|
|
||||||
> impossible.
|
|
||||||
-/
|
|
||||||
rw [← h₁] at h
|
rw [← h₁] at h
|
||||||
exact absurd h (lemma_4l_b (m + p))
|
exact absurd h (lemma_4l_b (m + p))
|
||||||
| Or.inr (Or.inr h₁) =>
|
| Or.inr (Or.inr h₁) =>
|
||||||
/-
|
|
||||||
> ###### Case 2
|
|
||||||
> Suppose `n ∈ m`. Then *(⇒)* indicates `n + p ∈ m + p`. But this contradicts
|
|
||||||
> the *Trichotomy Law for `ω`* since, by hypothesis, `m + p ∈ n + p`.
|
|
||||||
-/
|
|
||||||
have := hf n m h₁
|
have := hf n m h₁
|
||||||
exact absurd this (Nat.lt_asymm h)
|
exact absurd this (Nat.lt_asymm h)
|
||||||
| Or.inl h₁ =>
|
|
||||||
/-
|
|
||||||
> ###### Conclusion
|
|
||||||
> By trichotomy, it follows `m ∈ n`.
|
|
||||||
-/
|
|
||||||
exact h₁
|
|
||||||
|
|
||||||
#check Nat.add_lt_add_iff_right
|
#check Nat.add_lt_add_iff_right
|
||||||
|
|
||||||
theorem theorem_4n_ii (m n p : ℕ)
|
theorem theorem_4n_ii (m n p : ℕ)
|
||||||
: m < n ↔ m * p.succ < n * p.succ := by
|
: m < n ↔ m * p.succ < n * p.succ := by
|
||||||
/-
|
|
||||||
> Let `m` and `n` be natural numbers.
|
|
||||||
>
|
|
||||||
> ##### (⇒)
|
|
||||||
> Suppose `m ∈ n`. Let
|
|
||||||
>
|
|
||||||
> `S = {p ∈ ω | m ⬝ p⁺ ∈ n ⬝ p⁺}`.
|
|
||||||
-/
|
|
||||||
have hf : ∀ m n : ℕ, m < n → m * p.succ < n * p.succ := by
|
have hf : ∀ m n : ℕ, m < n → m * p.succ < n * p.succ := by
|
||||||
intro m n hp₁
|
intro m n hp₁
|
||||||
induction p with
|
induction p with
|
||||||
| zero =>
|
| zero =>
|
||||||
/-
|
|
||||||
> `0 ∈ S` by *Right Multiplicative Identity*.
|
|
||||||
-/
|
|
||||||
simp only [Nat.mul_one]
|
simp only [Nat.mul_one]
|
||||||
exact hp₁
|
exact hp₁
|
||||||
| succ p ih =>
|
| succ p ih =>
|
||||||
/-
|
|
||||||
> Next, suppose `p ∈ S`. That is, `m ⬝ p⁺ ∈ n ⬝ p⁺`. Then
|
|
||||||
>
|
|
||||||
> `m ⬝ p⁺⁺ = m ⬝ p⁺ + m` *Theorem 4J*
|
|
||||||
> ` ∈ n ⬝ p⁺ + m` *(i)*
|
|
||||||
> ` = m + n ⬝ p⁺` *Theorem 4K-2*
|
|
||||||
> ` ∈ n + n ⬝ p⁺` *(i)*
|
|
||||||
> ` = n ⬝p⁺ + n` *Theorem 4K-2*
|
|
||||||
> ` n ⬝ p⁺⁺` *Theorem 4J*
|
|
||||||
>
|
|
||||||
> Therefore `p⁺ ∈ S`.
|
|
||||||
-/
|
|
||||||
have hp₂ : m * p.succ < n * p.succ := by
|
have hp₂ : m * p.succ < n * p.succ := by
|
||||||
by_cases hp₃ : p = 0
|
by_cases hp₃ : p = 0
|
||||||
· rw [hp₃] at *
|
· rw [hp₃] at *
|
||||||
|
@ -410,47 +347,21 @@ theorem theorem_4n_ii (m n p : ℕ)
|
||||||
_ = n * p.succ + n := by rw [theorem_4k_2]
|
_ = n * p.succ + n := by rw [theorem_4k_2]
|
||||||
_ = n * p.succ.succ := rfl
|
_ = n * p.succ.succ := rfl
|
||||||
apply Iff.intro
|
apply Iff.intro
|
||||||
/-
|
|
||||||
> Thus `S` is an inductive set. Hence *Theorem 4B* implies `S = ω`. By
|
|
||||||
> *Theorem 4C*, every natural number except `0` is the successor of some natural
|
|
||||||
> number. Therefore, for all `p ∈ ω` such that `p ≠ 0`, `m ∈ n` implies
|
|
||||||
`m ⬝ p ∈ n ⬝ p`.
|
|
||||||
-/
|
|
||||||
· exact hf m n
|
· exact hf m n
|
||||||
/-
|
· intro hp
|
||||||
> ##### (⇐)
|
match @trichotomous ℕ LT.lt _ m n with
|
||||||
> Let `p ≠ 0` be a natural number and suppose `m ⬝ p ∈ n ⬝ p`. By the
|
| Or.inl h₁ =>
|
||||||
> *Trichotomy Law for `ω`*, there are two cases to consider regarding how `m`
|
exact h₁
|
||||||
> and `n` relate to one another.
|
| Or.inr (Or.inl h₁) =>
|
||||||
-/
|
rw [← h₁] at hp
|
||||||
intro hp
|
exact absurd hp (lemma_4l_b (m * p.succ))
|
||||||
match @trichotomous ℕ LT.lt _ m n with
|
| Or.inr (Or.inr h₁) =>
|
||||||
| Or.inr (Or.inl h₁) =>
|
have := hf n m h₁
|
||||||
/-
|
exact absurd this (Nat.lt_asymm hp)
|
||||||
> ###### Case 1
|
|
||||||
> Suppose `m = n`. Then `m ⬝ p ∈ n ⬝ p = m ⬝ p`. *Lemma 4L(b)* shows this is
|
|
||||||
> impossible.
|
|
||||||
-/
|
|
||||||
rw [← h₁] at hp
|
|
||||||
exact absurd hp (lemma_4l_b (m * p.succ))
|
|
||||||
| Or.inr (Or.inr h₁) =>
|
|
||||||
/-
|
|
||||||
> ###### Case 2
|
|
||||||
> Suppose `n ∈ m`. Then *(⇒)* indicates `n ⬝ p ∈ m ⬝ p`. But this contradicts
|
|
||||||
> *Trichotomy Law for `ω`* since, by hypothesis, `m ⬝ p ∈ n ⬝ p`.
|
|
||||||
-/
|
|
||||||
have := hf n m h₁
|
|
||||||
exact absurd this (Nat.lt_asymm hp)
|
|
||||||
| Or.inl h₁ =>
|
|
||||||
/-
|
|
||||||
> ###### Conclusion
|
|
||||||
> By trichotomy, it follows `m ∈ n`.
|
|
||||||
-/
|
|
||||||
exact h₁
|
|
||||||
|
|
||||||
#check Nat.mul_lt_mul_of_pos_right
|
#check Nat.mul_lt_mul_of_pos_right
|
||||||
|
|
||||||
/-! ### Corollary 4P
|
/-! #### Corollary 4P
|
||||||
|
|
||||||
The following cancellation laws hold for `m`, `n`, and `p` in `ω`:
|
The following cancellation laws hold for `m`, `n`, and `p` in `ω`:
|
||||||
```
|
```
|
||||||
|
@ -461,87 +372,44 @@ m ⬝ p = n ⬝ p ∧ p ≠ 0 ⇒ m = n.
|
||||||
|
|
||||||
theorem corollary_4p_i (m n p : ℕ) (h : m + p = n + p)
|
theorem corollary_4p_i (m n p : ℕ) (h : m + p = n + p)
|
||||||
: m = n := by
|
: m = n := by
|
||||||
/-
|
|
||||||
> Suppose `m + p = n + p`. By the *Trichotomy Law for `ω`*, there are two cases
|
|
||||||
> to consider regarding how `m` and `n` relate to one another.
|
|
||||||
-/
|
|
||||||
match @trichotomous ℕ LT.lt _ m n with
|
match @trichotomous ℕ LT.lt _ m n with
|
||||||
| Or.inl h₁ =>
|
| Or.inl h₁ =>
|
||||||
/-
|
|
||||||
> If `m ∈n`, then *Theorem 4N* implies `m + p ∈ n + p`.
|
|
||||||
-/
|
|
||||||
rw [theorem_4n_i m n p, h] at h₁
|
rw [theorem_4n_i m n p, h] at h₁
|
||||||
exact absurd h₁ (lemma_4l_b (n + p))
|
exact absurd h₁ (lemma_4l_b (n + p))
|
||||||
| Or.inr (Or.inr h₁) =>
|
|
||||||
/-
|
|
||||||
> If `n ∈ m`, then *Theorem 4N* implies `n + p ∈ m + p`.
|
|
||||||
-/
|
|
||||||
rw [theorem_4n_i n m p, h] at h₁
|
|
||||||
exact absurd h₁ (lemma_4l_b (n + p))
|
|
||||||
/-
|
|
||||||
> Both of these contradict the *Trichotomy Law for `ω`* of `m + p` and `n + p`.
|
|
||||||
> Thus `m = n` is the only remaining possibility.
|
|
||||||
-/
|
|
||||||
| Or.inr (Or.inl h₁) =>
|
| Or.inr (Or.inl h₁) =>
|
||||||
exact h₁
|
exact h₁
|
||||||
|
| Or.inr (Or.inr h₁) =>
|
||||||
|
rw [theorem_4n_i n m p, h] at h₁
|
||||||
|
exact absurd h₁ (lemma_4l_b (n + p))
|
||||||
|
|
||||||
#check Nat.add_right_cancel
|
#check Nat.add_right_cancel
|
||||||
|
|
||||||
/-- ### Well Ordering of ω
|
/-- #### Well Ordering of ω
|
||||||
|
|
||||||
Let `A` be a nonempty subset of `ω`. Then there is some `m ∈ A` such that
|
Let `A` be a nonempty subset of `ω`. Then there is some `m ∈ A` such that
|
||||||
`m ≤ n` for all `n ∈ A`.
|
`m ≤ n` for all `n ∈ A`.
|
||||||
-/
|
-/
|
||||||
theorem well_ordering_nat {A : Set ℕ} (hA : Set.Nonempty A)
|
theorem well_ordering_nat {A : Set ℕ} (hA : Set.Nonempty A)
|
||||||
: ∃ m ∈ A, ∀ n, n ∈ A → m ≤ n := by
|
: ∃ m ∈ A, ∀ n, n ∈ A → m ≤ n := by
|
||||||
/-
|
-- Assume `A` does not have a least element.
|
||||||
> Let `A` be a nonempty subset of `ω`. For the sake of contradiciton, suppose
|
|
||||||
> `A` does not have a least element.
|
|
||||||
-/
|
|
||||||
by_contra nh
|
by_contra nh
|
||||||
simp only [not_exists, not_and, not_forall, not_le, exists_prop] at nh
|
simp only [not_exists, not_and, not_forall, not_le, exists_prop] at nh
|
||||||
/-
|
|
||||||
> It then suffices to prove that the complement of `A` equals `ω`. If we do so,
|
-- If we show the complement of `A` is `ω`, then `A = ∅`, a contradiction.
|
||||||
> then `A = ∅`, a contradiction.
|
|
||||||
-/
|
|
||||||
suffices A.compl = Set.univ by
|
suffices A.compl = Set.univ by
|
||||||
have h := Set.univ_diff_compl_eq_self A
|
have h := Set.univ_diff_compl_eq_self A
|
||||||
rw [this] at h
|
rw [this] at h
|
||||||
simp only [sdiff_self, Set.bot_eq_empty] at h
|
simp only [sdiff_self, Set.bot_eq_empty] at h
|
||||||
exact absurd h.symm (Set.Nonempty.ne_empty hA)
|
exact absurd h.symm (Set.Nonempty.ne_empty hA)
|
||||||
/-
|
|
||||||
> Define
|
-- Use strong induction to prove every element of `ω` is in the complement.
|
||||||
>
|
|
||||||
> `S = {n ∈ ω | (∀ m ∈ n)m ∉ A}`.
|
|
||||||
>
|
|
||||||
> We prove `S` is an inductive set by showing that (i) `0 ∈ S` and (ii) if
|
|
||||||
> `n ∈ S`, then `n⁺ ∈ S`. Afterward we show that `ω - A = ω`, completing the
|
|
||||||
> proof.
|
|
||||||
-/
|
|
||||||
have : ∀ n : ℕ, (∀ m, m < n → m ∈ A.compl) := by
|
have : ∀ n : ℕ, (∀ m, m < n → m ∈ A.compl) := by
|
||||||
intro n
|
intro n
|
||||||
induction n with
|
induction n with
|
||||||
| zero =>
|
| zero =>
|
||||||
/-
|
|
||||||
> #### (i)
|
|
||||||
> It vacuously holds that `0 ∈ S`.
|
|
||||||
-/
|
|
||||||
intro m hm
|
intro m hm
|
||||||
exact False.elim (Nat.not_lt_zero m hm)
|
exact False.elim (Nat.not_lt_zero m hm)
|
||||||
| succ n ih =>
|
| succ n ih =>
|
||||||
/-
|
|
||||||
> #### (ii)
|
|
||||||
> Suppose `n ∈ S`. We want to prove that
|
|
||||||
>
|
|
||||||
> `∀ m, m ∈ n⁺ ⇒ m ∉ A`.
|
|
||||||
>
|
|
||||||
> To this end, let `m ∈ ω` such that `m ∈ n⁺`. By definition of the successor,
|
|
||||||
> `m ∈ n` or `m = n`. If the former, `n ∈ S` implies `m ∉ A`. If the latter, it
|
|
||||||
> isn't possible for `n ∈ A` since the *Trichotomy Law for `ω`* would otherwise
|
|
||||||
> imply `n` is the least element of `A`, which is assumed to not exist. Hence
|
|
||||||
> `n⁺ ∈ S`.
|
|
||||||
-/
|
|
||||||
intro m hm
|
intro m hm
|
||||||
have hm' : m < n ∨ m = n := by
|
have hm' : m < n ∨ m = n := by
|
||||||
rw [Nat.lt_succ] at hm
|
rw [Nat.lt_succ] at hm
|
||||||
|
@ -561,12 +429,7 @@ theorem well_ordering_nat {A : Set ℕ} (hA : Set.Nonempty A)
|
||||||
exact absurd hp.left (ih p hp.right)
|
exact absurd hp.left (ih p hp.right)
|
||||||
· rw [h]
|
· rw [h]
|
||||||
exact hn
|
exact hn
|
||||||
/-
|
|
||||||
> #### Conclusion
|
|
||||||
> By *(i)* and *(ii)*, `S` is an inductive set. Since `S ⊆ ω`, *Theorem 4B*
|
|
||||||
> implies `S = ω`. Bu this immediately implies `ω = ω - A` meaning `A` is the
|
|
||||||
> empty set.
|
|
||||||
-/
|
|
||||||
ext x
|
ext x
|
||||||
simp only [Set.mem_univ, iff_true]
|
simp only [Set.mem_univ, iff_true]
|
||||||
by_contra nh'
|
by_contra nh'
|
||||||
|
@ -575,7 +438,7 @@ theorem well_ordering_nat {A : Set ℕ} (hA : Set.Nonempty A)
|
||||||
|
|
||||||
#check WellOrder
|
#check WellOrder
|
||||||
|
|
||||||
/-- ### Strong Induction Principle for ω
|
/-- #### Strong Induction Principle for ω
|
||||||
|
|
||||||
Let `A` be a subset of `ω`, and assume that for every `n ∈ ω`, if every number
|
Let `A` be a subset of `ω`, and assume that for every `n ∈ ω`, if every number
|
||||||
less than `n` is in `A`, then `n ∈ A`. Then `A = ω`.
|
less than `n` is in `A`, then `n ∈ A`. Then `A = ω`.
|
||||||
|
@ -588,31 +451,25 @@ theorem strong_induction_principle_nat (A : Set ℕ)
|
||||||
rw [this] at h'
|
rw [this] at h'
|
||||||
simp only [Set.diff_empty] at h'
|
simp only [Set.diff_empty] at h'
|
||||||
exact h'.symm
|
exact h'.symm
|
||||||
/-
|
|
||||||
> For the sake of contradiction, suppose `ω - A` is a nonempty set. By
|
|
||||||
> *Well Ordering of `ω`*, there exists a least element `m ∈ ω - A`.
|
|
||||||
-/
|
|
||||||
by_contra nh
|
by_contra nh
|
||||||
have ⟨m, hm⟩ := well_ordering_nat (Set.nmem_singleton_empty.mp nh)
|
have ⟨m, hm⟩ := well_ordering_nat (Set.nmem_singleton_empty.mp nh)
|
||||||
refine absurd (h m ?_) hm.left
|
refine absurd (h m ?_) hm.left
|
||||||
/-
|
|
||||||
> Then every number less than `m` is in `A`. But then *(4.23)* implies `m ∈ A`,
|
|
||||||
> a contradiction. Thus `ω - A` is an empty set meaning `A = ω`.
|
|
||||||
-/
|
|
||||||
-- Show that every number less than `m` is in `A`.
|
-- Show that every number less than `m` is in `A`.
|
||||||
intro x hx
|
intro x hx
|
||||||
by_contra nx
|
by_contra nx
|
||||||
have : x < x := Nat.lt_of_lt_of_le hx (hm.right x nx)
|
have : x < x := Nat.lt_of_lt_of_le hx (hm.right x nx)
|
||||||
simp at this
|
simp at this
|
||||||
|
|
||||||
/-- ### Exercise 4.1
|
/-- #### Exercise 4.1
|
||||||
|
|
||||||
Show that `1 ≠ 3` i.e., that `∅⁺ ≠ ∅⁺⁺⁺`.
|
Show that `1 ≠ 3` i.e., that `∅⁺ ≠ ∅⁺⁺⁺`.
|
||||||
-/
|
-/
|
||||||
theorem exercise_4_1 : 1 ≠ 3 := by
|
theorem exercise_4_1 : 1 ≠ 3 := by
|
||||||
simp
|
simp
|
||||||
|
|
||||||
/-- ### Exercise 4.13
|
/-- #### Exercise 4.13
|
||||||
|
|
||||||
Let `m` and `n` be natural numbers such that `m ⬝ n = 0`. Show that either
|
Let `m` and `n` be natural numbers such that `m ⬝ n = 0`. Show that either
|
||||||
`m = 0` or `n = 0`.
|
`m = 0` or `n = 0`.
|
||||||
|
@ -641,7 +498,7 @@ Call a natural number *odd* if it has the form `(2 ⬝ p) + 1` for some `p`.
|
||||||
-/
|
-/
|
||||||
def odd (n : ℕ) : Prop := ∃ p, (2 * p) + 1 = n
|
def odd (n : ℕ) : Prop := ∃ p, (2 * p) + 1 = n
|
||||||
|
|
||||||
/-- ### Exercise 4.14
|
/-- #### Exercise 4.14
|
||||||
|
|
||||||
Show that each natural number is either even or odd, but never both.
|
Show that each natural number is either even or odd, but never both.
|
||||||
-/
|
-/
|
||||||
|
@ -692,7 +549,7 @@ theorem exercise_4_14 (n : ℕ)
|
||||||
have : even n := ⟨q, hq'⟩
|
have : even n := ⟨q, hq'⟩
|
||||||
exact absurd this h
|
exact absurd this h
|
||||||
|
|
||||||
/-- ### Exercise 4.17
|
/-- #### Exercise 4.17
|
||||||
|
|
||||||
Prove that `mⁿ⁺ᵖ = mⁿ ⬝ mᵖ.`
|
Prove that `mⁿ⁺ᵖ = mⁿ ⬝ mᵖ.`
|
||||||
-/
|
-/
|
||||||
|
@ -702,7 +559,7 @@ theorem exercise_4_17 (m n p : ℕ)
|
||||||
| zero => calc m ^ (n + 0)
|
| zero => calc m ^ (n + 0)
|
||||||
_ = m ^ n := rfl
|
_ = m ^ n := rfl
|
||||||
_ = m ^ n * 1 := by rw [right_mul_id]
|
_ = m ^ n * 1 := by rw [right_mul_id]
|
||||||
_ = m ^ n * m ^ 0 := by rfl
|
_ = m ^ n * m ^ 0 := rfl
|
||||||
| succ p ih => calc m ^ (n + p.succ)
|
| succ p ih => calc m ^ (n + p.succ)
|
||||||
_ = m ^ (n + p).succ := rfl
|
_ = m ^ (n + p).succ := rfl
|
||||||
_ = m ^ (n + p) * m := rfl
|
_ = m ^ (n + p) * m := rfl
|
||||||
|
@ -710,7 +567,7 @@ theorem exercise_4_17 (m n p : ℕ)
|
||||||
_ = m ^ n * (m ^ p * m) := by rw [theorem_4k_4]
|
_ = m ^ n * (m ^ p * m) := by rw [theorem_4k_4]
|
||||||
_ = m ^ n * m ^ p.succ := rfl
|
_ = m ^ n * m ^ p.succ := rfl
|
||||||
|
|
||||||
/-- ### Exercise 4.19
|
/-- #### Exercise 4.19
|
||||||
|
|
||||||
Prove that if `m` is a natural number and `d` is a nonzero number, then there
|
Prove that if `m` is a natural number and `d` is a nonzero number, then there
|
||||||
exist numbers `q` and `r` such that `m = (d ⬝ q) + r` and `r` is less than `d`.
|
exist numbers `q` and `r` such that `m = (d ⬝ q) + r` and `r` is less than `d`.
|
||||||
|
@ -743,7 +600,7 @@ theorem exercise_4_19 (m d : ℕ) (hd : d ≠ 0)
|
||||||
_ < d := hr
|
_ < d := hr
|
||||||
simp at this
|
simp at this
|
||||||
|
|
||||||
/-- ### Exercise 4.22
|
/-- #### Exercise 4.22
|
||||||
|
|
||||||
Show that for any natural numbers `m` and `p` we have `m ∈ m + p⁺`.
|
Show that for any natural numbers `m` and `p` we have `m ∈ m + p⁺`.
|
||||||
-/
|
-/
|
||||||
|
@ -755,7 +612,7 @@ theorem exercise_4_22 (m p : ℕ)
|
||||||
_ < m + p.succ := ih
|
_ < m + p.succ := ih
|
||||||
_ < m + p.succ.succ := Nat.lt.base (m + p.succ)
|
_ < m + p.succ.succ := Nat.lt.base (m + p.succ)
|
||||||
|
|
||||||
/-- ### Exercise 4.23
|
/-- #### Exercise 4.23
|
||||||
|
|
||||||
Assume that `m` and `n` are natural numbers with `m` less than `n`. Show that
|
Assume that `m` and `n` are natural numbers with `m` less than `n`. Show that
|
||||||
there is some `p` in `ω` for which `m + p⁺ = n`. (It follows from this and the
|
there is some `p` in `ω` for which `m + p⁺ = n`. (It follows from this and the
|
||||||
|
@ -780,7 +637,7 @@ theorem exercise_4_23 {m n : ℕ} (hm : m < n)
|
||||||
refine ⟨0, ?_⟩
|
refine ⟨0, ?_⟩
|
||||||
rw [hm₁]
|
rw [hm₁]
|
||||||
|
|
||||||
/-- ### Exercise 4.24
|
/-- #### Exercise 4.24
|
||||||
|
|
||||||
Assume that `m + n = p + q`. Show that
|
Assume that `m + n = p + q`. Show that
|
||||||
```
|
```
|
||||||
|
@ -803,7 +660,7 @@ theorem exercise_4_24 (m n p q : ℕ) (h : m + n = p + q)
|
||||||
rw [← h] at hr
|
rw [← h] at hr
|
||||||
exact (theorem_4n_i m p n).mpr hr
|
exact (theorem_4n_i m p n).mpr hr
|
||||||
|
|
||||||
/-- ### Exercise 4.25
|
/-- #### Exercise 4.25
|
||||||
|
|
||||||
Assume that `n ∈ m` and `q ∈ p`. Show that
|
Assume that `n ∈ m` and `q ∈ p`. Show that
|
||||||
```
|
```
|
||||||
|
@ -828,4 +685,4 @@ theorem exercise_4_25 (m n p q : ℕ) (h₁ : n < m) (h₂ : q < p)
|
||||||
conv at h₁ => right; rw [add_comm]
|
conv at h₁ => right; rw [add_comm]
|
||||||
exact h₁
|
exact h₁
|
||||||
|
|
||||||
end Enderton.Set.Chapter_4
|
end Enderton.Set.Chapter_4
|
File diff suppressed because it is too large
Load Diff
|
@ -28,7 +28,8 @@ theorem ext_iff {x y u v : α}
|
||||||
] at hu huv
|
] at hu huv
|
||||||
apply Or.elim hu <;> apply Or.elim huv
|
apply Or.elim hu <;> apply Or.elim huv
|
||||||
|
|
||||||
· -- `{u} = {x}` and `{u, v} = {x}`.
|
· -- #### Case 1
|
||||||
|
-- `{u} = {x}` and `{u, v} = {x}`.
|
||||||
intro huv_x hu_x
|
intro huv_x hu_x
|
||||||
rw [Set.singleton_eq_singleton_iff] at hu_x
|
rw [Set.singleton_eq_singleton_iff] at hu_x
|
||||||
rw [hu_x] at huv_x
|
rw [hu_x] at huv_x
|
||||||
|
@ -40,7 +41,8 @@ theorem ext_iff {x y u v : α}
|
||||||
rw [← hx_v] at this
|
rw [← hx_v] at this
|
||||||
exact ⟨hu_x.symm, this⟩
|
exact ⟨hu_x.symm, this⟩
|
||||||
|
|
||||||
· -- `{u} = {x}` and `{u, v} = {x, y}`.
|
· -- #### Case 2
|
||||||
|
-- `{u} = {x}` and `{u, v} = {x, y}`.
|
||||||
intro huv_xy hu_x
|
intro huv_xy hu_x
|
||||||
rw [Set.singleton_eq_singleton_iff] at hu_x
|
rw [Set.singleton_eq_singleton_iff] at hu_x
|
||||||
rw [hu_x] at huv_xy
|
rw [hu_x] at huv_xy
|
||||||
|
@ -56,7 +58,8 @@ theorem ext_iff {x y u v : α}
|
||||||
] at this
|
] at this
|
||||||
exact ⟨hu_x.symm, Or.elim this (absurd ·.symm hx_v) (·.symm)⟩
|
exact ⟨hu_x.symm, Or.elim this (absurd ·.symm hx_v) (·.symm)⟩
|
||||||
|
|
||||||
· -- `{u} = {x, y}` and `{u, v} = {x}`.
|
· -- #### Case 3
|
||||||
|
-- `{u} = {x, y}` and `{u, v} = {x}`.
|
||||||
intro huv_x hu_xy
|
intro huv_x hu_xy
|
||||||
rw [Set.ext_iff] at huv_x hu_xy
|
rw [Set.ext_iff] at huv_x hu_xy
|
||||||
have hu_x := huv_x u
|
have hu_x := huv_x u
|
||||||
|
@ -68,7 +71,7 @@ theorem ext_iff {x y u v : α}
|
||||||
true_iff,
|
true_iff,
|
||||||
or_true,
|
or_true,
|
||||||
iff_true
|
iff_true
|
||||||
] at hu_x hy_u
|
] at hu_x hy_u
|
||||||
apply Or.elim huv
|
apply Or.elim huv
|
||||||
· intro huv_x
|
· intro huv_x
|
||||||
rw [← hu_x, Set.ext_iff] at huv_x
|
rw [← hu_x, Set.ext_iff] at huv_x
|
||||||
|
@ -90,18 +93,19 @@ theorem ext_iff {x y u v : α}
|
||||||
· intro hv_y
|
· intro hv_y
|
||||||
exact ⟨hu_x.symm, hv_y.symm⟩
|
exact ⟨hu_x.symm, hv_y.symm⟩
|
||||||
|
|
||||||
· -- `{u} = {x, y}` and `{u, v} = {x, y}`.
|
· -- #### Case 4
|
||||||
|
-- `{u} = {x, y}` and `{u, v} = {x, y}`.
|
||||||
intro huv_xy hu_xy
|
intro huv_xy hu_xy
|
||||||
rw [Set.ext_iff] at huv_xy hu_xy
|
rw [Set.ext_iff] at huv_xy hu_xy
|
||||||
have hx_u := hu_xy x
|
have hx_u := hu_xy x
|
||||||
have hy_u := hu_xy y
|
have hy_u := hu_xy y
|
||||||
simp only [
|
simp only [
|
||||||
Set.mem_singleton_iff, Set.mem_insert_iff, true_or, iff_true, or_true
|
Set.mem_singleton_iff, Set.mem_insert_iff, true_or, iff_true, or_true
|
||||||
] at hx_u hy_u
|
] at hx_u hy_u
|
||||||
have := huv_xy v
|
have := huv_xy v
|
||||||
simp only [
|
simp only [
|
||||||
Set.mem_singleton_iff, Set.mem_insert_iff, or_true, true_iff
|
Set.mem_singleton_iff, Set.mem_insert_iff, or_true, true_iff
|
||||||
] at this
|
] at this
|
||||||
apply Or.elim this
|
apply Or.elim this
|
||||||
· intro hv_x
|
· intro hv_x
|
||||||
rw [hv_x, hx_u]
|
rw [hv_x, hx_u]
|
||||||
|
@ -112,4 +116,4 @@ theorem ext_iff {x y u v : α}
|
||||||
· intro h
|
· intro h
|
||||||
rw [h.left, h.right]
|
rw [h.left, h.right]
|
||||||
|
|
||||||
end OrderedPair
|
end OrderedPair
|
|
@ -168,7 +168,7 @@ theorem ran_inv_eq_dom_self {F : HRelation α β}
|
||||||
The restriction of a `Relation` to a `Set`.
|
The restriction of a `Relation` to a `Set`.
|
||||||
-/
|
-/
|
||||||
def restriction (R : HRelation α β) (A : Set α) : HRelation α β :=
|
def restriction (R : HRelation α β) (A : Set α) : HRelation α β :=
|
||||||
{ p ∈ R | p.1 ∈ A }
|
{ p ∈ R | p.1 ∈ A }
|
||||||
|
|
||||||
/-! ## Image -/
|
/-! ## Image -/
|
||||||
|
|
||||||
|
@ -580,7 +580,7 @@ theorem neighborhood_eq_iff_mem_relate {R : Set.Relation α} {A : Set α}
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Assume that `R` is an equivalence relation on `A`. If two sets `x` and `y`
|
Assume that `R` is an equivalence relation on `A`. If two sets `x` and `y`
|
||||||
belong to the same neighborhood, then `xRy`.
|
belong to the same neighborhood, then `xRy`.
|
||||||
-/
|
-/
|
||||||
theorem neighborhood_mem_imp_relate {R : Set.Relation α} {A : Set α}
|
theorem neighborhood_mem_imp_relate {R : Set.Relation α} {A : Set α}
|
||||||
(hR : isEquivalence R A)
|
(hR : isEquivalence R A)
|
||||||
|
@ -596,7 +596,7 @@ A **partition** `Π` of a set `A` is a set of nonempty subsets of `A` that is
|
||||||
disjoint and exhaustive.
|
disjoint and exhaustive.
|
||||||
-/
|
-/
|
||||||
structure Partition (P : Set (Set α)) (A : Set α) : Prop where
|
structure Partition (P : Set (Set α)) (A : Set α) : Prop where
|
||||||
p_subset : ∀ p ∈ P, p ⊆ A
|
p_subset : ∀ p ∈ P, p ⊆ A
|
||||||
nonempty : ∀ p ∈ P, Set.Nonempty p
|
nonempty : ∀ p ∈ P, Set.Nonempty p
|
||||||
disjoint : ∀ a ∈ P, ∀ b, b ∈ P → a ≠ b → a ∩ b = ∅
|
disjoint : ∀ a ∈ P, ∀ b, b ∈ P → a ≠ b → a ∩ b = ∅
|
||||||
exhaustive : ∀ a ∈ A, ∃ p, p ∈ P ∧ a ∈ p
|
exhaustive : ∀ a ∈ A, ∃ p, p ∈ P ∧ a ∈ p
|
||||||
|
@ -666,4 +666,4 @@ theorem modEquiv_partition {A : Set α} {R : Relation α} (hR : isEquivalence R
|
||||||
|
|
||||||
end Relation
|
end Relation
|
||||||
|
|
||||||
end Set
|
end Set
|
|
@ -1,10 +1 @@
|
||||||
import Bookshelf.Fraleigh.Chapter_1
|
import Bookshelf.Fraleigh.Chapter_1
|
||||||
|
|
||||||
/-! # A First Course in Abstract Algebra
|
|
||||||
|
|
||||||
## Fraleigh, John B.
|
|
||||||
|
|
||||||
### Lean
|
|
||||||
|
|
||||||
* [Chapter 1: Introduction and Examples](Bookshelf/Fraleigh/Chapter_1.html)
|
|
||||||
-/
|
|
|
@ -9,7 +9,7 @@ considering they still have the same limitation described above during actual
|
||||||
use. Their inclusion here serves more as pseudo-documentation than anything.
|
use. Their inclusion here serves more as pseudo-documentation than anything.
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-- ### Bald Eagle
|
/-- #### Bald Eagle
|
||||||
|
|
||||||
`E'xy₁y₂y₃z₁z₂z₃ = x(y₁y₂y₃)(z₁z₂z₃)`
|
`E'xy₁y₂y₃z₁z₂z₃ = x(y₁y₂y₃)(z₁z₂z₃)`
|
||||||
-/
|
-/
|
||||||
|
@ -17,31 +17,31 @@ def E' (x : α → β → γ)
|
||||||
(y₁ : δ → ε → α) (y₂ : δ) (y₃ : ε)
|
(y₁ : δ → ε → α) (y₂ : δ) (y₃ : ε)
|
||||||
(z₁ : ζ → η → β) (z₂ : ζ) (z₃ : η) := x (y₁ y₂ y₃) (z₁ z₂ z₃)
|
(z₁ : ζ → η → β) (z₂ : ζ) (z₃ : η) := x (y₁ y₂ y₃) (z₁ z₂ z₃)
|
||||||
|
|
||||||
/-- ### Becard
|
/-- #### Becard
|
||||||
|
|
||||||
`B₃xyzw = x(y(zw))`
|
`B₃xyzw = x(y(zw))`
|
||||||
-/
|
-/
|
||||||
def B₃ (x : α → ε) (y : β → α) (z : γ → β) (w : γ) := x (y (z w))
|
def B₃ (x : α → ε) (y : β → α) (z : γ → β) (w : γ) := x (y (z w))
|
||||||
|
|
||||||
/-- ### Blackbird
|
/-- #### Blackbird
|
||||||
|
|
||||||
`B₁xyzw = x(yzw)`
|
`B₁xyzw = x(yzw)`
|
||||||
-/
|
-/
|
||||||
def B₁ (x : α → ε) (y : β → γ → α) (z : β) (w : γ) := x (y z w)
|
def B₁ (x : α → ε) (y : β → γ → α) (z : β) (w : γ) := x (y z w)
|
||||||
|
|
||||||
/-- ### Bluebird
|
/-- #### Bluebird
|
||||||
|
|
||||||
`Bxyz = x(yz)`
|
`Bxyz = x(yz)`
|
||||||
-/
|
-/
|
||||||
def B (x : α → γ) (y : β → α) (z : β) := x (y z)
|
def B (x : α → γ) (y : β → α) (z : β) := x (y z)
|
||||||
|
|
||||||
/-- ### Bunting
|
/-- #### Bunting
|
||||||
|
|
||||||
`B₂xyzwv = x(yzwv)`
|
`B₂xyzwv = x(yzwv)`
|
||||||
-/
|
-/
|
||||||
def B₂ (x : α → ζ) (y : β → γ → ε → α) (z : β) (w : γ) (v : ε) := x (y z w v)
|
def B₂ (x : α → ζ) (y : β → γ → ε → α) (z : β) (w : γ) (v : ε) := x (y z w v)
|
||||||
|
|
||||||
/-- ### Cardinal Once Removed
|
/-- #### Cardinal Once Removed
|
||||||
|
|
||||||
`C*xyzw = xywz`
|
`C*xyzw = xywz`
|
||||||
-/
|
-/
|
||||||
|
@ -49,48 +49,48 @@ def C_star (x : α → β → γ → δ) (y : α) (z : γ) (w : β) := x y w z
|
||||||
|
|
||||||
notation "C*" => C_star
|
notation "C*" => C_star
|
||||||
|
|
||||||
/-- ### Cardinal
|
/-- #### Cardinal
|
||||||
|
|
||||||
`Cxyz = xzy`
|
`Cxyz = xzy`
|
||||||
-/
|
-/
|
||||||
def C (x : α → β → δ) (y : β) (z : α) := x z y
|
def C (x : α → β → δ) (y : β) (z : α) := x z y
|
||||||
|
|
||||||
/-- ### Converse Warbler
|
/-- #### Converse Warbler
|
||||||
|
|
||||||
`W'xy = yxx`
|
`W'xy = yxx`
|
||||||
-/
|
-/
|
||||||
def W' (x : α) (y : α → α → β) := y x x
|
def W' (x : α) (y : α → α → β) := y x x
|
||||||
|
|
||||||
/-- ### Dickcissel
|
/-- #### Dickcissel
|
||||||
|
|
||||||
`D₁xyzwv = xyz(wv)`
|
`D₁xyzwv = xyz(wv)`
|
||||||
-/
|
-/
|
||||||
def D₁ (x : α → β → δ → ε) (y : α) (z : β) (w : γ → δ) (v : γ) := x y z (w v)
|
def D₁ (x : α → β → δ → ε) (y : α) (z : β) (w : γ → δ) (v : γ) := x y z (w v)
|
||||||
|
|
||||||
/-! ### Double Mockingbird
|
/-! #### Double Mockingbird
|
||||||
|
|
||||||
`M₂xy = xy(xy)`
|
`M₂xy = xy(xy)`
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-- ### Dove
|
/-- #### Dove
|
||||||
|
|
||||||
`Dxyzw = xy(zw)`
|
`Dxyzw = xy(zw)`
|
||||||
-/
|
-/
|
||||||
def D (x : α → γ → δ) (y : α) (z : β → γ) (w : β) := x y (z w)
|
def D (x : α → γ → δ) (y : α) (z : β → γ) (w : β) := x y (z w)
|
||||||
|
|
||||||
/-- ### Dovekie
|
/-- #### Dovekie
|
||||||
|
|
||||||
`D₂xyzwv = x(yz)(wv)`
|
`D₂xyzwv = x(yz)(wv)`
|
||||||
-/
|
-/
|
||||||
def D₂ (x : α → δ → ε) (y : β → α) (z : β) (w : γ → δ) (v : γ) := x (y z) (w v)
|
def D₂ (x : α → δ → ε) (y : β → α) (z : β) (w : γ → δ) (v : γ) := x (y z) (w v)
|
||||||
|
|
||||||
/-- ### Eagle
|
/-- #### Eagle
|
||||||
|
|
||||||
`Exyzwv = xy(zwv)`
|
`Exyzwv = xy(zwv)`
|
||||||
-/
|
-/
|
||||||
def E (x : α → δ → ε) (y : α) (z : β → γ → δ) (w : β) (v : γ) := x y (z w v)
|
def E (x : α → δ → ε) (y : α) (z : β → γ → δ) (w : β) (v : γ) := x y (z w v)
|
||||||
|
|
||||||
/-- ### Finch Once Removed
|
/-- #### Finch Once Removed
|
||||||
|
|
||||||
`F*xyzw = xwzy`
|
`F*xyzw = xwzy`
|
||||||
-/
|
-/
|
||||||
|
@ -98,95 +98,95 @@ def F_star (x : α → β → γ → δ) (y : γ) (z : β) (w : α) := x w z y
|
||||||
|
|
||||||
notation "F*" => F_star
|
notation "F*" => F_star
|
||||||
|
|
||||||
/-- ### Finch
|
/-- #### Finch
|
||||||
|
|
||||||
`Fxyz = zyx`
|
`Fxyz = zyx`
|
||||||
-/
|
-/
|
||||||
def F (x : α) (y : β) (z : β → α → γ) := z y x
|
def F (x : α) (y : β) (z : β → α → γ) := z y x
|
||||||
|
|
||||||
/-- ### Goldfinch
|
/-- #### Goldfinch
|
||||||
|
|
||||||
`Gxyzw = xw(yz)`
|
`Gxyzw = xw(yz)`
|
||||||
-/
|
-/
|
||||||
def G (x : α → γ → δ) (y : β → γ) (z : β) (w : α) := x w (y z)
|
def G (x : α → γ → δ) (y : β → γ) (z : β) (w : α) := x w (y z)
|
||||||
|
|
||||||
/-- ### Hummingbird
|
/-- #### Hummingbird
|
||||||
|
|
||||||
`Hxyz = xyzy`
|
`Hxyz = xyzy`
|
||||||
-/
|
-/
|
||||||
def H (x : α → β → α → γ) (y : α) (z : β) := x y z y
|
def H (x : α → β → α → γ) (y : α) (z : β) := x y z y
|
||||||
|
|
||||||
/-- ### Identity Bird
|
/-- #### Identity Bird
|
||||||
|
|
||||||
`Ix = x`
|
`Ix = x`
|
||||||
-/
|
-/
|
||||||
def I (x : α) : α := x
|
def I (x : α) : α := x
|
||||||
|
|
||||||
/-- ### Kestrel
|
/-- #### Kestrel
|
||||||
|
|
||||||
`Kxy = x`
|
`Kxy = x`
|
||||||
-/
|
-/
|
||||||
def K (x : α) (_ : β) := x
|
def K (x : α) (_ : β) := x
|
||||||
|
|
||||||
/-! ### Lark
|
/-! #### Lark
|
||||||
|
|
||||||
`Lxy = x(yy)`
|
`Lxy = x(yy)`
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-! ### Mockingbird
|
/-! #### Mockingbird
|
||||||
|
|
||||||
`Mx = xx`
|
`Mx = xx`
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-- ### Owl
|
/-- #### Owl
|
||||||
|
|
||||||
`Oxy = y(xy)`
|
`Oxy = y(xy)`
|
||||||
-/
|
-/
|
||||||
def O (x : (α → β) → α) (y : α → β) := y (x y)
|
def O (x : (α → β) → α) (y : α → β) := y (x y)
|
||||||
|
|
||||||
/-- ### Phoenix
|
/-- #### Phoenix
|
||||||
|
|
||||||
`Φxyzw = x(yw)(zw)`
|
`Φxyzw = x(yw)(zw)`
|
||||||
-/
|
-/
|
||||||
def Φ (x : β → γ → δ) (y : α → β) (z : α → γ) (w : α) := x (y w) (z w)
|
def Φ (x : β → γ → δ) (y : α → β) (z : α → γ) (w : α) := x (y w) (z w)
|
||||||
|
|
||||||
/-- ### Psi Bird
|
/-- #### Psi Bird
|
||||||
|
|
||||||
`Ψxyzw = x(yz)(yw)`
|
`Ψxyzw = x(yz)(yw)`
|
||||||
-/
|
-/
|
||||||
def Ψ (x : α → α → γ) (y : β → α) (z : β) (w : β) := x (y z) (y w)
|
def Ψ (x : α → α → γ) (y : β → α) (z : β) (w : β) := x (y z) (y w)
|
||||||
|
|
||||||
/-- ### Quacky Bird
|
/-- #### Quacky Bird
|
||||||
|
|
||||||
`Q₄xyz = z(yx)`
|
`Q₄xyz = z(yx)`
|
||||||
-/
|
-/
|
||||||
def Q₄ (x : α) (y : α → β) (z : β → γ) := z (y x)
|
def Q₄ (x : α) (y : α → β) (z : β → γ) := z (y x)
|
||||||
|
|
||||||
/-- ### Queer Bird
|
/-- #### Queer Bird
|
||||||
|
|
||||||
`Qxyz = y(xz)`
|
`Qxyz = y(xz)`
|
||||||
-/
|
-/
|
||||||
def Q (x : α → β) (y : β → γ) (z : α) := y (x z)
|
def Q (x : α → β) (y : β → γ) (z : α) := y (x z)
|
||||||
|
|
||||||
/-- ### Quirky Bird
|
/-- #### Quirky Bird
|
||||||
|
|
||||||
`Q₃xyz = z(xy)`
|
`Q₃xyz = z(xy)`
|
||||||
-/
|
-/
|
||||||
def Q₃ (x : α → β) (y : α) (z : β → γ) := z (x y)
|
def Q₃ (x : α → β) (y : α) (z : β → γ) := z (x y)
|
||||||
|
|
||||||
/-- ### Quixotic Bird
|
/-- #### Quixotic Bird
|
||||||
|
|
||||||
`Q₁xyz = x(zy)`
|
`Q₁xyz = x(zy)`
|
||||||
-/
|
-/
|
||||||
def Q₁ (x : α → γ) (y : β) (z : β → α) := x (z y)
|
def Q₁ (x : α → γ) (y : β) (z : β → α) := x (z y)
|
||||||
|
|
||||||
/-- ### Quizzical Bird
|
/-- #### Quizzical Bird
|
||||||
|
|
||||||
`Q₂xyz = y(zx)`
|
`Q₂xyz = y(zx)`
|
||||||
-/
|
-/
|
||||||
def Q₂ (x : α) (y : β → γ) (z : α → β) := y (z x)
|
def Q₂ (x : α) (y : β → γ) (z : α → β) := y (z x)
|
||||||
|
|
||||||
/-- ### Robin Once Removed
|
/-- #### Robin Once Removed
|
||||||
|
|
||||||
`R*xyzw = xzwy`
|
`R*xyzw = xzwy`
|
||||||
-/
|
-/
|
||||||
|
@ -194,36 +194,36 @@ def R_star (x : α → β → γ → δ) (y : γ) (z : α) (w : β) := x z w y
|
||||||
|
|
||||||
notation "R*" => R_star
|
notation "R*" => R_star
|
||||||
|
|
||||||
/-- ### Robin
|
/-- #### Robin
|
||||||
|
|
||||||
`Rxyz = yzx`
|
`Rxyz = yzx`
|
||||||
-/
|
-/
|
||||||
def R (x : α) (y : β → α → γ) (z : β) := y z x
|
def R (x : α) (y : β → α → γ) (z : β) := y z x
|
||||||
|
|
||||||
/-- ### Sage Bird
|
/-- #### Sage Bird
|
||||||
|
|
||||||
`Θx = x(Θx)`
|
`Θx = x(Θx)`
|
||||||
-/
|
-/
|
||||||
partial def Θ [Inhabited α] (x : α → α) := x (Θ x)
|
partial def Θ [Inhabited α] (x : α → α) := x (Θ x)
|
||||||
|
|
||||||
/-- ### Starling
|
/-- #### Starling
|
||||||
|
|
||||||
`Sxyz = xz(yz)`
|
`Sxyz = xz(yz)`
|
||||||
-/
|
-/
|
||||||
def S (x : α → β → γ) (y : α → β) (z : α) := x z (y z)
|
def S (x : α → β → γ) (y : α → β) (z : α) := x z (y z)
|
||||||
|
|
||||||
/-- ### Thrush
|
/-- #### Thrush
|
||||||
|
|
||||||
`Txy = yx`
|
`Txy = yx`
|
||||||
-/
|
-/
|
||||||
def T (x : α) (y : α → β) := y x
|
def T (x : α) (y : α → β) := y x
|
||||||
|
|
||||||
/-! ### Turing Bird
|
/-! #### Turing Bird
|
||||||
|
|
||||||
`Uxy = y(xxy)`
|
`Uxy = y(xxy)`
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-- ### Vireo Once Removed
|
/-- #### Vireo Once Removed
|
||||||
|
|
||||||
`V*xyzw = xwyz`
|
`V*xyzw = xwyz`
|
||||||
-/
|
-/
|
||||||
|
@ -231,13 +231,13 @@ def V_star (x : α → β → γ → δ) (y : β) (z : γ) (w : α) := x w y z
|
||||||
|
|
||||||
notation "V*" => V_star
|
notation "V*" => V_star
|
||||||
|
|
||||||
/-- ### Vireo
|
/-- #### Vireo
|
||||||
|
|
||||||
`Vxyz = zxy`
|
`Vxyz = zxy`
|
||||||
-/
|
-/
|
||||||
def V (x : α) (y : β) (z : α → β → γ) := z x y
|
def V (x : α) (y : β) (z : α → β → γ) := z x y
|
||||||
|
|
||||||
/-- ### Warbler
|
/-- #### Warbler
|
||||||
|
|
||||||
`Wxy = xyy`
|
`Wxy = xyy`
|
||||||
-/
|
-/
|
||||||
|
|
|
@ -162,7 +162,7 @@ theorem length_zipWith_self_tail_eq_length_sub_one
|
||||||
rw [length_zipWith]
|
rw [length_zipWith]
|
||||||
simp only [length_cons, ge_iff_le, min_eq_right_iff]
|
simp only [length_cons, ge_iff_le, min_eq_right_iff]
|
||||||
show length as ≤ length as + 1
|
show length as ≤ length as + 1
|
||||||
simp only [le_add_iff_nonneg_right, zero_le]
|
simp only [le_add_iff_nonneg_right]
|
||||||
|
|
||||||
/--
|
/--
|
||||||
The output `List` of a `zipWith` is nonempty **iff** both of its inputs are
|
The output `List` of a `zipWith` is nonempty **iff** both of its inputs are
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
import Mathlib.Logic.Basic
|
import Mathlib.Logic.Basic
|
||||||
import Mathlib.Data.Set.Basic
|
|
||||||
import Mathlib.Tactic.Tauto
|
import Mathlib.Tactic.Tauto
|
||||||
|
|
||||||
/-! # Common.Logic.Basic
|
/-! # Common.Logic.Basic
|
||||||
|
@ -40,4 +39,4 @@ theorem forall_mem_comm {X : Set α} {Y : Set β} (p : α → β → Prop)
|
||||||
· intro h v hv u hu
|
· intro h v hv u hu
|
||||||
exact h u hu v hv
|
exact h u hu v hv
|
||||||
· intro h u hu v hv
|
· intro h u hu v hv
|
||||||
exact h v hv u hu
|
exact h v hv u hu
|
|
@ -9,4 +9,23 @@ If `n < m⁺`, then `n < m` or `n = m`.
|
||||||
theorem lt_or_eq_of_lt {n m : Nat} (h : n < m.succ) : n < m ∨ n = m :=
|
theorem lt_or_eq_of_lt {n m : Nat} (h : n < m.succ) : n < m ∨ n = m :=
|
||||||
lt_or_eq_of_le (lt_succ.mp h)
|
lt_or_eq_of_le (lt_succ.mp h)
|
||||||
|
|
||||||
end Nat
|
/--
|
||||||
|
The following cancellation law holds for `m`, `n`, and `p` in `ω`:
|
||||||
|
```
|
||||||
|
m ⬝ p = n ⬝ p ∧ p ≠ 0 → m = n
|
||||||
|
```
|
||||||
|
-/
|
||||||
|
theorem mul_right_cancel (m n p : ℕ) (hp : 0 < p) : m * p = n * p → m = n := by
|
||||||
|
intro hmn
|
||||||
|
match @trichotomous ℕ LT.lt _ m n with
|
||||||
|
| Or.inl h =>
|
||||||
|
have : m * p < n * p := Nat.mul_lt_mul_of_pos_right h hp
|
||||||
|
rw [hmn] at this
|
||||||
|
simp at this
|
||||||
|
| Or.inr (Or.inl h) => exact h
|
||||||
|
| Or.inr (Or.inr h) =>
|
||||||
|
have : n * p < m * p := Nat.mul_lt_mul_of_pos_right h hp
|
||||||
|
rw [hmn] at this
|
||||||
|
simp at this
|
||||||
|
|
||||||
|
end Nat
|
|
@ -1,5 +1,6 @@
|
||||||
import Mathlib.Algebra.BigOperators.Basic
|
import Mathlib.Algebra.BigOperators.Basic
|
||||||
import Mathlib.Data.Real.Archimedean
|
import Mathlib.Data.Real.Basic
|
||||||
|
import Mathlib.Data.Finset.Basic
|
||||||
|
|
||||||
/-! # Common.Real.Floor
|
/-! # Common.Real.Floor
|
||||||
|
|
||||||
|
@ -144,4 +145,4 @@ theorem floor_mul_eq_sum_range_floor_add_index_div (n : ℕ) (x : ℝ)
|
||||||
-- Close out goal by showing left- and right-hand side equal a common value.
|
-- Close out goal by showing left- and right-hand side equal a common value.
|
||||||
rw [hlhs, hrhs]
|
rw [hlhs, hrhs]
|
||||||
|
|
||||||
end Real.Floor
|
end Real.Floor
|
|
@ -1,5 +1,4 @@
|
||||||
import Common.Set.Basic
|
import Common.Set.Basic
|
||||||
import Common.Set.Equinumerous
|
import Common.Set.Equinumerous
|
||||||
import Common.Set.Function
|
|
||||||
import Common.Set.Intervals
|
import Common.Set.Intervals
|
||||||
import Common.Set.Peano
|
import Common.Set.Peano
|
|
@ -193,62 +193,6 @@ theorem diff_ssubset_nonempty {A B : Set α} (h : A ⊂ B)
|
||||||
· intro hx
|
· intro hx
|
||||||
exact ⟨x, hx⟩
|
exact ⟨x, hx⟩
|
||||||
|
|
||||||
/--
|
|
||||||
If an element `x` is not a member of a set `A`, then `A - {x} = A`.
|
|
||||||
-/
|
|
||||||
theorem not_mem_diff_eq_self {A : Set α} (h : a ∉ A)
|
|
||||||
: A \ {a} = A := by
|
|
||||||
ext x
|
|
||||||
apply Iff.intro
|
|
||||||
· exact And.left
|
|
||||||
· intro hx
|
|
||||||
refine ⟨hx, ?_⟩
|
|
||||||
simp only [mem_singleton_iff]
|
|
||||||
by_contra nx
|
|
||||||
rw [nx] at hx
|
|
||||||
exact absurd hx h
|
|
||||||
|
|
||||||
/--
|
|
||||||
Given two sets `A` and `B`, `(A - {a}) - (B - {b}) = (A - B) - {a}`.
|
|
||||||
-/
|
|
||||||
theorem diff_mem_diff_mem_eq_diff_diff_mem {A B : Set α} {a : α}
|
|
||||||
: (A \ {a}) \ (B \ {a}) = (A \ B) \ {a} := by
|
|
||||||
calc (A \ {a}) \ (B \ {a})
|
|
||||||
_ = { x | x ∈ A \ {a} ∧ x ∉ B \ {a} } := rfl
|
|
||||||
_ = { x | x ∈ A \ {a} ∧ ¬(x ∈ B \ {a}) } := rfl
|
|
||||||
_ = { x | (x ∈ A ∧ x ≠ a) ∧ ¬(x ∈ B ∧ x ≠ a) } := rfl
|
|
||||||
_ = { x | (x ∈ A ∧ x ≠ a) ∧ (x ∉ B ∨ x = a) } := by
|
|
||||||
ext x
|
|
||||||
rw [mem_setOf_eq, not_and_de_morgan]
|
|
||||||
simp
|
|
||||||
_ = { x | (x ∈ A ∧ x ≠ a ∧ x ∉ B) ∨ (x ∈ A ∧ x ≠ a ∧ x = a) } := by
|
|
||||||
ext x
|
|
||||||
simp only [mem_setOf_eq]
|
|
||||||
rw [and_or_left, and_assoc, and_assoc]
|
|
||||||
_ = { x | x ∈ A ∧ x ≠ a ∧ x ∉ B } := by simp
|
|
||||||
_ = { x | x ∈ A ∧ x ∉ B ∧ x ≠ a } := by
|
|
||||||
ext x
|
|
||||||
simp only [ne_eq, sep_and, mem_inter_iff, mem_setOf_eq]
|
|
||||||
apply Iff.intro <;>
|
|
||||||
· intro ⟨⟨_, hx₂⟩, hx₃, hx₄⟩
|
|
||||||
exact ⟨⟨hx₃, hx₄⟩, ⟨hx₃, hx₂⟩⟩
|
|
||||||
_ = { x | x ∈ A ∧ x ∉ B ∧ x ∉ ({a} : Set α) } := rfl
|
|
||||||
_ = { x | x ∈ A \ B ∧ x ∉ ({a} : Set α) } := by
|
|
||||||
ext x
|
|
||||||
simp only [
|
|
||||||
mem_singleton_iff,
|
|
||||||
sep_and,
|
|
||||||
mem_inter_iff,
|
|
||||||
mem_setOf_eq,
|
|
||||||
mem_diff,
|
|
||||||
and_congr_right_iff,
|
|
||||||
and_iff_right_iff_imp,
|
|
||||||
and_imp
|
|
||||||
]
|
|
||||||
intro hx _ _
|
|
||||||
exact hx
|
|
||||||
_ = (A \ B) \ {a} := rfl
|
|
||||||
|
|
||||||
/--
|
/--
|
||||||
For any set `A`, the difference between the sample space and `A` is the
|
For any set `A`, the difference between the sample space and `A` is the
|
||||||
complement of `A`.
|
complement of `A`.
|
||||||
|
|
|
@ -1,5 +1,3 @@
|
||||||
import Common.Nat.Basic
|
|
||||||
import Common.Set.Basic
|
|
||||||
import Mathlib.Data.Finset.Card
|
import Mathlib.Data.Finset.Card
|
||||||
import Mathlib.Data.Set.Finite
|
import Mathlib.Data.Set.Finite
|
||||||
|
|
||||||
|
@ -10,8 +8,6 @@ Additional theorems around finite sets.
|
||||||
|
|
||||||
namespace Set
|
namespace Set
|
||||||
|
|
||||||
/-! ## Definitions -/
|
|
||||||
|
|
||||||
/--
|
/--
|
||||||
A set `A` is equinumerous to a set `B` (written `A ≈ B`) if and only if there is
|
A set `A` is equinumerous to a set `B` (written `A ≈ B`) if and only if there is
|
||||||
a one-to-one function from `A` onto `B`.
|
a one-to-one function from `A` onto `B`.
|
||||||
|
@ -23,26 +19,6 @@ infix:50 " ≈ " => Equinumerous
|
||||||
theorem equinumerous_def (A : Set α) (B : Set β)
|
theorem equinumerous_def (A : Set α) (B : Set β)
|
||||||
: A ≈ B ↔ ∃ F, Set.BijOn F A B := Iff.rfl
|
: A ≈ B ↔ ∃ F, Set.BijOn F A B := Iff.rfl
|
||||||
|
|
||||||
/--
|
|
||||||
A set `A` is not equinumerous to a set `B` (written `A ≉ B`) if and only if
|
|
||||||
there is no one-to-one function from `A` onto `B`.
|
|
||||||
-/
|
|
||||||
def NotEquinumerous (A : Set α) (B : Set β) : Prop := ¬ Equinumerous A B
|
|
||||||
|
|
||||||
infix:50 " ≉ " => NotEquinumerous
|
|
||||||
|
|
||||||
@[simp]
|
|
||||||
theorem not_equinumerous_def : A ≉ B ↔ ∀ F, ¬ Set.BijOn F A B := by
|
|
||||||
apply Iff.intro
|
|
||||||
· intro h
|
|
||||||
unfold NotEquinumerous Equinumerous at h
|
|
||||||
simp only [not_exists] at h
|
|
||||||
exact h
|
|
||||||
· intro h
|
|
||||||
unfold NotEquinumerous Equinumerous
|
|
||||||
simp only [not_exists]
|
|
||||||
exact h
|
|
||||||
|
|
||||||
/--
|
/--
|
||||||
For any set `A`, `A ≈ A`.
|
For any set `A`, `A ≈ A`.
|
||||||
-/
|
-/
|
||||||
|
@ -81,131 +57,30 @@ theorem eq_imp_equinumerous {A B : Set α} (h : A = B)
|
||||||
conv at this => right; rw [h]
|
conv at this => right; rw [h]
|
||||||
exact this
|
exact this
|
||||||
|
|
||||||
/-! ## Finite Sets -/
|
|
||||||
|
|
||||||
/--
|
/--
|
||||||
A set is finite if and only if it is equinumerous to a natural number.
|
A set is finite if and only if it is equinumerous to a natural number.
|
||||||
-/
|
-/
|
||||||
axiom finite_iff_equinumerous_nat {α : Type _} {S : Set α}
|
axiom finite_iff_equinumerous_nat {α : Type _} {S : Set α}
|
||||||
: Set.Finite S ↔ ∃ n : ℕ, S ≈ Set.Iio n
|
: Set.Finite S ↔ ∃ n : ℕ, S ≈ Set.Iio n
|
||||||
|
|
||||||
/-! ## Emptyset -/
|
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Any set equinumerous to the emptyset is the emptyset.
|
A set `A` is not equinumerous to a set `B` (written `A ≉ B`) if and only if
|
||||||
|
there is no one-to-one function from `A` onto `B`.
|
||||||
-/
|
-/
|
||||||
|
def NotEquinumerous (A : Set α) (B : Set β) : Prop := ¬ Equinumerous A B
|
||||||
|
|
||||||
|
infix:50 " ≉ " => NotEquinumerous
|
||||||
|
|
||||||
@[simp]
|
@[simp]
|
||||||
theorem equinumerous_zero_iff_emptyset {S : Set α}
|
theorem not_equinumerous_def : A ≉ B ↔ ∀ F, ¬ Set.BijOn F A B := by
|
||||||
: S ≈ Set.Iio 0 ↔ S = ∅ := by
|
|
||||||
apply Iff.intro
|
apply Iff.intro
|
||||||
· intro ⟨f, hf⟩
|
|
||||||
by_contra nh
|
|
||||||
rw [← Ne.def, ← Set.nonempty_iff_ne_empty] at nh
|
|
||||||
have ⟨x, hx⟩ := nh
|
|
||||||
have := hf.left hx
|
|
||||||
simp at this
|
|
||||||
· intro h
|
· intro h
|
||||||
rw [h]
|
unfold NotEquinumerous Equinumerous at h
|
||||||
refine ⟨fun _ => ⊥, ?_, ?_, ?_⟩
|
simp only [not_exists] at h
|
||||||
· intro _ hx
|
|
||||||
simp at hx
|
|
||||||
· intro _ hx
|
|
||||||
simp at hx
|
|
||||||
· unfold SurjOn
|
|
||||||
simp only [bot_eq_zero', image_empty]
|
|
||||||
show ∀ x, x ∈ Set.Iio 0 → x ∈ ∅
|
|
||||||
intro _ hx
|
|
||||||
simp at hx
|
|
||||||
|
|
||||||
/--
|
|
||||||
Empty sets are always equinumerous, regardless of their underlying type.
|
|
||||||
-/
|
|
||||||
theorem equinumerous_emptyset_emptyset [Bot β]
|
|
||||||
: (∅ : Set α) ≈ (∅ : Set β) := by
|
|
||||||
refine ⟨fun _ => ⊥, ?_, ?_, ?_⟩
|
|
||||||
· intro _ hx
|
|
||||||
simp at hx
|
|
||||||
· intro _ hx
|
|
||||||
simp at hx
|
|
||||||
· unfold SurjOn
|
|
||||||
simp
|
|
||||||
|
|
||||||
/--
|
|
||||||
For all natural numbers `m, n`, `m⁺ - n⁺ ≈ m - n`.
|
|
||||||
-/
|
|
||||||
theorem succ_diff_succ_equinumerous_diff {m n : ℕ}
|
|
||||||
: Set.Iio m.succ \ Set.Iio n.succ ≈ Set.Iio m \ Set.Iio n := by
|
|
||||||
refine Set.equinumerous_symm ⟨fun x => x + 1, ?_, ?_, ?_⟩
|
|
||||||
· intro x ⟨hx₁, hx₂⟩
|
|
||||||
simp at hx₁ hx₂ ⊢
|
|
||||||
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
|
|
||||||
· intro _ _ _ _ h
|
|
||||||
simp only [add_left_inj] at h
|
|
||||||
exact h
|
exact h
|
||||||
· unfold Set.SurjOn Set.image
|
· intro h
|
||||||
rw [Set.subset_def]
|
unfold NotEquinumerous Equinumerous
|
||||||
intro x ⟨hx₁, hx₂⟩
|
simp only [not_exists]
|
||||||
simp only [
|
|
||||||
Set.Iio_diff_Iio,
|
|
||||||
gt_iff_lt,
|
|
||||||
not_lt,
|
|
||||||
ge_iff_le,
|
|
||||||
Set.mem_setOf_eq,
|
|
||||||
Set.mem_Iio
|
|
||||||
] at hx₁ hx₂ ⊢
|
|
||||||
have ⟨p, hp⟩ : ∃ p : ℕ, x = p.succ := by
|
|
||||||
refine Nat.exists_eq_succ_of_ne_zero ?_
|
|
||||||
have := calc 0
|
|
||||||
_ < n.succ := by simp
|
|
||||||
_ ≤ x := hx₂
|
|
||||||
exact Nat.pos_iff_ne_zero.mp this
|
|
||||||
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
|
|
||||||
· rw [hp] at hx₂
|
|
||||||
exact Nat.lt_succ.mp hx₂
|
|
||||||
· rw [hp] at hx₁
|
|
||||||
exact Nat.succ_lt_succ_iff.mp hx₁
|
|
||||||
|
|
||||||
/--
|
|
||||||
For all natural numbers `m, n`, `m - n ∪ {m} ≈ m - n`.
|
|
||||||
-/
|
|
||||||
theorem diff_union_equinumerous_succ_diff {m n : ℕ} (hn: n ≤ m)
|
|
||||||
: Set.Iio m \ Set.Iio n ∪ {m} ≈ Set.Iio (Nat.succ m) \ Set.Iio n := by
|
|
||||||
refine ⟨fun x => x, ?_, ?_, ?_⟩
|
|
||||||
· intro x hx
|
|
||||||
simp at hx ⊢
|
|
||||||
apply Or.elim hx
|
|
||||||
· intro hx₁
|
|
||||||
rw [hx₁]
|
|
||||||
exact ⟨hn, by simp⟩
|
|
||||||
· intro ⟨hx₁, hx₂⟩
|
|
||||||
exact ⟨hx₁, calc x
|
|
||||||
_ < m := hx₂
|
|
||||||
_ < m + 1 := by simp⟩
|
|
||||||
· intro _ _ _ _ h
|
|
||||||
exact h
|
exact h
|
||||||
· unfold Set.SurjOn Set.image
|
|
||||||
rw [Set.subset_def]
|
|
||||||
simp only [
|
|
||||||
Set.Iio_diff_Iio,
|
|
||||||
gt_iff_lt,
|
|
||||||
not_lt,
|
|
||||||
ge_iff_le,
|
|
||||||
Set.mem_Ico,
|
|
||||||
Set.union_singleton,
|
|
||||||
lt_self_iff_false,
|
|
||||||
and_false,
|
|
||||||
Set.mem_insert_iff,
|
|
||||||
exists_eq_right,
|
|
||||||
Set.mem_setOf_eq,
|
|
||||||
and_imp
|
|
||||||
]
|
|
||||||
intro x hn hm
|
|
||||||
apply Or.elim (Nat.lt_or_eq_of_lt hm)
|
|
||||||
· intro hx
|
|
||||||
right
|
|
||||||
exact ⟨hn, hx⟩
|
|
||||||
· intro hx
|
|
||||||
left
|
|
||||||
exact hx
|
|
||||||
|
|
||||||
end Set
|
end Set
|
|
@ -1,235 +0,0 @@
|
||||||
import Mathlib.Data.Set.Function
|
|
||||||
|
|
||||||
/-! # Common.Set.Function
|
|
||||||
|
|
||||||
Additional theorems around functions defined on sets.
|
|
||||||
-/
|
|
||||||
|
|
||||||
namespace Set.Function
|
|
||||||
|
|
||||||
/--
|
|
||||||
Produce a new function that swaps the outputs of the two specified inputs.
|
|
||||||
-/
|
|
||||||
def swap [DecidableEq α] (f : α → β) (x₁ x₂ : α) (x : α) : β :=
|
|
||||||
if x = x₁ then f x₂ else
|
|
||||||
if x = x₂ then f x₁ else
|
|
||||||
f x
|
|
||||||
|
|
||||||
/--
|
|
||||||
Swapping the same input yields the original function.
|
|
||||||
-/
|
|
||||||
@[simp]
|
|
||||||
theorem swap_eq_eq_self [DecidableEq α] {f : α → β} {x : α}
|
|
||||||
: swap f x x = f := by
|
|
||||||
refine funext ?_
|
|
||||||
intro y
|
|
||||||
unfold swap
|
|
||||||
by_cases hy : y = x
|
|
||||||
· rw [if_pos hy, hy]
|
|
||||||
· rw [if_neg hy, if_neg hy]
|
|
||||||
|
|
||||||
/--
|
|
||||||
Swapping a function twice yields the original function.
|
|
||||||
-/
|
|
||||||
@[simp]
|
|
||||||
theorem swap_swap_eq_self [DecidableEq α] {f : α → β} {x₁ x₂ : α}
|
|
||||||
: swap (swap f x₁ x₂) x₁ x₂ = f := by
|
|
||||||
refine funext ?_
|
|
||||||
intro y
|
|
||||||
by_cases hc₁ : x₂ = x₁
|
|
||||||
· rw [hc₁]
|
|
||||||
simp
|
|
||||||
rw [← Ne.def] at hc₁
|
|
||||||
unfold swap
|
|
||||||
by_cases hc₂ : y = x₁ <;>
|
|
||||||
by_cases hc₃ : y = x₂
|
|
||||||
· rw [if_pos hc₂, if_neg hc₁, if_pos rfl, ← hc₂]
|
|
||||||
· rw [if_pos hc₂, if_neg hc₁, if_pos rfl, ← hc₂]
|
|
||||||
· rw [if_neg hc₂, if_pos hc₃, if_pos rfl, ← hc₃]
|
|
||||||
· rw [if_neg hc₂, if_neg hc₃, if_neg hc₂, if_neg hc₃]
|
|
||||||
|
|
||||||
/--
|
|
||||||
If `f : A → B`, then a swapped variant of `f` also maps `A` into `B`.
|
|
||||||
-/
|
|
||||||
theorem swap_MapsTo_self [DecidableEq α]
|
|
||||||
{A : Set α} {B : Set β} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A) (hf : MapsTo f A B)
|
|
||||||
: MapsTo (swap f a₁ a₂) A B := by
|
|
||||||
intro x hx
|
|
||||||
unfold swap
|
|
||||||
by_cases hc₁ : x = a₁ <;> by_cases hc₂ : x = a₂
|
|
||||||
· rw [if_pos hc₁]
|
|
||||||
exact hf ha₂
|
|
||||||
· rw [if_pos hc₁]
|
|
||||||
exact hf ha₂
|
|
||||||
· rw [if_neg hc₁, if_pos hc₂]
|
|
||||||
exact hf ha₁
|
|
||||||
· rw [if_neg hc₁, if_neg hc₂]
|
|
||||||
exact hf hx
|
|
||||||
|
|
||||||
/--
|
|
||||||
The converse of `swap_MapsTo_self`.
|
|
||||||
-/
|
|
||||||
theorem self_MapsTo_swap [DecidableEq α]
|
|
||||||
{A : Set α} {B : Set β} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A) (hf : MapsTo (swap f a₁ a₂) A B)
|
|
||||||
: MapsTo f A B := by
|
|
||||||
rw [← @swap_swap_eq_self _ _ _ f a₁ a₂]
|
|
||||||
exact swap_MapsTo_self ha₁ ha₂ hf
|
|
||||||
|
|
||||||
/--
|
|
||||||
If `f : A → B`, then `f` maps `A` into `B` **iff** a swap of `f` maps `A` into
|
|
||||||
`B`.
|
|
||||||
-/
|
|
||||||
theorem self_iff_swap_MapsTo [DecidableEq α]
|
|
||||||
{A : Set α} {B : Set β} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A)
|
|
||||||
: MapsTo (swap f a₁ a₂) A B ↔ MapsTo f A B :=
|
|
||||||
⟨self_MapsTo_swap ha₁ ha₂, swap_MapsTo_self ha₁ ha₂⟩
|
|
||||||
|
|
||||||
/--
|
|
||||||
If `f : A → B` is one-to-one, then a swapped variant of `f` is also one-to-one.
|
|
||||||
-/
|
|
||||||
theorem swap_InjOn_self [DecidableEq α]
|
|
||||||
{A : Set α} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A) (hf : InjOn f A)
|
|
||||||
: InjOn (swap f a₁ a₂) A := by
|
|
||||||
intro x₁ hx₁ x₂ hx₂ h
|
|
||||||
unfold swap at h
|
|
||||||
by_cases hc₁ : x₁ = a₁ <;>
|
|
||||||
by_cases hc₂ : x₁ = a₂ <;>
|
|
||||||
by_cases hc₃ : x₂ = a₁ <;>
|
|
||||||
by_cases hc₄ : x₂ = a₂
|
|
||||||
· rw [hc₁, hc₃]
|
|
||||||
· rw [hc₁, hc₃]
|
|
||||||
· rw [hc₂, hc₄]
|
|
||||||
· rw [if_pos hc₁, if_neg hc₃, if_neg hc₄, ← hc₂] at h
|
|
||||||
exact hf hx₁ hx₂ h
|
|
||||||
· rw [hc₁, hc₃]
|
|
||||||
· rw [hc₁, hc₃]
|
|
||||||
· rw [if_pos hc₁, if_neg hc₃, if_pos hc₄, ← hc₁, ← hc₄] at h
|
|
||||||
exact hf hx₁ hx₂ h.symm
|
|
||||||
· rw [if_pos hc₁, if_neg hc₃, if_neg hc₄] at h
|
|
||||||
exact absurd (hf hx₂ ha₂ h.symm) hc₄
|
|
||||||
· rw [hc₂, hc₄]
|
|
||||||
· rw [if_neg hc₁, if_pos hc₂, if_pos hc₃, ← hc₂, ← hc₃] at h
|
|
||||||
exact hf hx₁ hx₂ h.symm
|
|
||||||
· rw [hc₂, hc₄]
|
|
||||||
· rw [if_neg hc₁, if_pos hc₂, if_neg hc₃, if_neg hc₄] at h
|
|
||||||
exact absurd (hf hx₂ ha₁ h.symm) hc₃
|
|
||||||
· rw [if_neg hc₁, if_neg hc₂, if_pos hc₃, ← hc₄] at h
|
|
||||||
exact hf hx₁ hx₂ h
|
|
||||||
· rw [if_neg hc₁, if_neg hc₂, if_pos hc₃] at h
|
|
||||||
exact absurd (hf hx₁ ha₂ h) hc₂
|
|
||||||
· rw [if_neg hc₁, if_neg hc₂, if_neg hc₃, if_pos hc₄] at h
|
|
||||||
exact absurd (hf hx₁ ha₁ h) hc₁
|
|
||||||
· rw [if_neg hc₁, if_neg hc₂, if_neg hc₃, if_neg hc₄] at h
|
|
||||||
exact hf hx₁ hx₂ h
|
|
||||||
|
|
||||||
/--
|
|
||||||
The converse of `swap_InjOn_self`.
|
|
||||||
-/
|
|
||||||
theorem self_InjOn_swap [DecidableEq α]
|
|
||||||
{A : Set α} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A) (hf : InjOn (swap f a₁ a₂) A)
|
|
||||||
: InjOn f A := by
|
|
||||||
rw [← @swap_swap_eq_self _ _ _ f a₁ a₂]
|
|
||||||
exact swap_InjOn_self ha₁ ha₂ hf
|
|
||||||
|
|
||||||
/--
|
|
||||||
If `f : A → B`, then `f` is one-to-one **iff** a swap of `f` is one-to-one.
|
|
||||||
-/
|
|
||||||
theorem self_iff_swap_InjOn [DecidableEq α]
|
|
||||||
{A : Set α} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A)
|
|
||||||
: InjOn (swap f a₁ a₂) A ↔ InjOn f A :=
|
|
||||||
⟨self_InjOn_swap ha₁ ha₂, swap_InjOn_self ha₁ ha₂⟩
|
|
||||||
|
|
||||||
/--
|
|
||||||
If `f : A → B` is onto, then a swapped variant of `f` is also onto.
|
|
||||||
-/
|
|
||||||
theorem swap_SurjOn_self [DecidableEq α]
|
|
||||||
{A : Set α} {B : Set β} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A) (hf : SurjOn f A B)
|
|
||||||
: SurjOn (swap f a₁ a₂) A B := by
|
|
||||||
show ∀ x, x ∈ B → ∃ a ∈ A, swap f a₁ a₂ a = x
|
|
||||||
intro x hx
|
|
||||||
have ⟨a, ha⟩ := hf hx
|
|
||||||
by_cases hc₁ : a = a₁
|
|
||||||
· refine ⟨a₂, ha₂, ?_⟩
|
|
||||||
unfold swap
|
|
||||||
by_cases hc₂ : a₁ = a₂
|
|
||||||
· rw [if_pos hc₂.symm, ← hc₂, ← hc₁]
|
|
||||||
exact ha.right
|
|
||||||
· rw [← Ne.def] at hc₂
|
|
||||||
rw [if_neg hc₂.symm, if_pos rfl, ← hc₁]
|
|
||||||
exact ha.right
|
|
||||||
· by_cases hc₂ : a = a₂
|
|
||||||
· unfold swap
|
|
||||||
refine ⟨a₁, ha₁, ?_⟩
|
|
||||||
rw [if_pos rfl, ← hc₂]
|
|
||||||
exact ha.right
|
|
||||||
· refine ⟨a, ha.left, ?_⟩
|
|
||||||
unfold swap
|
|
||||||
rw [if_neg hc₁, if_neg hc₂]
|
|
||||||
exact ha.right
|
|
||||||
|
|
||||||
/--
|
|
||||||
The converse of `swap_SurjOn_self`.
|
|
||||||
-/
|
|
||||||
theorem self_SurjOn_swap [DecidableEq α]
|
|
||||||
{A : Set α} {B : Set β} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A) (hf : SurjOn (swap f a₁ a₂) A B)
|
|
||||||
: SurjOn f A B := by
|
|
||||||
rw [← @swap_swap_eq_self _ _ _ f a₁ a₂]
|
|
||||||
exact swap_SurjOn_self ha₁ ha₂ hf
|
|
||||||
|
|
||||||
/--
|
|
||||||
If `f : A → B`, then `f` is onto **iff** a swap of `f` is onto.
|
|
||||||
-/
|
|
||||||
theorem self_iff_swap_SurjOn [DecidableEq α]
|
|
||||||
{A : Set α} {B : Set β} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A)
|
|
||||||
: SurjOn (swap f a₁ a₂) A B ↔ SurjOn f A B :=
|
|
||||||
⟨self_SurjOn_swap ha₁ ha₂, swap_SurjOn_self ha₁ ha₂⟩
|
|
||||||
|
|
||||||
/--
|
|
||||||
If `f : A → B` is a one-to-one correspondence, then a swapped variant of `f` is
|
|
||||||
also a one-to-one correspondence.
|
|
||||||
-/
|
|
||||||
theorem swap_BijOn_self [DecidableEq α]
|
|
||||||
{A : Set α} {B : Set β} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A) (hf : BijOn f A B)
|
|
||||||
: BijOn (swap f a₁ a₂) A B := by
|
|
||||||
have ⟨hf₁, hf₂, hf₃⟩ := hf
|
|
||||||
exact ⟨
|
|
||||||
swap_MapsTo_self ha₁ ha₂ hf₁,
|
|
||||||
swap_InjOn_self ha₁ ha₂ hf₂,
|
|
||||||
swap_SurjOn_self ha₁ ha₂ hf₃
|
|
||||||
⟩
|
|
||||||
|
|
||||||
/--
|
|
||||||
The converse of `swap_BijOn_self`.
|
|
||||||
-/
|
|
||||||
theorem self_BijOn_swap [DecidableEq α]
|
|
||||||
{A : Set α} {B : Set β} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A) (hf : BijOn (swap f a₁ a₂) A B)
|
|
||||||
: BijOn f A B := by
|
|
||||||
have ⟨hf₁, hf₂, hf₃⟩ := hf
|
|
||||||
exact ⟨
|
|
||||||
self_MapsTo_swap ha₁ ha₂ hf₁,
|
|
||||||
self_InjOn_swap ha₁ ha₂ hf₂,
|
|
||||||
self_SurjOn_swap ha₁ ha₂ hf₃
|
|
||||||
⟩
|
|
||||||
|
|
||||||
/--
|
|
||||||
If `f : A → B`, `f` is a one-to-one correspondence **iff** a swap of `f` is a
|
|
||||||
one-to-one correspondence.
|
|
||||||
-/
|
|
||||||
theorem self_iff_swap_BijOn [DecidableEq α]
|
|
||||||
{A : Set α} {B : Set β} {f : α → β}
|
|
||||||
(ha₁ : a₁ ∈ A) (ha₂ : a₂ ∈ A)
|
|
||||||
: BijOn (swap f a₁ a₂) A B ↔ BijOn f A B :=
|
|
||||||
⟨self_BijOn_swap ha₁ ha₂, swap_BijOn_self ha₁ ha₂⟩
|
|
||||||
|
|
||||||
end Set.Function
|
|
|
@ -1,5 +1,4 @@
|
||||||
import Common.Logic.Basic
|
import Common.Logic.Basic
|
||||||
import Mathlib.Data.Set.Function
|
|
||||||
import Mathlib.Data.Set.Intervals.Basic
|
import Mathlib.Data.Set.Intervals.Basic
|
||||||
|
|
||||||
namespace Set
|
namespace Set
|
||||||
|
@ -9,9 +8,6 @@ namespace Set
|
||||||
Additional theorems around intervals.
|
Additional theorems around intervals.
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/--
|
|
||||||
If `m < n` then `{0, …, m - 1} ⊂ {0, …, n - 1}`.
|
|
||||||
-/
|
|
||||||
theorem Iio_nat_lt_ssubset {m n : ℕ} (h : m < n)
|
theorem Iio_nat_lt_ssubset {m n : ℕ} (h : m < n)
|
||||||
: Iio m ⊂ Iio n := by
|
: Iio m ⊂ Iio n := by
|
||||||
rw [ssubset_def]
|
rw [ssubset_def]
|
||||||
|
@ -26,22 +22,4 @@ theorem Iio_nat_lt_ssubset {m n : ℕ} (h : m < n)
|
||||||
simp only [not_forall, not_lt, exists_prop]
|
simp only [not_forall, not_lt, exists_prop]
|
||||||
exact ⟨m, h, by simp⟩
|
exact ⟨m, h, by simp⟩
|
||||||
|
|
||||||
/--
|
|
||||||
It is never the case that the emptyset is surjective
|
|
||||||
-/
|
|
||||||
theorem SurjOn_emptyset_Iio_iff_eq_zero {n : ℕ} {f : α → ℕ}
|
|
||||||
: SurjOn f ∅ (Set.Iio n) ↔ n = 0 := by
|
|
||||||
apply Iff.intro
|
|
||||||
· intro h
|
|
||||||
unfold SurjOn at h
|
|
||||||
rw [subset_def] at h
|
|
||||||
simp only [mem_Iio, image_empty, mem_empty_iff_false] at h
|
|
||||||
by_contra nh
|
|
||||||
exact h 0 (Nat.pos_of_ne_zero nh)
|
|
||||||
· intro hn
|
|
||||||
unfold SurjOn
|
|
||||||
rw [hn, subset_def]
|
|
||||||
intro x hx
|
|
||||||
exact absurd hx (Nat.not_lt_zero x)
|
|
||||||
|
|
||||||
end Set
|
end Set
|
|
@ -0,0 +1,9 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import DocGen4.Process
|
||||||
|
import DocGen4.Load
|
||||||
|
import DocGen4.Output
|
||||||
|
import DocGen4.LeanInk
|
|
@ -0,0 +1,7 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import DocGen4.LeanInk.Process
|
||||||
|
import DocGen4.LeanInk.Output
|
|
@ -0,0 +1,215 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving, Xubai Wang
|
||||||
|
-/
|
||||||
|
import DocGen4.Output.Base
|
||||||
|
import DocGen4.Output.ToHtmlFormat
|
||||||
|
import Lean.Data.Json
|
||||||
|
import LeanInk.Annotation.Alectryon
|
||||||
|
|
||||||
|
namespace LeanInk.Annotation.Alectryon
|
||||||
|
|
||||||
|
open DocGen4 Output
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
|
||||||
|
structure AlectryonContext where
|
||||||
|
counter : Nat
|
||||||
|
|
||||||
|
abbrev AlectryonT := StateT AlectryonContext
|
||||||
|
abbrev AlectryonM := AlectryonT HtmlM
|
||||||
|
|
||||||
|
def getNextButtonLabel : AlectryonM String := do
|
||||||
|
let val ← get
|
||||||
|
let newCounter := val.counter + 1
|
||||||
|
set { val with counter := newCounter }
|
||||||
|
return s!"plain-lean4-lean-chk{val.counter}"
|
||||||
|
|
||||||
|
def TypeInfo.toHtml (tyi : TypeInfo) : AlectryonM Html := do
|
||||||
|
pure
|
||||||
|
<div class="alectryon-type-info-wrapper">
|
||||||
|
<small class="alectryon-type-info">
|
||||||
|
<div class="alectryon-goals">
|
||||||
|
<blockquote class="alectryon-goal">
|
||||||
|
<div class="goal-hyps">
|
||||||
|
<span class="hyp-type">
|
||||||
|
<var>{tyi.name}</var>
|
||||||
|
<b>: </b>
|
||||||
|
<span>[← DocGen4.Output.infoFormatToHtml tyi.type.fst]</span>
|
||||||
|
</span>
|
||||||
|
</div>
|
||||||
|
</blockquote>
|
||||||
|
</div>
|
||||||
|
</small>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
def Token.processSemantic (t : Token) : Html :=
|
||||||
|
match t.semanticType with
|
||||||
|
| some "Name.Attribute" => <span class="na">{t.raw}</span>
|
||||||
|
| some "Name.Variable" => <span class="nv">{t.raw}</span>
|
||||||
|
| some "Keyword" => <span class="k">{t.raw}</span>
|
||||||
|
| _ => Html.text t.raw
|
||||||
|
|
||||||
|
def Token.toHtml (t : Token) : AlectryonM Html := do
|
||||||
|
-- Right now t.link is always none from LeanInk, ignore it
|
||||||
|
-- TODO: render docstring
|
||||||
|
let mut parts := #[]
|
||||||
|
if let some tyi := t.typeinfo then
|
||||||
|
parts := parts.push <| ← tyi.toHtml
|
||||||
|
|
||||||
|
parts := parts.push t.processSemantic
|
||||||
|
|
||||||
|
pure
|
||||||
|
-- TODO: Show rest of token
|
||||||
|
<span class="alectryon-token">
|
||||||
|
[parts]
|
||||||
|
</span>
|
||||||
|
|
||||||
|
def Contents.toHtml : Contents → AlectryonM Html
|
||||||
|
| .string value =>
|
||||||
|
pure
|
||||||
|
<span class="alectryon-wsp">
|
||||||
|
{value}
|
||||||
|
</span>
|
||||||
|
| .experimentalTokens values => do
|
||||||
|
let values ← values.mapM Token.toHtml
|
||||||
|
pure
|
||||||
|
<span class="alectryon-wsp">
|
||||||
|
[values]
|
||||||
|
</span>
|
||||||
|
|
||||||
|
def Hypothesis.toHtml (h : Hypothesis) : AlectryonM Html := do
|
||||||
|
let mut hypParts := #[<var>[h.names.intersperse ", " |>.map Html.text |>.toArray]</var>]
|
||||||
|
if h.body.snd != "" then
|
||||||
|
hypParts := hypParts.push
|
||||||
|
<span class="hyp-body">
|
||||||
|
<b>:= </b>
|
||||||
|
<span>[← infoFormatToHtml h.body.fst]</span>
|
||||||
|
</span>
|
||||||
|
hypParts := hypParts.push
|
||||||
|
<span class="hyp-type">
|
||||||
|
<b>: </b>
|
||||||
|
<span >[← infoFormatToHtml h.type.fst]</span>
|
||||||
|
</span>
|
||||||
|
|
||||||
|
pure
|
||||||
|
<span>
|
||||||
|
[hypParts]
|
||||||
|
</span>
|
||||||
|
|
||||||
|
def Goal.toHtml (g : Goal) : AlectryonM Html := do
|
||||||
|
let mut hypotheses := #[]
|
||||||
|
for hyp in g.hypotheses do
|
||||||
|
let rendered ← hyp.toHtml
|
||||||
|
hypotheses := hypotheses.push rendered
|
||||||
|
hypotheses := hypotheses.push <br/>
|
||||||
|
let conclusionHtml ←
|
||||||
|
match g.conclusion with
|
||||||
|
| .typed info _ => infoFormatToHtml info
|
||||||
|
| .untyped str => pure #[Html.text str]
|
||||||
|
|
||||||
|
pure
|
||||||
|
<blockquote class="alectryon-goal">
|
||||||
|
<div class="goal-hyps">
|
||||||
|
[hypotheses]
|
||||||
|
</div>
|
||||||
|
<span class="goal-separator">
|
||||||
|
<hr><span class="goal-name">{g.name}</span></hr>
|
||||||
|
</span>
|
||||||
|
<div class="goal-conclusion">
|
||||||
|
[conclusionHtml]
|
||||||
|
</div>
|
||||||
|
</blockquote>
|
||||||
|
|
||||||
|
def Message.toHtml (m : Message) : AlectryonM Html := do
|
||||||
|
pure
|
||||||
|
<blockquote class="alectryon-message">
|
||||||
|
-- TODO: This might have to be done in a fancier way
|
||||||
|
{m.contents}
|
||||||
|
</blockquote>
|
||||||
|
|
||||||
|
def Sentence.toHtml (s : Sentence) : AlectryonM Html := do
|
||||||
|
let messages :=
|
||||||
|
if s.messages.size > 0 then
|
||||||
|
#[
|
||||||
|
<div class="alectryon-messages">
|
||||||
|
[← s.messages.mapM Message.toHtml]
|
||||||
|
</div>
|
||||||
|
]
|
||||||
|
else
|
||||||
|
#[]
|
||||||
|
|
||||||
|
let goals :=
|
||||||
|
if s.goals.size > 0 then
|
||||||
|
-- TODO: Alectryon has a "alectryon-extra-goals" here, implement it
|
||||||
|
#[
|
||||||
|
<div class="alectryon-goals">
|
||||||
|
[← s.goals.mapM Goal.toHtml]
|
||||||
|
</div>
|
||||||
|
]
|
||||||
|
else
|
||||||
|
#[]
|
||||||
|
|
||||||
|
let buttonLabel ← getNextButtonLabel
|
||||||
|
|
||||||
|
pure
|
||||||
|
<span class="alectryon-sentence">
|
||||||
|
<input class="alectryon-toggle" id={buttonLabel} style="display: none" type="checkbox"/>
|
||||||
|
<label class="alectryon-input" for={buttonLabel}>
|
||||||
|
{← s.contents.toHtml}
|
||||||
|
</label>
|
||||||
|
<small class="alectryon-output">
|
||||||
|
[messages]
|
||||||
|
[goals]
|
||||||
|
</small>
|
||||||
|
</span>
|
||||||
|
|
||||||
|
def Text.toHtml (t : Text) : AlectryonM Html := t.contents.toHtml
|
||||||
|
|
||||||
|
def Fragment.toHtml : Fragment → AlectryonM Html
|
||||||
|
| .text value => value.toHtml
|
||||||
|
| .sentence value => value.toHtml
|
||||||
|
|
||||||
|
def baseHtml (content : Array Html) : AlectryonM Html := do
|
||||||
|
let banner :=
|
||||||
|
<div «class»="alectryon-banner">
|
||||||
|
Built with <a href="https://github.com/leanprover/doc-gen4">doc-gen4</a>, running Lean4.
|
||||||
|
Bubbles (<span class="alectryon-bubble"></span>) indicate interactive fragments: hover for details, tap to reveal contents.
|
||||||
|
Use <kbd>Ctrl+↑</kbd> <kbd>Ctrl+↓</kbd> to navigate, <kbd>Ctrl+🖱️</kbd> to focus.
|
||||||
|
On Mac, use <kbd>Cmd</kbd> instead of <kbd>Ctrl</kbd>.
|
||||||
|
</div>
|
||||||
|
|
||||||
|
pure
|
||||||
|
<html lang="en" class="alectryon-standalone">
|
||||||
|
<head>
|
||||||
|
<meta charset="UTF-8"/>
|
||||||
|
<meta name="viewport" content="width=device-width, initial-scale=1"/>
|
||||||
|
|
||||||
|
<link rel="stylesheet" href={s!"{← getRoot}src/alectryon.css"}/>
|
||||||
|
<link rel="stylesheet" href={s!"{← getRoot}src/pygments.css"}/>
|
||||||
|
<link rel="stylesheet" href={s!"{← getRoot}src/docutils_basic.css"}/>
|
||||||
|
<link rel="shortcut icon" href={s!"{← getRoot}favicon.ico"}/>
|
||||||
|
|
||||||
|
<script defer="true" src={s!"{← getRoot}src/alectryon.js"}></script>
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
<article class="alectryon-root alectryon-centered">
|
||||||
|
{banner}
|
||||||
|
<pre class="alectryon-io highlight">
|
||||||
|
[content]
|
||||||
|
</pre>
|
||||||
|
</article>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
|
||||||
|
def annotationsToFragments (as : List Annotation.Annotation) : AnalysisM (List Fragment) := do
|
||||||
|
let config ← read
|
||||||
|
annotateFileWithCompounds [] config.inputFileContents as
|
||||||
|
|
||||||
|
-- TODO: rework monad mess
|
||||||
|
def renderAnnotations (as : List Annotation.Annotation) : HtmlT AnalysisM Html := do
|
||||||
|
let fs ← annotationsToFragments as
|
||||||
|
let (html, _) ← fs.mapM Fragment.toHtml >>= (baseHtml ∘ List.toArray) |>.run { counter := 0 }
|
||||||
|
return html
|
||||||
|
|
||||||
|
end LeanInk.Annotation.Alectryon
|
|
@ -0,0 +1,57 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
import LeanInk.Analysis
|
||||||
|
import LeanInk.Annotation
|
||||||
|
import DocGen4.LeanInk.Output
|
||||||
|
import DocGen4.Output.Base
|
||||||
|
|
||||||
|
namespace DocGen4.Process.LeanInk
|
||||||
|
|
||||||
|
open Lean
|
||||||
|
open DocGen4.Output
|
||||||
|
|
||||||
|
def docGenOutput (as : List LeanInk.Annotation.Annotation) : HtmlT LeanInk.AnalysisM UInt32 := do
|
||||||
|
let some modName ← getCurrentName | unreachable!
|
||||||
|
let srcHtml ← LeanInk.Annotation.Alectryon.renderAnnotations as
|
||||||
|
let srcDir := moduleNameToDirectory srcBasePath modName
|
||||||
|
let srcPath := moduleNameToFile srcBasePath modName
|
||||||
|
IO.FS.createDirAll srcDir
|
||||||
|
IO.FS.writeFile srcPath srcHtml.toString
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def execAuxM : HtmlT LeanInk.AnalysisM UInt32 := do
|
||||||
|
let ctx ← readThe SiteContext
|
||||||
|
let baseCtx ← readThe SiteBaseContext
|
||||||
|
let outputFn := (docGenOutput · |>.run ctx baseCtx)
|
||||||
|
return ← LeanInk.Analysis.runAnalysis {
|
||||||
|
name := "doc-gen4"
|
||||||
|
genOutput := outputFn
|
||||||
|
}
|
||||||
|
|
||||||
|
def execAux (config : LeanInk.Configuration) : HtmlT IO UInt32 := do
|
||||||
|
execAuxM.run (← readThe SiteContext) (← readThe SiteBaseContext) |>.run config
|
||||||
|
|
||||||
|
@[implemented_by enableInitializersExecution]
|
||||||
|
private def enableInitializersExecutionWrapper : IO Unit := return ()
|
||||||
|
|
||||||
|
def runInk (sourceFilePath : System.FilePath) : HtmlT IO Unit := do
|
||||||
|
let contents ← IO.FS.readFile sourceFilePath
|
||||||
|
let config := {
|
||||||
|
inputFilePath := sourceFilePath
|
||||||
|
inputFileContents := contents
|
||||||
|
lakeFile := none
|
||||||
|
verbose := false
|
||||||
|
prettifyOutput := true
|
||||||
|
experimentalTypeInfo := true
|
||||||
|
experimentalDocString := true
|
||||||
|
experimentalSemanticType := true
|
||||||
|
}
|
||||||
|
enableInitializersExecutionWrapper
|
||||||
|
if (← execAux config) != 0 then
|
||||||
|
throw <| IO.userError s!"Analysis for \"{sourceFilePath}\" failed!"
|
||||||
|
|
||||||
|
end DocGen4.Process.LeanInk
|
|
@ -0,0 +1,61 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
|
||||||
|
import Lean
|
||||||
|
import Lake
|
||||||
|
import Lake.CLI.Main
|
||||||
|
import DocGen4.Process
|
||||||
|
import Lean.Data.HashMap
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
|
||||||
|
open Lean System IO
|
||||||
|
/--
|
||||||
|
Sets up a lake workspace for the current project. Furthermore initialize
|
||||||
|
the Lean search path with the path to the proper compiler from lean-toolchain
|
||||||
|
as well as all the dependencies.
|
||||||
|
-/
|
||||||
|
def lakeSetup : IO (Except UInt32 Lake.Workspace) := do
|
||||||
|
let (leanInstall?, lakeInstall?) ← Lake.findInstall?
|
||||||
|
let config := Lake.mkLoadConfig.{0} {leanInstall?, lakeInstall?}
|
||||||
|
match ←(EIO.toIO' config) with
|
||||||
|
| .ok config =>
|
||||||
|
let ws : Lake.Workspace ← Lake.loadWorkspace config
|
||||||
|
|>.run Lake.MonadLog.eio
|
||||||
|
|>.toIO (λ _ => IO.userError "Failed to load Lake workspace")
|
||||||
|
pure <| Except.ok ws
|
||||||
|
| .error err =>
|
||||||
|
throw <| IO.userError err.toString
|
||||||
|
|
||||||
|
def envOfImports (imports : List Name) : IO Environment := do
|
||||||
|
importModules (imports.map (Import.mk · false)) Options.empty
|
||||||
|
|
||||||
|
def loadInit (imports : List Name) : IO Hierarchy := do
|
||||||
|
let env ← envOfImports imports
|
||||||
|
pure <| Hierarchy.fromArray env.header.moduleNames
|
||||||
|
|
||||||
|
/--
|
||||||
|
Load a list of modules from the current Lean search path into an `Environment`
|
||||||
|
to process for documentation.
|
||||||
|
-/
|
||||||
|
def load (task : Process.AnalyzeTask) : IO (Process.AnalyzerResult × Hierarchy) := do
|
||||||
|
let env ← envOfImports task.getLoad
|
||||||
|
IO.println "Processing modules"
|
||||||
|
let config := {
|
||||||
|
-- TODO: parameterize maxHeartbeats
|
||||||
|
maxHeartbeats := 100000000,
|
||||||
|
options := ⟨[(`pp.tagAppFns, true)]⟩,
|
||||||
|
-- TODO: Figure out whether this could cause some bugs
|
||||||
|
fileName := default,
|
||||||
|
fileMap := default,
|
||||||
|
}
|
||||||
|
|
||||||
|
Prod.fst <$> Meta.MetaM.toIO (Process.process task) config { env := env } {} {}
|
||||||
|
|
||||||
|
def loadCore : IO (Process.AnalyzerResult × Hierarchy) := do
|
||||||
|
load <| .loadAll [`Init, `Lean, `Lake]
|
||||||
|
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,156 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
import Lake
|
||||||
|
import DocGen4.Process
|
||||||
|
import DocGen4.Output.Base
|
||||||
|
import DocGen4.Output.Index
|
||||||
|
import DocGen4.Output.Module
|
||||||
|
import DocGen4.Output.NotFound
|
||||||
|
import DocGen4.Output.Find
|
||||||
|
import DocGen4.Output.SourceLinker
|
||||||
|
import DocGen4.Output.Search
|
||||||
|
import DocGen4.Output.ToJson
|
||||||
|
import DocGen4.Output.FoundationalTypes
|
||||||
|
import DocGen4.LeanInk.Process
|
||||||
|
import Lean.Data.HashMap
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
|
||||||
|
open Lean IO System Output Process
|
||||||
|
|
||||||
|
def htmlOutputSetup (config : SiteBaseContext) : IO Unit := do
|
||||||
|
let findBasePath := basePath / "find"
|
||||||
|
|
||||||
|
-- Base structure
|
||||||
|
FS.createDirAll basePath
|
||||||
|
FS.createDirAll findBasePath
|
||||||
|
FS.createDirAll srcBasePath
|
||||||
|
FS.createDirAll declarationsBasePath
|
||||||
|
|
||||||
|
-- All the doc-gen static stuff
|
||||||
|
let indexHtml := ReaderT.run index config |>.toString
|
||||||
|
let notFoundHtml := ReaderT.run notFound config |>.toString
|
||||||
|
let foundationalTypesHtml := ReaderT.run foundationalTypes config |>.toString
|
||||||
|
let navbarHtml := ReaderT.run navbar config |>.toString
|
||||||
|
let searchHtml := ReaderT.run search config |>.toString
|
||||||
|
let docGenStatic := #[
|
||||||
|
("style.css", styleCss),
|
||||||
|
("declaration-data.js", declarationDataCenterJs),
|
||||||
|
("color-scheme.js", colorSchemeJs),
|
||||||
|
("nav.js", navJs),
|
||||||
|
("how-about.js", howAboutJs),
|
||||||
|
("search.html", searchHtml),
|
||||||
|
("search.js", searchJs),
|
||||||
|
("mathjax-config.js", mathjaxConfigJs),
|
||||||
|
("instances.js", instancesJs),
|
||||||
|
("importedBy.js", importedByJs),
|
||||||
|
("index.html", indexHtml),
|
||||||
|
("foundational_types.html", foundationalTypesHtml),
|
||||||
|
("404.html", notFoundHtml),
|
||||||
|
("navbar.html", navbarHtml)
|
||||||
|
]
|
||||||
|
for (fileName, content) in docGenStatic do
|
||||||
|
FS.writeFile (basePath / fileName) content
|
||||||
|
|
||||||
|
let findHtml := ReaderT.run find { config with depthToRoot := 1 } |>.toString
|
||||||
|
let findStatic := #[
|
||||||
|
("index.html", findHtml),
|
||||||
|
("find.js", findJs)
|
||||||
|
]
|
||||||
|
for (fileName, content) in findStatic do
|
||||||
|
FS.writeFile (findBasePath / fileName) content
|
||||||
|
|
||||||
|
let alectryonStatic := #[
|
||||||
|
("alectryon.css", alectryonCss),
|
||||||
|
("alectryon.js", alectryonJs),
|
||||||
|
("docutils_basic.css", docUtilsCss),
|
||||||
|
("pygments.css", pygmentsCss)
|
||||||
|
]
|
||||||
|
|
||||||
|
for (fileName, content) in alectryonStatic do
|
||||||
|
FS.writeFile (srcBasePath / fileName) content
|
||||||
|
|
||||||
|
def htmlOutputDeclarationDatas (result : AnalyzerResult) : HtmlT IO Unit := do
|
||||||
|
for (_, mod) in result.moduleInfo.toArray do
|
||||||
|
let jsonDecls ← Module.toJson mod
|
||||||
|
FS.writeFile (declarationsBasePath / s!"declaration-data-{mod.name}.bmp") (toJson jsonDecls).compress
|
||||||
|
|
||||||
|
def htmlOutputResults (baseConfig : SiteBaseContext) (result : AnalyzerResult) (ws : Lake.Workspace) (ink : Bool) : IO Unit := do
|
||||||
|
let config : SiteContext := {
|
||||||
|
result := result,
|
||||||
|
sourceLinker := ← SourceLinker.sourceLinker ws
|
||||||
|
leanInkEnabled := ink
|
||||||
|
}
|
||||||
|
|
||||||
|
FS.createDirAll basePath
|
||||||
|
FS.createDirAll declarationsBasePath
|
||||||
|
|
||||||
|
-- Rendering the entire lean compiler takes time....
|
||||||
|
--let sourceSearchPath := ((←Lean.findSysroot) / "src" / "lean") :: ws.root.srcDir :: ws.leanSrcPath
|
||||||
|
let sourceSearchPath := ws.root.srcDir :: ws.leanSrcPath
|
||||||
|
|
||||||
|
discard <| htmlOutputDeclarationDatas result |>.run config baseConfig
|
||||||
|
|
||||||
|
for (modName, module) in result.moduleInfo.toArray do
|
||||||
|
let fileDir := moduleNameToDirectory basePath modName
|
||||||
|
let filePath := moduleNameToFile basePath modName
|
||||||
|
-- path: 'basePath/module/components/till/last.html'
|
||||||
|
-- The last component is the file name, so we drop it from the depth to root.
|
||||||
|
let baseConfig := { baseConfig with
|
||||||
|
depthToRoot := modName.components.dropLast.length
|
||||||
|
currentName := some modName
|
||||||
|
}
|
||||||
|
let moduleHtml := moduleToHtml module |>.run config baseConfig
|
||||||
|
FS.createDirAll fileDir
|
||||||
|
FS.writeFile filePath moduleHtml.toString
|
||||||
|
if ink then
|
||||||
|
if let some inputPath ← Lean.SearchPath.findModuleWithExt sourceSearchPath "lean" module.name then
|
||||||
|
IO.println s!"Inking: {modName.toString}"
|
||||||
|
-- path: 'basePath/src/module/components/till/last.html'
|
||||||
|
-- The last component is the file name, however we are in src/ here so dont drop it this time
|
||||||
|
let baseConfig := {baseConfig with depthToRoot := modName.components.length }
|
||||||
|
Process.LeanInk.runInk inputPath |>.run config baseConfig
|
||||||
|
|
||||||
|
def getSimpleBaseContext (hierarchy : Hierarchy) : IO SiteBaseContext := do
|
||||||
|
return {
|
||||||
|
depthToRoot := 0,
|
||||||
|
currentName := none,
|
||||||
|
hierarchy
|
||||||
|
projectGithubUrl := ← SourceLinker.getProjectGithubUrl
|
||||||
|
projectCommit := ← SourceLinker.getProjectCommit
|
||||||
|
}
|
||||||
|
|
||||||
|
def htmlOutputIndex (baseConfig : SiteBaseContext) : IO Unit := do
|
||||||
|
htmlOutputSetup baseConfig
|
||||||
|
|
||||||
|
let mut index : JsonIndex := {}
|
||||||
|
let mut headerIndex : JsonHeaderIndex := {}
|
||||||
|
for entry in ← System.FilePath.readDir declarationsBasePath do
|
||||||
|
if entry.fileName.startsWith "declaration-data-" && entry.fileName.endsWith ".bmp" then
|
||||||
|
let fileContent ← FS.readFile entry.path
|
||||||
|
let .ok jsonContent := Json.parse fileContent | unreachable!
|
||||||
|
let .ok (module : JsonModule) := fromJson? jsonContent | unreachable!
|
||||||
|
index := index.addModule module |>.run baseConfig
|
||||||
|
headerIndex := headerIndex.addModule module
|
||||||
|
|
||||||
|
let finalJson := toJson index
|
||||||
|
let finalHeaderJson := toJson headerIndex
|
||||||
|
-- The root JSON for find
|
||||||
|
FS.writeFile (declarationsBasePath / "declaration-data.bmp") finalJson.compress
|
||||||
|
FS.writeFile (declarationsBasePath / "header-data.bmp") finalHeaderJson.compress
|
||||||
|
|
||||||
|
/--
|
||||||
|
The main entrypoint for outputting the documentation HTML based on an
|
||||||
|
`AnalyzerResult`.
|
||||||
|
-/
|
||||||
|
def htmlOutput (result : AnalyzerResult) (hierarchy : Hierarchy) (ws : Lake.Workspace) (ink : Bool) : IO Unit := do
|
||||||
|
let baseConfig ← getSimpleBaseContext hierarchy
|
||||||
|
htmlOutputResults baseConfig result ws ink
|
||||||
|
htmlOutputIndex baseConfig
|
||||||
|
|
||||||
|
end DocGen4
|
||||||
|
|
|
@ -0,0 +1,285 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import DocGen4.Process
|
||||||
|
import DocGen4.Output.ToHtmlFormat
|
||||||
|
|
||||||
|
namespace DocGen4.Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
open Lean System Widget Elab Process
|
||||||
|
|
||||||
|
def basePath := FilePath.mk "." / "build" / "doc"
|
||||||
|
def srcBasePath := basePath / "src"
|
||||||
|
def declarationsBasePath := basePath / "declarations"
|
||||||
|
|
||||||
|
/--
|
||||||
|
The context used in the `BaseHtmlM` monad for HTML templating.
|
||||||
|
-/
|
||||||
|
structure SiteBaseContext where
|
||||||
|
|
||||||
|
/--
|
||||||
|
The module hierarchy as a tree structure.
|
||||||
|
-/
|
||||||
|
hierarchy : Hierarchy
|
||||||
|
/--
|
||||||
|
How far away we are from the page root, used for relative links to the root.
|
||||||
|
-/
|
||||||
|
depthToRoot: Nat
|
||||||
|
/--
|
||||||
|
The name of the current module if there is one, there exist a few
|
||||||
|
pages that don't have a module name.
|
||||||
|
-/
|
||||||
|
currentName : Option Name
|
||||||
|
/--
|
||||||
|
The Github URL of the project that we are building docs for.
|
||||||
|
-/
|
||||||
|
projectGithubUrl : String
|
||||||
|
/--
|
||||||
|
The commit of the project that we are building docs for.
|
||||||
|
-/
|
||||||
|
projectCommit : String
|
||||||
|
|
||||||
|
/--
|
||||||
|
The context used in the `HtmlM` monad for HTML templating.
|
||||||
|
-/
|
||||||
|
structure SiteContext where
|
||||||
|
/--
|
||||||
|
The full analysis result from the Process module.
|
||||||
|
-/
|
||||||
|
result : AnalyzerResult
|
||||||
|
/--
|
||||||
|
A function to link declaration names to their source URLs, usually Github ones.
|
||||||
|
-/
|
||||||
|
sourceLinker : Name → Option DeclarationRange → String
|
||||||
|
/--
|
||||||
|
Whether LeanInk is enabled
|
||||||
|
-/
|
||||||
|
leanInkEnabled : Bool
|
||||||
|
|
||||||
|
def setCurrentName (name : Name) (ctx : SiteBaseContext) := {ctx with currentName := some name}
|
||||||
|
|
||||||
|
abbrev BaseHtmlT := ReaderT SiteBaseContext
|
||||||
|
abbrev BaseHtmlM := BaseHtmlT Id
|
||||||
|
|
||||||
|
abbrev HtmlT (m) := ReaderT SiteContext (BaseHtmlT m)
|
||||||
|
abbrev HtmlM := HtmlT Id
|
||||||
|
|
||||||
|
def HtmlT.run (x : HtmlT m α) (ctx : SiteContext) (baseCtx : SiteBaseContext) : m α :=
|
||||||
|
ReaderT.run x ctx |>.run baseCtx
|
||||||
|
|
||||||
|
def HtmlM.run (x : HtmlM α) (ctx : SiteContext) (baseCtx : SiteBaseContext) : α :=
|
||||||
|
ReaderT.run x ctx |>.run baseCtx |>.run
|
||||||
|
|
||||||
|
instance [Monad m] : MonadLift HtmlM (HtmlT m) where
|
||||||
|
monadLift x := do return x.run (← readThe SiteContext) (← readThe SiteBaseContext)
|
||||||
|
|
||||||
|
instance [Monad m] : MonadLift BaseHtmlM (BaseHtmlT m) where
|
||||||
|
monadLift x := do return x.run (← readThe SiteBaseContext)
|
||||||
|
|
||||||
|
/--
|
||||||
|
Obtains the root URL as a relative one to the current depth.
|
||||||
|
-/
|
||||||
|
def getRoot : BaseHtmlM String := do
|
||||||
|
let rec go: Nat -> String
|
||||||
|
| 0 => "./"
|
||||||
|
| Nat.succ n' => "../" ++ go n'
|
||||||
|
let d <- SiteBaseContext.depthToRoot <$> read
|
||||||
|
return (go d)
|
||||||
|
|
||||||
|
def getHierarchy : BaseHtmlM Hierarchy := do return (← read).hierarchy
|
||||||
|
def getCurrentName : BaseHtmlM (Option Name) := do return (← read).currentName
|
||||||
|
def getResult : HtmlM AnalyzerResult := do return (← read).result
|
||||||
|
def getSourceUrl (module : Name) (range : Option DeclarationRange): HtmlM String := do return (← read).sourceLinker module range
|
||||||
|
def leanInkEnabled? : HtmlM Bool := do return (← read).leanInkEnabled
|
||||||
|
def getProjectGithubUrl : BaseHtmlM String := do return (← read).projectGithubUrl
|
||||||
|
def getProjectCommit : BaseHtmlM String := do return (← read).projectCommit
|
||||||
|
|
||||||
|
/--
|
||||||
|
If a template is meant to be extended because it for example only provides the
|
||||||
|
header but no real content this is the way to fill the template with content.
|
||||||
|
This is untyped so HtmlM and BaseHtmlM can be mixed.
|
||||||
|
-/
|
||||||
|
def templateExtends {α β} {m} [Bind m] (base : α → m β) (new : m α) : m β :=
|
||||||
|
new >>= base
|
||||||
|
|
||||||
|
def templateLiftExtends {α β} {m n} [Bind m] [MonadLift n m] (base : α → n β) (new : m α) : m β :=
|
||||||
|
new >>= (monadLift ∘ base)
|
||||||
|
|
||||||
|
/-
|
||||||
|
Returns the doc-gen4 link to a module `NameExt`.
|
||||||
|
-/
|
||||||
|
def moduleNameExtToLink (n : NameExt) : BaseHtmlM String := do
|
||||||
|
let parts := n.name.components.map Name.toString
|
||||||
|
return (← getRoot) ++ (parts.intersperse "/").foldl (· ++ ·) "" ++ "." ++ n.ext.toString
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the doc-gen4 link to a module name.
|
||||||
|
-/
|
||||||
|
def moduleNameToHtmlLink (n : Name) : BaseHtmlM String :=
|
||||||
|
moduleNameExtToLink ⟨n, .html⟩
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the HTML doc-gen4 link to a module name.
|
||||||
|
-/
|
||||||
|
def moduleToHtmlLink (module : Name) : BaseHtmlM Html := do
|
||||||
|
return <a href={← moduleNameToHtmlLink module}>{module.toString}</a>
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the LeanInk link to a module name.
|
||||||
|
-/
|
||||||
|
def moduleNameToInkLink (n : Name) : BaseHtmlM String := do
|
||||||
|
let parts := "src" :: n.components.map Name.toString
|
||||||
|
return (← getRoot) ++ (parts.intersperse "/").foldl (· ++ ·) "" ++ ".html"
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the path to the HTML file that contains information about a module.
|
||||||
|
-/
|
||||||
|
def moduleNameToFile (basePath : FilePath) (n : Name) : FilePath :=
|
||||||
|
let parts := n.components.map Name.toString
|
||||||
|
FilePath.withExtension (basePath / parts.foldl (· / ·) (FilePath.mk ".")) "html"
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the directory of the HTML file that contains information about a module.
|
||||||
|
-/
|
||||||
|
def moduleNameToDirectory (basePath : FilePath) (n : Name) : FilePath :=
|
||||||
|
let parts := n.components.dropLast.map Name.toString
|
||||||
|
basePath / parts.foldl (· / ·) (FilePath.mk ".")
|
||||||
|
|
||||||
|
section Static
|
||||||
|
/-!
|
||||||
|
The following section contains all the statically included files that
|
||||||
|
are used in documentation generation, notably JS and CSS ones.
|
||||||
|
-/
|
||||||
|
def styleCss : String := include_str "../../static/style.css"
|
||||||
|
def declarationDataCenterJs : String := include_str "../../static/declaration-data.js"
|
||||||
|
def colorSchemeJs : String := include_str "../../static/color-scheme.js"
|
||||||
|
def navJs : String := include_str "../../static/nav.js"
|
||||||
|
def howAboutJs : String := include_str "../../static/how-about.js"
|
||||||
|
def searchJs : String := include_str "../../static/search.js"
|
||||||
|
def instancesJs : String := include_str "../../static/instances.js"
|
||||||
|
def importedByJs : String := include_str "../../static/importedBy.js"
|
||||||
|
def findJs : String := include_str "../../static/find/find.js"
|
||||||
|
def mathjaxConfigJs : String := include_str "../../static/mathjax-config.js"
|
||||||
|
|
||||||
|
def alectryonCss : String := include_str "../../static/alectryon/alectryon.css"
|
||||||
|
def alectryonJs : String := include_str "../../static/alectryon/alectryon.js"
|
||||||
|
def docUtilsCss : String := include_str "../../static/alectryon/docutils_basic.css"
|
||||||
|
def pygmentsCss : String := include_str "../../static/alectryon/pygments.css"
|
||||||
|
end Static
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the doc-gen4 link to a declaration name.
|
||||||
|
-/
|
||||||
|
def declNameToLink (name : Name) : HtmlM String := do
|
||||||
|
let res ← getResult
|
||||||
|
let module := res.moduleNames[res.name2ModIdx.find! name |>.toNat]!
|
||||||
|
return (← moduleNameToHtmlLink module) ++ "#" ++ name.toString
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the HTML doc-gen4 link to a declaration name.
|
||||||
|
-/
|
||||||
|
def declNameToHtmlLink (name : Name) : HtmlM Html := do
|
||||||
|
return <a href={← declNameToLink name}>{name.toString}</a>
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the LeanInk link to a declaration name.
|
||||||
|
-/
|
||||||
|
def declNameToInkLink (name : Name) : HtmlM String := do
|
||||||
|
let res ← getResult
|
||||||
|
let module := res.moduleNames[res.name2ModIdx.find! name |>.toNat]!
|
||||||
|
return (← moduleNameToInkLink module) ++ "#" ++ name.toString
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns a name splitted into parts.
|
||||||
|
Together with "break_within" CSS class this helps browser to break a name
|
||||||
|
nicely.
|
||||||
|
-/
|
||||||
|
def breakWithin (name: String) : (Array Html) :=
|
||||||
|
name.splitOn "."
|
||||||
|
|> .map (fun (s: String) => <span class="name">{s}</span>)
|
||||||
|
|> .intersperse "."
|
||||||
|
|> List.toArray
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the HTML doc-gen4 link to a declaration name with "break_within"
|
||||||
|
set as class.
|
||||||
|
-/
|
||||||
|
def declNameToHtmlBreakWithinLink (name : Name) : HtmlM Html := do
|
||||||
|
return <a class="break_within" href={← declNameToLink name}>
|
||||||
|
[breakWithin name.toString]
|
||||||
|
</a>
|
||||||
|
|
||||||
|
/--
|
||||||
|
In Lean syntax declarations the following pattern is quite common:
|
||||||
|
```
|
||||||
|
syntax term " + " term : term
|
||||||
|
```
|
||||||
|
that is, we place spaces around the operator in the middle. When the
|
||||||
|
`InfoTree` framework provides us with information about what source token
|
||||||
|
corresponds to which identifier it will thus say that `" + "` corresponds to
|
||||||
|
`HAdd.hadd`. This is however not the way we want this to be linked, in the HTML
|
||||||
|
only `+` should be linked, taking care of this is what this function is
|
||||||
|
responsible for.
|
||||||
|
-/
|
||||||
|
def splitWhitespaces (s : String) : (String × String × String) := Id.run do
|
||||||
|
let front := "".pushn ' ' <| s.offsetOfPos (s.find (!Char.isWhitespace ·))
|
||||||
|
let mut s := s.trimLeft
|
||||||
|
let back := "".pushn ' ' (s.length - s.offsetOfPos (s.find Char.isWhitespace))
|
||||||
|
s := s.trimRight
|
||||||
|
(front, s, back)
|
||||||
|
|
||||||
|
/--
|
||||||
|
Turns a `CodeWithInfos` object, that is basically a Lean syntax tree with
|
||||||
|
information about what the identifiers mean, into an HTML object that links
|
||||||
|
to as much information as possible.
|
||||||
|
-/
|
||||||
|
partial def infoFormatToHtml (i : CodeWithInfos) : HtmlM (Array Html) := do
|
||||||
|
match i with
|
||||||
|
| .text t => return #[Html.escape t]
|
||||||
|
| .append tt => tt.foldlM (fun acc t => do return acc ++ (← infoFormatToHtml t)) #[]
|
||||||
|
| .tag a t =>
|
||||||
|
match a.info.val.info with
|
||||||
|
| Info.ofTermInfo i =>
|
||||||
|
let cleanExpr := i.expr.consumeMData
|
||||||
|
match cleanExpr with
|
||||||
|
| .const name _ =>
|
||||||
|
-- TODO: this is some very primitive blacklisting but real Blacklisting needs MetaM
|
||||||
|
-- find a better solution
|
||||||
|
if (← getResult).name2ModIdx.contains name then
|
||||||
|
match t with
|
||||||
|
| .text t =>
|
||||||
|
let (front, t, back) := splitWhitespaces <| Html.escape t
|
||||||
|
let elem := <a href={← declNameToLink name}>{t}</a>
|
||||||
|
return #[Html.text front, elem, Html.text back]
|
||||||
|
| _ =>
|
||||||
|
return #[<a href={← declNameToLink name}>[← infoFormatToHtml t]</a>]
|
||||||
|
else
|
||||||
|
return #[<span class="fn">[← infoFormatToHtml t]</span>]
|
||||||
|
| .sort _ =>
|
||||||
|
match t with
|
||||||
|
| .text t =>
|
||||||
|
let mut sortPrefix :: rest := t.splitOn " " | unreachable!
|
||||||
|
let sortLink := <a href={s!"{← getRoot}foundational_types.html"}>{sortPrefix}</a>
|
||||||
|
if rest != [] then
|
||||||
|
rest := " " :: rest
|
||||||
|
return #[sortLink, Html.text <| String.join rest]
|
||||||
|
| _ =>
|
||||||
|
return #[<a href={s!"{← getRoot}foundational_types.html"}>[← infoFormatToHtml t]</a>]
|
||||||
|
| _ =>
|
||||||
|
return #[<span class="fn">[← infoFormatToHtml t]</span>]
|
||||||
|
| _ => return #[<span class="fn">[← infoFormatToHtml t]</span>]
|
||||||
|
|
||||||
|
def baseHtmlHeadDeclarations : BaseHtmlM (Array Html) := do
|
||||||
|
return #[
|
||||||
|
<meta charset="UTF-8"/>,
|
||||||
|
<meta name="viewport" content="width=device-width, initial-scale=1"/>,
|
||||||
|
<link rel="stylesheet" href={s!"{← getRoot}style.css"}/>,
|
||||||
|
<link rel="stylesheet" href={s!"{← getRoot}src/pygments.css"}/>,
|
||||||
|
<link rel="shortcut icon" href={s!"{← getRoot}favicon.ico"}/>,
|
||||||
|
<link rel="prefetch" href={s!"{← getRoot}/declarations/declaration-data.bmp"} as="image"/>
|
||||||
|
]
|
||||||
|
|
||||||
|
end DocGen4.Output
|
|
@ -0,0 +1,22 @@
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
import DocGen4.Output.Structure
|
||||||
|
import DocGen4.Process
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
open Lean
|
||||||
|
|
||||||
|
def classInstancesToHtml (className : Name) : HtmlM Html := do
|
||||||
|
pure
|
||||||
|
<details «class»="instances">
|
||||||
|
<summary>Instances</summary>
|
||||||
|
<ul id={s!"instances-list-{className}"} class="instances-list"></ul>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
def classToHtml (i : Process.ClassInfo) : HtmlM (Array Html) := do
|
||||||
|
structureToHtml i
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,14 @@
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
import DocGen4.Output.Class
|
||||||
|
import DocGen4.Output.Inductive
|
||||||
|
import DocGen4.Process
|
||||||
|
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
def classInductiveToHtml (i : Process.ClassInductiveInfo) : HtmlM (Array Html) := do
|
||||||
|
inductiveToHtml i
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,51 @@
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
import DocGen4.Output.DocString
|
||||||
|
import DocGen4.Process
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
open Lean Widget
|
||||||
|
|
||||||
|
/-- This is basically an arbitrary number that seems to work okay. -/
|
||||||
|
def equationLimit : Nat := 200
|
||||||
|
|
||||||
|
def equationToHtml (c : CodeWithInfos) : HtmlM Html := do
|
||||||
|
return <li class="equation">[← infoFormatToHtml c]</li>
|
||||||
|
|
||||||
|
/--
|
||||||
|
Attempt to render all `simp` equations for this definition. At a size
|
||||||
|
defined in `equationLimit` we stop trying since they:
|
||||||
|
- are too ugly to read most of the time
|
||||||
|
- take too long
|
||||||
|
-/
|
||||||
|
def equationsToHtml (i : Process.DefinitionInfo) : HtmlM (Array Html) := do
|
||||||
|
if let some eqs := i.equations then
|
||||||
|
let equationsHtml ← eqs.mapM equationToHtml
|
||||||
|
let filteredEquationsHtml := equationsHtml.filter (·.textLength < equationLimit)
|
||||||
|
if equationsHtml.size ≠ filteredEquationsHtml.size then
|
||||||
|
return #[
|
||||||
|
<details>
|
||||||
|
<summary>Equations</summary>
|
||||||
|
<ul class="equations">
|
||||||
|
<li class="equation">One or more equations did not get rendered due to their size.</li>
|
||||||
|
[filteredEquationsHtml]
|
||||||
|
</ul>
|
||||||
|
</details>
|
||||||
|
]
|
||||||
|
else
|
||||||
|
return #[
|
||||||
|
<details>
|
||||||
|
<summary>Equations</summary>
|
||||||
|
<ul class="equations">
|
||||||
|
[filteredEquationsHtml]
|
||||||
|
</ul>
|
||||||
|
</details>
|
||||||
|
]
|
||||||
|
else
|
||||||
|
return #[]
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
||||||
|
|
|
@ -0,0 +1,216 @@
|
||||||
|
import CMark
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
import Lean.Data.Parsec
|
||||||
|
import UnicodeBasic
|
||||||
|
|
||||||
|
open Lean Xml Parser Parsec DocGen4.Process
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
/-- Auxiliary function for `splitAround`. -/
|
||||||
|
@[specialize] partial def splitAroundAux (s : String) (p : Char → Bool) (b i : String.Pos) (r : List String) : List String :=
|
||||||
|
if s.atEnd i then
|
||||||
|
let r := (s.extract b i)::r
|
||||||
|
r.reverse
|
||||||
|
else
|
||||||
|
let c := s.get i
|
||||||
|
if p c then
|
||||||
|
let i := s.next i
|
||||||
|
splitAroundAux s p i i (c.toString::s.extract b (i-⟨1⟩)::r)
|
||||||
|
else
|
||||||
|
splitAroundAux s p b (s.next i) r
|
||||||
|
|
||||||
|
/--
|
||||||
|
Similar to `Stirng.split` in Lean core, but keeps the separater.
|
||||||
|
e.g. `splitAround "a,b,c" (fun c => c = ',') = ["a", ",", "b", ",", "c"]`
|
||||||
|
-/
|
||||||
|
def splitAround (s : String) (p : Char → Bool) : List String := splitAroundAux s p 0 0 []
|
||||||
|
|
||||||
|
instance : Inhabited Element := ⟨"", Lean.RBMap.empty, #[]⟩
|
||||||
|
|
||||||
|
/-- Parse an array of Xml/Html document from String. -/
|
||||||
|
def manyDocument : Parsec (Array Element) := many (prolog *> element <* many Misc) <* eof
|
||||||
|
|
||||||
|
/--
|
||||||
|
Generate id for heading elements, with the following rules:
|
||||||
|
|
||||||
|
1. Characters in `letter`, `mark`, `number` and `symbol` unicode categories are preserved.
|
||||||
|
2. Any sequences of Characters in `punctuation`, `separator` and `other` categories are replaced by a single dash.
|
||||||
|
3. Cases (upper and lower) are preserved.
|
||||||
|
4. Xml/Html tags are ignored.
|
||||||
|
-/
|
||||||
|
partial def xmlGetHeadingId (el : Xml.Element) : String :=
|
||||||
|
elementToPlainText el |> replaceCharSeq unicodeToDrop "-"
|
||||||
|
where
|
||||||
|
elementToPlainText el := match el with
|
||||||
|
| (Element.Element _ _ contents) =>
|
||||||
|
"".intercalate (contents.toList.map contentToPlainText)
|
||||||
|
contentToPlainText c := match c with
|
||||||
|
| Content.Element el => elementToPlainText el
|
||||||
|
| Content.Comment _ => ""
|
||||||
|
| Content.Character s => s
|
||||||
|
replaceCharSeq pattern replacement s :=
|
||||||
|
s.split pattern
|
||||||
|
|>.filter (!·.isEmpty)
|
||||||
|
|> replacement.intercalate
|
||||||
|
unicodeToDrop (c : Char) : Bool :=
|
||||||
|
let cats := [
|
||||||
|
Unicode.GeneralCategory.P, -- punctuation
|
||||||
|
Unicode.GeneralCategory.Z, -- separator
|
||||||
|
Unicode.GeneralCategory.C -- other
|
||||||
|
]
|
||||||
|
cats.any (Unicode.isInGeneralCategory c)
|
||||||
|
|
||||||
|
/--
|
||||||
|
This function try to find the given name, both globally and in current module.
|
||||||
|
|
||||||
|
For global search, a precise name is need. If the global search fails, the function
|
||||||
|
tries to find a local one that ends with the given search name.
|
||||||
|
-/
|
||||||
|
def nameToLink? (s : String) : HtmlM (Option String) := do
|
||||||
|
let res ← getResult
|
||||||
|
if let some name := Lean.Syntax.decodeNameLit ("`" ++ s) then
|
||||||
|
-- with exactly the same name
|
||||||
|
if res.name2ModIdx.contains name then
|
||||||
|
declNameToLink name
|
||||||
|
-- module name
|
||||||
|
else if res.moduleNames.contains name then
|
||||||
|
moduleNameToHtmlLink name
|
||||||
|
-- find similar name in the same module
|
||||||
|
else
|
||||||
|
match (← getCurrentName) with
|
||||||
|
| some currentName =>
|
||||||
|
match res.moduleInfo.find! currentName |>.members |> filterDocInfo |>.find? (sameEnd ·.getName name) with
|
||||||
|
| some info =>
|
||||||
|
declNameToLink info.getName
|
||||||
|
| _ => return none
|
||||||
|
| _ => return none
|
||||||
|
else
|
||||||
|
return none
|
||||||
|
where
|
||||||
|
-- check if two names have the same ending components
|
||||||
|
sameEnd n1 n2 :=
|
||||||
|
List.zip n1.componentsRev n2.componentsRev
|
||||||
|
|>.all fun ⟨a, b⟩ => a == b
|
||||||
|
|
||||||
|
/--
|
||||||
|
Extend links with following rules:
|
||||||
|
|
||||||
|
1. if the link starts with `##`, a name search is used and will panic if not found
|
||||||
|
2. if the link starts with `#`, it's treated as id link, no modification
|
||||||
|
3. if the link starts with `http`, it's an absolute one, no modification
|
||||||
|
4. otherwise it's a relative link, extend it with base url
|
||||||
|
-/
|
||||||
|
def extendLink (s : String) : HtmlM String := do
|
||||||
|
-- for intra doc links
|
||||||
|
if s.startsWith "##" then
|
||||||
|
if let some link ← nameToLink? (s.drop 2) then
|
||||||
|
return link
|
||||||
|
else
|
||||||
|
panic! s!"Cannot find {s.drop 2}, only full name and abbrev in current module is supported"
|
||||||
|
-- for id
|
||||||
|
else if s.startsWith "#" then
|
||||||
|
return s
|
||||||
|
-- for absolute and relative urls
|
||||||
|
else if s.startsWith "http" then
|
||||||
|
return s
|
||||||
|
else return ((← getRoot) ++ s)
|
||||||
|
|
||||||
|
/-- Add attributes for heading. -/
|
||||||
|
def addHeadingAttributes (el : Element) (modifyElement : Element → HtmlM Element) : HtmlM Element := do
|
||||||
|
match el with
|
||||||
|
| Element.Element name attrs contents => do
|
||||||
|
let id := xmlGetHeadingId el
|
||||||
|
let anchorAttributes := Lean.RBMap.empty
|
||||||
|
|>.insert "class" "hover-link"
|
||||||
|
|>.insert "href" s!"#{id}"
|
||||||
|
let anchor := Element.Element "a" anchorAttributes #[Content.Character "#"]
|
||||||
|
let newAttrs := attrs
|
||||||
|
|>.insert "id" id
|
||||||
|
|>.insert "class" "markdown-heading"
|
||||||
|
let newContents := (←
|
||||||
|
contents.mapM (fun c => match c with
|
||||||
|
| Content.Element e => return Content.Element (← modifyElement e)
|
||||||
|
| _ => pure c))
|
||||||
|
|>.push (Content.Character " ")
|
||||||
|
|>.push (Content.Element anchor)
|
||||||
|
return ⟨ name, newAttrs, newContents⟩
|
||||||
|
|
||||||
|
/-- Extend anchor links. -/
|
||||||
|
def extendAnchor (el : Element) : HtmlM Element := do
|
||||||
|
match el with
|
||||||
|
| Element.Element name attrs contents =>
|
||||||
|
let newAttrs ← match attrs.find? "href" with
|
||||||
|
| some href => pure (attrs.insert "href" (← extendLink href))
|
||||||
|
| none => pure attrs
|
||||||
|
return ⟨ name, newAttrs, contents⟩
|
||||||
|
|
||||||
|
/-- Automatically add intra documentation link for inline code span. -/
|
||||||
|
def autoLink (el : Element) : HtmlM Element := do
|
||||||
|
match el with
|
||||||
|
| Element.Element name attrs contents =>
|
||||||
|
let mut newContents := #[]
|
||||||
|
for c in contents do
|
||||||
|
match c with
|
||||||
|
| Content.Character s =>
|
||||||
|
newContents := newContents ++ (← splitAround s unicodeToSplit |>.mapM linkify).join
|
||||||
|
| _ => newContents := newContents.push c
|
||||||
|
return ⟨ name, attrs, newContents ⟩
|
||||||
|
where
|
||||||
|
linkify s := do
|
||||||
|
let link? ← nameToLink? s
|
||||||
|
match link? with
|
||||||
|
| some link =>
|
||||||
|
let attributes := Lean.RBMap.empty.insert "href" link
|
||||||
|
return [Content.Element <| Element.Element "a" attributes #[Content.Character s]]
|
||||||
|
| none =>
|
||||||
|
let sHead := s.dropRightWhile (· != '.')
|
||||||
|
let sTail := s.takeRightWhile (· != '.')
|
||||||
|
let link'? ← nameToLink? sTail
|
||||||
|
match link'? with
|
||||||
|
| some link' =>
|
||||||
|
let attributes := Lean.RBMap.empty.insert "href" link'
|
||||||
|
return [
|
||||||
|
Content.Character sHead,
|
||||||
|
Content.Element <| Element.Element "a" attributes #[Content.Character sTail]
|
||||||
|
]
|
||||||
|
| none =>
|
||||||
|
return [Content.Character s]
|
||||||
|
unicodeToSplit (c : Char) : Bool :=
|
||||||
|
let cats := [
|
||||||
|
Unicode.GeneralCategory.Z, -- separator
|
||||||
|
Unicode.GeneralCategory.C -- other
|
||||||
|
]
|
||||||
|
cats.any (Unicode.isInGeneralCategory c)
|
||||||
|
|
||||||
|
/-- Core function of modifying the cmark rendered docstring html. -/
|
||||||
|
partial def modifyElement (element : Element) : HtmlM Element :=
|
||||||
|
match element with
|
||||||
|
| el@(Element.Element name attrs contents) => do
|
||||||
|
-- add id and class to <h_></h_>
|
||||||
|
if name = "h1" ∨ name = "h2" ∨ name = "h3" ∨ name = "h4" ∨ name = "h5" ∨ name = "h6" then
|
||||||
|
addHeadingAttributes el modifyElement
|
||||||
|
-- extend relative href for <a></a>
|
||||||
|
else if name = "a" then
|
||||||
|
extendAnchor el
|
||||||
|
-- auto link for inline <code></code>
|
||||||
|
else if name = "code" then
|
||||||
|
autoLink el
|
||||||
|
-- recursively modify
|
||||||
|
else
|
||||||
|
let newContents ← contents.mapM fun c => match c with
|
||||||
|
| Content.Element e => return Content.Element (← modifyElement e)
|
||||||
|
| _ => pure c
|
||||||
|
return ⟨ name, attrs, newContents ⟩
|
||||||
|
|
||||||
|
/-- Convert docstring to Html. -/
|
||||||
|
def docStringToHtml (s : String) : HtmlM (Array Html) := do
|
||||||
|
let rendered := CMark.renderHtml s
|
||||||
|
match manyDocument rendered.mkIterator with
|
||||||
|
| Parsec.ParseResult.success _ res =>
|
||||||
|
res.mapM fun x => do return Html.text <| toString (← modifyElement x)
|
||||||
|
| _ => return #[Html.text rendered]
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,22 @@
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
open Lean
|
||||||
|
|
||||||
|
def find : BaseHtmlM Html := do
|
||||||
|
pure
|
||||||
|
<html lang="en">
|
||||||
|
<head>
|
||||||
|
<link rel="preload" href={s!"{← getRoot}/declarations/declaration-data.bmp"} as="image"/>
|
||||||
|
<script>{s!"const SITE_ROOT={String.quote (← getRoot)};"}</script>
|
||||||
|
<script type="module" async="true" src="./find.js"></script>
|
||||||
|
</head>
|
||||||
|
<body></body>
|
||||||
|
</html>
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
||||||
|
|
|
@ -0,0 +1,51 @@
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
import DocGen4.Output.Inductive
|
||||||
|
|
||||||
|
namespace DocGen4.Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
|
||||||
|
def foundationalTypes : BaseHtmlM Html := templateLiftExtends (baseHtml "Foundational Types") do
|
||||||
|
pure <|
|
||||||
|
<main>
|
||||||
|
<a id="top"></a>
|
||||||
|
<h1>Foundational Types</h1>
|
||||||
|
|
||||||
|
<p>Some of Lean's types are not defined in any Lean source files (even the <code>prelude</code>) since they come from its foundational type theory. This page provides basic documentation for these types.</p>
|
||||||
|
<p>For a more in-depth explanation of Lean's type theory, refer to
|
||||||
|
<a href="https://leanprover.github.io/theorem_proving_in_lean4/dependent_type_theory.html">TPiL</a>.</p>
|
||||||
|
|
||||||
|
|
||||||
|
<h2 id="codesort-ucode"><code>Sort u</code></h2>
|
||||||
|
<p><code>Sort u</code> is the type of types in Lean, and <code>Sort u : Sort (u + 1)</code>.</p>
|
||||||
|
{← instancesForToHtml `_builtin_sortu}
|
||||||
|
|
||||||
|
<h2 id="codetype-ucode"><code>Type u</code></h2>
|
||||||
|
<p><code>Type u</code> is notation for <code>Sort (u + 1)</code>.</p>
|
||||||
|
{← instancesForToHtml `_builtin_typeu}
|
||||||
|
|
||||||
|
<h2 id="codepropcode"><code>Prop</code></h2>
|
||||||
|
<p><code>Prop</code> is notation for <code>Sort 0</code>.</p>
|
||||||
|
{← instancesForToHtml `_builtin_prop}
|
||||||
|
|
||||||
|
<h2 id="pi-types-codeπ-a--α-β-acode">Pi types, <code>{"(a : α) → β a"}</code></h2>
|
||||||
|
<p>The type of dependent functions is known as a pi type.
|
||||||
|
Non-dependent functions and implications are a special case.</p>
|
||||||
|
<p>Note that these can also be written with the alternative notations:</p>
|
||||||
|
<ul>
|
||||||
|
<li><code>∀ a : α, β a</code>, conventionally used where <code>β a : Prop</code>.</li>
|
||||||
|
<li><code>(a : α) → β a</code></li>
|
||||||
|
<li><code>α → γ</code>, possible only if <code>β a = γ</code> for all <code>a</code>.</li>
|
||||||
|
</ul>
|
||||||
|
<p>Lean also permits ASCII-only spellings of the three variants:</p>
|
||||||
|
<ul>
|
||||||
|
<li><code>forall a : A, B a</code> for <code>{"∀ a : α, β a"}</code></li>
|
||||||
|
<li><code>(a : A) -> B a</code>, for <code>(a : α) → β a</code></li>
|
||||||
|
<li><code>A -> B</code>, for <code>α → β</code></li>
|
||||||
|
</ul>
|
||||||
|
<p>Note that despite not itself being a function, <code>(→)</code> is available as infix notation for
|
||||||
|
<code>{"fun α β, α → β"}</code>.</p>
|
||||||
|
-- TODO: instances for pi types
|
||||||
|
</main>
|
||||||
|
|
||||||
|
end DocGen4.Output
|
|
@ -0,0 +1,83 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import DocGen4.Output.ToHtmlFormat
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
|
||||||
|
def index : BaseHtmlM Html := do templateExtends (baseHtml "Index") <|
|
||||||
|
pure <|
|
||||||
|
<main>
|
||||||
|
<a id="top"></a>
|
||||||
|
<h1>Bookshelf</h1>
|
||||||
|
<p>
|
||||||
|
A study of the books listed below. Most proofs are conducted in LaTeX.
|
||||||
|
Where feasible, theorems are also formally proven in
|
||||||
|
<a target="_blank" href="https://leanprover.github.io/">Lean</a>.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h2>In Progress</h2>
|
||||||
|
<ul>
|
||||||
|
<li>Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.</li>
|
||||||
|
<li>Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego: Harcourt/Academic Press, 2001.</li>
|
||||||
|
<li>Enderton, Herbert B. Elements of Set Theory. New York: Academic Press, 1977.</li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
<h2>Complete</h2>
|
||||||
|
<ul>
|
||||||
|
<li>Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.</li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
<h2>Pending</h2>
|
||||||
|
<ul>
|
||||||
|
<li>Axler, Sheldon. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Cham: Springer International Publishing, 2015.</li>
|
||||||
|
<li>Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. Cambridge, Mass: MIT Press, 2009.</li>
|
||||||
|
<li>Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.</li>
|
||||||
|
<li>Gustedt, Jens. Modern C. Shelter Island, NY: Manning Publications Co, 2020.</li>
|
||||||
|
<li>Ross, Sheldon. A First Course in Probability Theory. 8th ed. Pearson Prentice Hall, n.d.</li>
|
||||||
|
<li>Smullyan, Raymond M. To Mock a Mockingbird: And Other Logic Puzzles Including an Amazing Adventure in Combinatory Logic. Oxford: Oxford university press, 2000.</li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
<h2>Legend</h2>
|
||||||
|
<p>
|
||||||
|
A color/symbol code is used on generated PDF headers to indicate their
|
||||||
|
status:
|
||||||
|
<ul>
|
||||||
|
<li>
|
||||||
|
<span style="color:darkgray">Dark gray statements </span> are
|
||||||
|
reserved for definitions and axioms that have been encoded in LaTeX.
|
||||||
|
A reference to a definition in Lean may also be provided.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<span style="color:teal">Teal statements </span> are reserved for
|
||||||
|
statements, theorems, lemmas, etc. that have been proven in LaTeX
|
||||||
|
and have a corresponding proof in Lean.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<span style="color:olive">Olive statements </span> are reserved for
|
||||||
|
statements, theorems, lemmas, etc. that have been proven in LaTeX.
|
||||||
|
A reference to a statement in Lean may also be provided.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<span style="color:fuchsia">Fuchsia statements </span> are reserved
|
||||||
|
for statements, theorems, lemmas, etc. that have been proven in
|
||||||
|
LaTeX and <i>will </i> have a corresponding proof in Lean.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<span style="color:maroon">Maroon </span> serves as a catch-all for
|
||||||
|
statements that don't fit the above categorizations. Incomplete
|
||||||
|
definitions, statements without proof, etc. belong here.
|
||||||
|
</li>
|
||||||
|
</ul>
|
||||||
|
</p>
|
||||||
|
<p>This was built using Lean 4 at commit <a href={s!"https://github.com/leanprover/lean4/tree/{Lean.githash}"}>{Lean.githash}</a></p>
|
||||||
|
</main>
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,39 @@
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
import DocGen4.Output.DocString
|
||||||
|
import DocGen4.Process
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
open Lean
|
||||||
|
|
||||||
|
def instancesForToHtml (typeName : Name) : BaseHtmlM Html := do
|
||||||
|
pure
|
||||||
|
<details «class»="instances">
|
||||||
|
<summary>Instances For</summary>
|
||||||
|
<ul id={s!"instances-for-list-{typeName}"} class="instances-for-list"></ul>
|
||||||
|
</details>
|
||||||
|
|
||||||
|
def ctorToHtml (c : Process.NameInfo) : HtmlM Html := do
|
||||||
|
let shortName := c.name.componentsRev.head!.toString
|
||||||
|
let name := c.name.toString
|
||||||
|
if let some doc := c.doc then
|
||||||
|
let renderedDoc ← docStringToHtml doc
|
||||||
|
pure
|
||||||
|
<li class="constructor" id={name}>
|
||||||
|
{shortName} : [← infoFormatToHtml c.type]
|
||||||
|
<div class="inductive_ctor_doc">[renderedDoc]</div>
|
||||||
|
</li>
|
||||||
|
else
|
||||||
|
pure
|
||||||
|
<li class="constructor" id={name}>
|
||||||
|
{shortName} : [← infoFormatToHtml c.type]
|
||||||
|
</li>
|
||||||
|
|
||||||
|
def inductiveToHtml (i : Process.InductiveInfo) : HtmlM (Array Html) := do
|
||||||
|
let constructorsHtml := <ul class="constructors">[← i.ctors.toArray.mapM ctorToHtml]</ul>
|
||||||
|
return #[constructorsHtml]
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,8 @@
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
import DocGen4.Output.Definition
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,216 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
import DocGen4.Output.Inductive
|
||||||
|
import DocGen4.Output.Structure
|
||||||
|
import DocGen4.Output.Class
|
||||||
|
import DocGen4.Output.Definition
|
||||||
|
import DocGen4.Output.Instance
|
||||||
|
import DocGen4.Output.ClassInductive
|
||||||
|
import DocGen4.Output.DocString
|
||||||
|
import DocGen4.Process
|
||||||
|
import Lean.Data.Xml.Parser
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
open Lean Process
|
||||||
|
|
||||||
|
/--
|
||||||
|
Render an `Arg` as HTML, adding opacity effects etc. depending on what
|
||||||
|
type of binder it has.
|
||||||
|
-/
|
||||||
|
def argToHtml (arg : Arg) : HtmlM Html := do
|
||||||
|
let (l, r, implicit) := match arg.binderInfo with
|
||||||
|
| BinderInfo.default => ("(", ")", false)
|
||||||
|
| BinderInfo.implicit => ("{", "}", true)
|
||||||
|
| BinderInfo.strictImplicit => ("⦃", "⦄", true)
|
||||||
|
| BinderInfo.instImplicit => ("[", "]", true)
|
||||||
|
let mut nodes := #[Html.text s!"{l}{arg.name.toString} : "]
|
||||||
|
nodes := nodes.append (← infoFormatToHtml arg.type)
|
||||||
|
nodes := nodes.push r
|
||||||
|
let inner := <span class="fn">[nodes]</span>
|
||||||
|
let html := Html.element "span" false #[("class", "decl_args")] #[inner]
|
||||||
|
if implicit then
|
||||||
|
return <span class="impl_arg">{html}</span>
|
||||||
|
else
|
||||||
|
return html
|
||||||
|
|
||||||
|
/--
|
||||||
|
Render the structures this structure extends from as HTML so it can be
|
||||||
|
added to the top level.
|
||||||
|
-/
|
||||||
|
def structureInfoHeader (s : Process.StructureInfo) : HtmlM (Array Html) := do
|
||||||
|
let mut nodes := #[]
|
||||||
|
if s.parents.size > 0 then
|
||||||
|
nodes := nodes.push <span class="decl_extends">extends</span>
|
||||||
|
let mut parents := #[]
|
||||||
|
for parent in s.parents do
|
||||||
|
let link ← declNameToHtmlBreakWithinLink parent
|
||||||
|
let inner := <span class="fn">{link}</span>
|
||||||
|
let html:= Html.element "span" false #[("class", "decl_parent")] #[inner]
|
||||||
|
parents := parents.push html
|
||||||
|
nodes := nodes.append (parents.toList.intersperse (Html.text ", ")).toArray
|
||||||
|
return nodes
|
||||||
|
|
||||||
|
/--
|
||||||
|
Render the general header of a declaration containing its declaration type
|
||||||
|
and name.
|
||||||
|
-/
|
||||||
|
def docInfoHeader (doc : DocInfo) : HtmlM Html := do
|
||||||
|
let mut nodes := #[]
|
||||||
|
nodes := nodes.push <| Html.element "span" false #[("class", "decl_kind")] #[doc.getKindDescription]
|
||||||
|
nodes := nodes.push
|
||||||
|
<span class="decl_name">
|
||||||
|
{← declNameToHtmlBreakWithinLink doc.getName}
|
||||||
|
</span>
|
||||||
|
for arg in doc.getArgs do
|
||||||
|
nodes := nodes.push (← argToHtml arg)
|
||||||
|
|
||||||
|
match doc with
|
||||||
|
| DocInfo.structureInfo i => nodes := nodes.append (← structureInfoHeader i)
|
||||||
|
| DocInfo.classInfo i => nodes := nodes.append (← structureInfoHeader i)
|
||||||
|
| _ => nodes := nodes
|
||||||
|
|
||||||
|
nodes := nodes.push <| Html.element "span" true #[("class", "decl_args")] #[" :"]
|
||||||
|
nodes := nodes.push <div class="decl_type">[← infoFormatToHtml doc.getType]</div>
|
||||||
|
return <div class="decl_header"> [nodes] </div>
|
||||||
|
|
||||||
|
/--
|
||||||
|
The main entry point for rendering a single declaration inside a given module.
|
||||||
|
-/
|
||||||
|
def docInfoToHtml (module : Name) (doc : DocInfo) : HtmlM Html := do
|
||||||
|
-- basic info like headers, types, structure fields, etc.
|
||||||
|
let docInfoHtml ← match doc with
|
||||||
|
| DocInfo.inductiveInfo i => inductiveToHtml i
|
||||||
|
| DocInfo.structureInfo i => structureToHtml i
|
||||||
|
| DocInfo.classInfo i => classToHtml i
|
||||||
|
| DocInfo.classInductiveInfo i => classInductiveToHtml i
|
||||||
|
| _ => pure #[]
|
||||||
|
-- rendered doc stirng
|
||||||
|
let docStringHtml ← match doc.getDocString with
|
||||||
|
| some s => docStringToHtml s
|
||||||
|
| none => pure #[]
|
||||||
|
-- extra information like equations and instances
|
||||||
|
let extraInfoHtml ← match doc with
|
||||||
|
| DocInfo.classInfo i => pure #[← classInstancesToHtml i.name]
|
||||||
|
| DocInfo.definitionInfo i => pure ((← equationsToHtml i) ++ #[← instancesForToHtml i.name])
|
||||||
|
| DocInfo.instanceInfo i => equationsToHtml i.toDefinitionInfo
|
||||||
|
| DocInfo.classInductiveInfo i => pure #[← classInstancesToHtml i.name]
|
||||||
|
| DocInfo.inductiveInfo i => pure #[← instancesForToHtml i.name]
|
||||||
|
| DocInfo.structureInfo i => pure #[← instancesForToHtml i.name]
|
||||||
|
| _ => pure #[]
|
||||||
|
let attrs := doc.getAttrs
|
||||||
|
let attrsHtml :=
|
||||||
|
if attrs.size > 0 then
|
||||||
|
let attrStr := "@[" ++ String.intercalate ", " doc.getAttrs.toList ++ "]"
|
||||||
|
#[Html.element "div" false #[("class", "attributes")] #[attrStr]]
|
||||||
|
else
|
||||||
|
#[]
|
||||||
|
let leanInkHtml :=
|
||||||
|
if ← leanInkEnabled? then
|
||||||
|
#[
|
||||||
|
<div class="ink_link">
|
||||||
|
<a href={← declNameToInkLink doc.getName}>ink</a>
|
||||||
|
</div>
|
||||||
|
]
|
||||||
|
else
|
||||||
|
#[]
|
||||||
|
|
||||||
|
pure
|
||||||
|
<div class="decl" id={doc.getName.toString}>
|
||||||
|
<div class={doc.getKind}>
|
||||||
|
<div class="gh_link">
|
||||||
|
<a href={← getSourceUrl module doc.getDeclarationRange}>source</a>
|
||||||
|
</div>
|
||||||
|
[leanInkHtml]
|
||||||
|
[attrsHtml]
|
||||||
|
{← docInfoHeader doc}
|
||||||
|
[docInfoHtml]
|
||||||
|
[docStringHtml]
|
||||||
|
[extraInfoHtml]
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
/--
|
||||||
|
Rendering a module doc string, that is the ones with an ! after the opener
|
||||||
|
as HTML.
|
||||||
|
-/
|
||||||
|
def modDocToHtml (mdoc : ModuleDoc) : HtmlM Html := do
|
||||||
|
pure
|
||||||
|
<div class="mod_doc">
|
||||||
|
[← docStringToHtml mdoc.doc]
|
||||||
|
</div>
|
||||||
|
|
||||||
|
/--
|
||||||
|
Render a module member, that is either a module doc string or a declaration
|
||||||
|
as HTML.
|
||||||
|
-/
|
||||||
|
def moduleMemberToHtml (module : Name) (member : ModuleMember) : HtmlM Html := do
|
||||||
|
match member with
|
||||||
|
| ModuleMember.docInfo d => docInfoToHtml module d
|
||||||
|
| ModuleMember.modDoc d => modDocToHtml d
|
||||||
|
|
||||||
|
def declarationToNavLink (module : Name) : Html :=
|
||||||
|
<div class="nav_link">
|
||||||
|
<a class="break_within" href={s!"#{module.toString}"}>
|
||||||
|
[breakWithin module.toString]
|
||||||
|
</a>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
/--
|
||||||
|
Returns the list of all imports this module does.
|
||||||
|
-/
|
||||||
|
def getImports (module : Name) : HtmlM (Array Name) := do
|
||||||
|
let res ← getResult
|
||||||
|
return res.moduleInfo.find! module |>.imports
|
||||||
|
|
||||||
|
/--
|
||||||
|
Sort the list of all modules this one is importing, linkify it
|
||||||
|
and return the HTML.
|
||||||
|
-/
|
||||||
|
def importsHtml (moduleName : Name) : HtmlM (Array Html) := do
|
||||||
|
let imports := (← getImports moduleName).qsort Name.lt
|
||||||
|
imports.mapM (fun i => do return <li>{← moduleToHtmlLink i}</li>)
|
||||||
|
|
||||||
|
/--
|
||||||
|
Render the internal nav bar (the thing on the right on all module pages).
|
||||||
|
-/
|
||||||
|
def internalNav (members : Array Name) (moduleName : Name) : HtmlM Html := do
|
||||||
|
pure
|
||||||
|
<nav class="internal_nav">
|
||||||
|
<h3><a class="break_within" href="#top">[breakWithin moduleName.toString]</a></h3>
|
||||||
|
<p class="gh_nav_link"><a href={← getSourceUrl moduleName none}>source</a></p>
|
||||||
|
<div class="imports">
|
||||||
|
<details>
|
||||||
|
<summary>Imports</summary>
|
||||||
|
<ul>
|
||||||
|
[← importsHtml moduleName]
|
||||||
|
</ul>
|
||||||
|
</details>
|
||||||
|
<details>
|
||||||
|
<summary>Imported by</summary>
|
||||||
|
<ul id={s!"imported-by-{moduleName}"} class="imported-by-list"> </ul>
|
||||||
|
</details>
|
||||||
|
</div>
|
||||||
|
[members.map declarationToNavLink]
|
||||||
|
</nav>
|
||||||
|
|
||||||
|
/--
|
||||||
|
The main entry point to rendering the HTML for an entire module.
|
||||||
|
-/
|
||||||
|
def moduleToHtml (module : Process.Module) : HtmlM Html := withTheReader SiteBaseContext (setCurrentName module.name) do
|
||||||
|
let relevantMembers := module.members.filter Process.ModuleMember.shouldRender
|
||||||
|
let memberDocs ← relevantMembers.mapM (moduleMemberToHtml module.name)
|
||||||
|
let memberNames := filterDocInfo relevantMembers |>.map DocInfo.getName
|
||||||
|
templateLiftExtends (baseHtmlGenerator module.name.toString) <| pure #[
|
||||||
|
← internalNav memberNames module.name,
|
||||||
|
Html.element "main" false #[] memberDocs
|
||||||
|
]
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,111 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
import DocGen4.Output.ToHtmlFormat
|
||||||
|
import DocGen4.Output.Base
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open Lean
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
|
||||||
|
def moduleListFile (file : NameExt) : BaseHtmlM Html := do
|
||||||
|
let contents :=
|
||||||
|
if file.ext == .pdf then
|
||||||
|
<span>{s!"🗎 {file.getString!} (<a class=\"pdf\" target=\"_blank\" href={← moduleNameExtToLink file}>pdf</a>)"}</span>
|
||||||
|
else
|
||||||
|
<a href={← moduleNameExtToLink file}>{file.getString!}</a>
|
||||||
|
return <div class={if (← getCurrentName) == file.name then "nav_link visible" else "nav_link"}>
|
||||||
|
{contents}
|
||||||
|
</div>
|
||||||
|
|
||||||
|
/--
|
||||||
|
Build the HTML tree representing the module hierarchy.
|
||||||
|
-/
|
||||||
|
partial def moduleListDir (h : Hierarchy) : BaseHtmlM Html := do
|
||||||
|
let children := Array.mk (h.getChildren.toList.map Prod.snd)
|
||||||
|
let nodes ← children.mapM (fun c =>
|
||||||
|
if c.getChildren.toList.length != 0 then
|
||||||
|
moduleListDir c
|
||||||
|
else if Hierarchy.isFile c && c.getChildren.toList.length = 0 then
|
||||||
|
moduleListFile (Hierarchy.getNameExt c)
|
||||||
|
else
|
||||||
|
pure ""
|
||||||
|
)
|
||||||
|
let moduleLink ← moduleNameToHtmlLink h.getName
|
||||||
|
let summary :=
|
||||||
|
if h.isFile then
|
||||||
|
<summary>{s!"{h.getName.getString!} ({<a href={← moduleNameToHtmlLink h.getName}>file</a>})"} </summary>
|
||||||
|
else
|
||||||
|
<summary>{h.getName.getString!}</summary>
|
||||||
|
|
||||||
|
pure
|
||||||
|
<details class="nav_sect" "data-path"={moduleLink} [if (← getCurrentName).any (h.getName.isPrefixOf ·) then #[("open", "")] else #[]]>
|
||||||
|
{summary}
|
||||||
|
[nodes]
|
||||||
|
</details>
|
||||||
|
|
||||||
|
/--
|
||||||
|
Return a list of top level modules, linkified and rendered as HTML
|
||||||
|
-/
|
||||||
|
def moduleList : BaseHtmlM Html := do
|
||||||
|
let hierarchy ← getHierarchy
|
||||||
|
let mut list := Array.empty
|
||||||
|
for (_, cs) in hierarchy.getChildren do
|
||||||
|
list := list.push <| ← moduleListDir cs
|
||||||
|
return <div class="module_list">[list]</div>
|
||||||
|
|
||||||
|
/--
|
||||||
|
The main entry point to rendering the navbar on the left hand side.
|
||||||
|
-/
|
||||||
|
def navbar : BaseHtmlM Html := do
|
||||||
|
pure
|
||||||
|
<html lang="en">
|
||||||
|
<head>
|
||||||
|
[← baseHtmlHeadDeclarations]
|
||||||
|
|
||||||
|
<script type="module" src={s!"{← getRoot}nav.js"}></script>
|
||||||
|
<script type="module" src={s!"{← getRoot}color-scheme.js"}></script>
|
||||||
|
<base target="_parent" />
|
||||||
|
</head>
|
||||||
|
|
||||||
|
<body>
|
||||||
|
<div class="navframe">
|
||||||
|
<nav class="nav">
|
||||||
|
<h3>General documentation</h3>
|
||||||
|
<div class="nav_link"><a href={s!"{← getRoot}"}>index</a></div>
|
||||||
|
<div class="nav_link"><a href={s!"{← getRoot}foundational_types.html"}>foundational types</a></div>
|
||||||
|
/-
|
||||||
|
TODO: Add these in later
|
||||||
|
<div class="nav_link"><a href={s!"{← getRoot}tactics.html"}>tactics</a></div>
|
||||||
|
<div class="nav_link"><a href={s!"{← getRoot}commands.html"}>commands</a></div>
|
||||||
|
<div class="nav_link"><a href={s!"{← getRoot}hole_commands.html"}>hole commands</a></div>
|
||||||
|
<div class="nav_link"><a href={s!"{← getRoot}attributes.html"}>attributes</a></div>
|
||||||
|
<div class="nav_link"><a href={s!"{← getRoot}notes.html"}>notes</a></div>
|
||||||
|
<div class="nav_link"><a href={s!"{← getRoot}references.html"}>references</a></div>
|
||||||
|
-/
|
||||||
|
<h3>Library</h3>
|
||||||
|
{← moduleList}
|
||||||
|
<div id="settings" hidden="hidden">
|
||||||
|
-- `input` is a void tag, but can be self-closed to make parsing easier.
|
||||||
|
<h3>Color scheme</h3>
|
||||||
|
<form id="color-theme-switcher">
|
||||||
|
<label for="color-theme-dark">
|
||||||
|
<input type="radio" name="color_theme" id="color-theme-dark" value="dark" autocomplete="off"/>dark</label>
|
||||||
|
<label for="color-theme-system" title="Match system theme settings">
|
||||||
|
<input type="radio" name="color_theme" id="color-theme-system" value="system" autocomplete="off"/>system</label>
|
||||||
|
<label for="color-theme-light">
|
||||||
|
<input type="radio" name="color_theme" id="color-theme-light" value="light" autocomplete="off"/>light</label>
|
||||||
|
</form>
|
||||||
|
</div>
|
||||||
|
</nav>
|
||||||
|
</div>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,26 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import DocGen4.Output.ToHtmlFormat
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
|
||||||
|
/--
|
||||||
|
Render the 404 page.
|
||||||
|
-/
|
||||||
|
def notFound : BaseHtmlM Html := do templateExtends (baseHtml "404") <|
|
||||||
|
pure <|
|
||||||
|
<main>
|
||||||
|
<h1>404 Not Found</h1>
|
||||||
|
<p> Unfortunately, the page you were looking for is no longer here. </p>
|
||||||
|
<div id="howabout"></div>
|
||||||
|
</main>
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,48 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2023 Jeremy Salwen. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Jeremy Salwen
|
||||||
|
-/
|
||||||
|
import DocGen4.Output.ToHtmlFormat
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
|
||||||
|
def search : BaseHtmlM Html := do templateExtends (baseHtml "Search") <|
|
||||||
|
pure <|
|
||||||
|
<main>
|
||||||
|
<h1> Search Results </h1>
|
||||||
|
<label for="search_page_query">Query:</label>
|
||||||
|
<input id="search_page_query" />
|
||||||
|
<div id="kinds">
|
||||||
|
Allowed Kinds:
|
||||||
|
<input type="checkbox" id="def_checkbox" class="kind_checkbox" value="def" checked="checked" />
|
||||||
|
<label for="def_checkbox">def</label>
|
||||||
|
<input type="checkbox" id="theorem_checkbox" class="kind_checkbox" value="theorem" checked="checked" />
|
||||||
|
<label for="theorem_checkbox">theorem</label>
|
||||||
|
<input type="checkbox" id="inductive_checkbox" class="kind_checkbox" value="inductive" checked="checked" />
|
||||||
|
<label for="inductive_checkbox">inductive</label>
|
||||||
|
<input type="checkbox" id="structure_checkbox" class="kind_checkbox" value="structure" checked="checked" />
|
||||||
|
<label for="structure_checkbox">structure</label>
|
||||||
|
<input type="checkbox" id="class_checkbox" class="kind_checkbox" value="class" checked="checked" />
|
||||||
|
<label for="class_checkbox">class</label>
|
||||||
|
<input type="checkbox" id="instance_checkbox" class="kind_checkbox" value="instance" checked="checked" />
|
||||||
|
<label for="instance_checkbox">instance</label>
|
||||||
|
<input type="checkbox" id="axiom_checkbox" class="axiom_checkbox" value="axiom" checked="checked" />
|
||||||
|
<label for="axiom_checkbox">axiom</label>
|
||||||
|
<input type="checkbox" id="opaque_checkbox" class="kind_checkbox" value="opaque" checked="checked" />
|
||||||
|
<label for="opaque_checkbox">opaque</label>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<script>
|
||||||
|
document.getElementById("search_page_query").value = new URL(window.location.href).searchParams.get("q")
|
||||||
|
</script>
|
||||||
|
<div id="search_results">
|
||||||
|
</div>
|
||||||
|
</main>
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,103 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
import Lake.Load
|
||||||
|
|
||||||
|
namespace DocGen4.Output.SourceLinker
|
||||||
|
|
||||||
|
open Lean
|
||||||
|
|
||||||
|
/--
|
||||||
|
Turns a Github git remote URL into an HTTPS Github URL.
|
||||||
|
Three link types from git supported:
|
||||||
|
- https://github.com/org/repo
|
||||||
|
- https://github.com/org/repo.git
|
||||||
|
- git@github.com:org/repo.git
|
||||||
|
|
||||||
|
TODO: This function is quite brittle and very Github specific, we can
|
||||||
|
probably do better.
|
||||||
|
-/
|
||||||
|
def getGithubBaseUrl (gitUrl : String) : String := Id.run do
|
||||||
|
let mut url := gitUrl
|
||||||
|
if url.startsWith "git@" then
|
||||||
|
url := url.drop 15
|
||||||
|
url := url.dropRight 4
|
||||||
|
return s!"https://github.com/{url}"
|
||||||
|
else if url.endsWith ".git" then
|
||||||
|
return url.dropRight 4
|
||||||
|
else
|
||||||
|
return url
|
||||||
|
|
||||||
|
/--
|
||||||
|
Obtain the Github URL of a project by parsing the origin remote.
|
||||||
|
-/
|
||||||
|
def getProjectGithubUrl (directory : System.FilePath := "." ) : IO String := do
|
||||||
|
let out ← IO.Process.output {
|
||||||
|
cmd := "git",
|
||||||
|
args := #["remote", "get-url", "origin"],
|
||||||
|
cwd := directory
|
||||||
|
}
|
||||||
|
if out.exitCode != 0 then
|
||||||
|
throw <| IO.userError <| "git exited with code " ++ toString out.exitCode
|
||||||
|
return out.stdout.trimRight
|
||||||
|
|
||||||
|
/--
|
||||||
|
Obtain the git commit hash of the project that is currently getting analyzed.
|
||||||
|
-/
|
||||||
|
def getProjectCommit (directory : System.FilePath := "." ) : IO String := do
|
||||||
|
let out ← IO.Process.output {
|
||||||
|
cmd := "git",
|
||||||
|
args := #["rev-parse", "HEAD"]
|
||||||
|
cwd := directory
|
||||||
|
}
|
||||||
|
if out.exitCode != 0 then
|
||||||
|
throw <| IO.userError <| "git exited with code " ++ toString out.exitCode
|
||||||
|
return out.stdout.trimRight
|
||||||
|
|
||||||
|
/--
|
||||||
|
Given a lake workspace with all the dependencies as well as the hash of the
|
||||||
|
compiler release to work with this provides a function to turn names of
|
||||||
|
declarations into (optionally positional) Github URLs.
|
||||||
|
-/
|
||||||
|
def sourceLinker (ws : Lake.Workspace) : IO (Name → Option DeclarationRange → String) := do
|
||||||
|
let leanHash := ws.lakeEnv.lean.githash
|
||||||
|
-- Compute a map from package names to source URL
|
||||||
|
let mut gitMap := Lean.mkHashMap
|
||||||
|
let projectBaseUrl := getGithubBaseUrl (← getProjectGithubUrl)
|
||||||
|
let projectCommit ← getProjectCommit
|
||||||
|
gitMap := gitMap.insert ws.root.name (projectBaseUrl, projectCommit)
|
||||||
|
let manifest ← Lake.Manifest.loadOrEmpty ws.root.manifestFile
|
||||||
|
|>.run (Lake.MonadLog.eio .normal)
|
||||||
|
|>.toIO (fun _ => IO.userError "Failed to load lake manifest")
|
||||||
|
for pkg in manifest.entryArray do
|
||||||
|
match pkg with
|
||||||
|
| .git _ _ _ url rev .. => gitMap := gitMap.insert pkg.name (getGithubBaseUrl url, rev)
|
||||||
|
| .path _ _ _ path =>
|
||||||
|
let pkgBaseUrl := getGithubBaseUrl (← getProjectGithubUrl path)
|
||||||
|
let pkgCommit ← getProjectCommit path
|
||||||
|
gitMap := gitMap.insert pkg.name (pkgBaseUrl, pkgCommit)
|
||||||
|
|
||||||
|
return fun module range =>
|
||||||
|
let parts := module.components.map Name.toString
|
||||||
|
let path := (parts.intersperse "/").foldl (· ++ ·) ""
|
||||||
|
let root := module.getRoot
|
||||||
|
let basic := if root == `Lean ∨ root == `Init then
|
||||||
|
s!"https://github.com/leanprover/lean4/blob/{leanHash}/src/{path}.lean"
|
||||||
|
else if root == `Lake then
|
||||||
|
s!"https://github.com/leanprover/lean4/blob/{leanHash}/src/lake/{path}.lean"
|
||||||
|
else
|
||||||
|
match ws.packageArray.find? (·.isLocalModule module) with
|
||||||
|
| some pkg =>
|
||||||
|
match gitMap.find? pkg.name with
|
||||||
|
| some (baseUrl, commit) => s!"{baseUrl}/blob/{commit}/{path}.lean"
|
||||||
|
| none => "https://example.com"
|
||||||
|
| none => "https://example.com"
|
||||||
|
|
||||||
|
match range with
|
||||||
|
| some range => s!"{basic}#L{range.pos.line}-L{range.endPos.line}"
|
||||||
|
| none => basic
|
||||||
|
|
||||||
|
end DocGen4.Output.SourceLinker
|
|
@ -0,0 +1,51 @@
|
||||||
|
import DocGen4.Output.Template
|
||||||
|
import DocGen4.Output.DocString
|
||||||
|
import DocGen4.Process
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
open Lean
|
||||||
|
|
||||||
|
/--
|
||||||
|
Render a single field consisting of its documentation, its name and its type as HTML.
|
||||||
|
-/
|
||||||
|
def fieldToHtml (f : Process.NameInfo) : HtmlM Html := do
|
||||||
|
let shortName := f.name.componentsRev.head!.toString
|
||||||
|
let name := f.name.toString
|
||||||
|
if let some doc := f.doc then
|
||||||
|
let renderedDoc ← docStringToHtml doc
|
||||||
|
pure
|
||||||
|
<li id={name} class="structure_field">
|
||||||
|
<div class="structure_field_info">{s!"{shortName} "} : [← infoFormatToHtml f.type]</div>
|
||||||
|
<div class="structure_field_doc">[renderedDoc]</div>
|
||||||
|
</li>
|
||||||
|
else
|
||||||
|
pure
|
||||||
|
<li id={name} class="structure_field">
|
||||||
|
<div class="structure_field_info">{s!"{shortName} "} : [← infoFormatToHtml f.type]</div>
|
||||||
|
</li>
|
||||||
|
|
||||||
|
/--
|
||||||
|
Render all information about a structure as HTML.
|
||||||
|
-/
|
||||||
|
def structureToHtml (i : Process.StructureInfo) : HtmlM (Array Html) := do
|
||||||
|
let structureHtml :=
|
||||||
|
if Name.isSuffixOf `mk i.ctor.name then
|
||||||
|
(<ul class="structure_fields" id={i.ctor.name.toString}>
|
||||||
|
[← i.fieldInfo.mapM fieldToHtml]
|
||||||
|
</ul>)
|
||||||
|
else
|
||||||
|
let ctorShortName := i.ctor.name.componentsRev.head!.toString
|
||||||
|
(<ul class="structure_ext">
|
||||||
|
<li id={i.ctor.name.toString} class="structure_ext_ctor">{s!"{ctorShortName} "} :: (</li>
|
||||||
|
<ul class="structure_ext_fields">
|
||||||
|
[← i.fieldInfo.mapM fieldToHtml]
|
||||||
|
</ul>
|
||||||
|
<li class="structure_ext_ctor">)</li>
|
||||||
|
</ul>)
|
||||||
|
return #[structureHtml]
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,70 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import DocGen4.Output.ToHtmlFormat
|
||||||
|
import DocGen4.Output.Navbar
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
namespace Output
|
||||||
|
|
||||||
|
open scoped DocGen4.Jsx
|
||||||
|
|
||||||
|
/--
|
||||||
|
The HTML template used for all pages.
|
||||||
|
-/
|
||||||
|
def baseHtmlGenerator (title : String) (site : Array Html) : BaseHtmlM Html := do
|
||||||
|
let moduleConstant :=
|
||||||
|
if let some module := ← getCurrentName then
|
||||||
|
#[<script>{s!"const MODULE_NAME={String.quote module.toString};"}</script>]
|
||||||
|
else
|
||||||
|
#[]
|
||||||
|
pure
|
||||||
|
<html lang="en">
|
||||||
|
<head>
|
||||||
|
[← baseHtmlHeadDeclarations]
|
||||||
|
|
||||||
|
<title>{title}</title>
|
||||||
|
<script defer="true" src={s!"{← getRoot}mathjax-config.js"}></script>
|
||||||
|
<script defer="true" src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||||||
|
<script defer="true" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||||||
|
|
||||||
|
<script>{s!"const SITE_ROOT={String.quote (← getRoot)};"}</script>
|
||||||
|
[moduleConstant]
|
||||||
|
<script type="module" src={s!"{← getRoot}search.js"}></script>
|
||||||
|
<script type="module" src={s!"{← getRoot}how-about.js"}></script>
|
||||||
|
<script type="module" src={s!"{← getRoot}instances.js"}></script>
|
||||||
|
<script type="module" src={s!"{← getRoot}importedBy.js"}></script>
|
||||||
|
</head>
|
||||||
|
|
||||||
|
<body>
|
||||||
|
|
||||||
|
<input id="nav_toggle" type="checkbox"/>
|
||||||
|
|
||||||
|
<header>
|
||||||
|
<h1><label for="nav_toggle"></label>Documentation</h1>
|
||||||
|
<p class="header_filename break_within">[breakWithin title]</p>
|
||||||
|
<form action="https://google.com/search" method="get" id="search_form">
|
||||||
|
<input type="hidden" name="sitesearch" value="https://leanprover-community.github.io/mathlib4_docs"/>
|
||||||
|
<input type="text" name="q" autocomplete="off"/> 
|
||||||
|
<button id="search_button" onclick={s!"javascript: form.action='{← getRoot}search.html';"}>Search</button>
|
||||||
|
<button>Google site search</button>
|
||||||
|
</form>
|
||||||
|
</header>
|
||||||
|
|
||||||
|
[site]
|
||||||
|
|
||||||
|
<nav class="nav">
|
||||||
|
<iframe src={s!"{← getRoot}navbar.html"} class="navframe" frameBorder="0"></iframe>
|
||||||
|
</nav>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
|
||||||
|
/--
|
||||||
|
A comfortability wrapper around `baseHtmlGenerator`.
|
||||||
|
-/
|
||||||
|
def baseHtml (title : String) (site : Html) : BaseHtmlM Html := baseHtmlGenerator title #[site]
|
||||||
|
|
||||||
|
end Output
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,149 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Wojciech Nawrocki. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Authors: Wojciech Nawrocki, Sebastian Ullrich, Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean.Data.Json
|
||||||
|
import Lean.Parser
|
||||||
|
|
||||||
|
/-! This module defines:
|
||||||
|
- a representation of HTML trees
|
||||||
|
- together with a JSX-like DSL for writing them
|
||||||
|
- and widget support for visualizing any type as HTML. -/
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
|
||||||
|
open Lean
|
||||||
|
|
||||||
|
inductive Html where
|
||||||
|
-- TODO(WN): it's nameless for shorter JSON; re-add names when we have deriving strategies for From/ToJson
|
||||||
|
-- element (tag : String) (flatten : Bool) (attrs : Array HtmlAttribute) (children : Array Html)
|
||||||
|
| element : String → Bool → Array (String × String) → Array Html → Html
|
||||||
|
| text : String → Html
|
||||||
|
deriving Repr, BEq, Inhabited, FromJson, ToJson
|
||||||
|
|
||||||
|
instance : Coe String Html :=
|
||||||
|
⟨Html.text⟩
|
||||||
|
|
||||||
|
namespace Html
|
||||||
|
|
||||||
|
def attributesToString (attrs : Array (String × String)) :String :=
|
||||||
|
attrs.foldl (fun acc (k, v) => acc ++ " " ++ k ++ "=\"" ++ v ++ "\"") ""
|
||||||
|
|
||||||
|
-- TODO: Termination proof
|
||||||
|
partial def toStringAux : Html → String
|
||||||
|
| element tag false attrs #[text s] => s!"<{tag}{attributesToString attrs}>{s}</{tag}>\n"
|
||||||
|
| element tag false attrs #[child] => s!"<{tag}{attributesToString attrs}>\n{child.toStringAux}</{tag}>\n"
|
||||||
|
| element tag false attrs children => s!"<{tag}{attributesToString attrs}>\n{children.foldl (· ++ toStringAux ·) ""}</{tag}>\n"
|
||||||
|
| element tag true attrs children => s!"<{tag}{attributesToString attrs}>{children.foldl (· ++ toStringAux ·) ""}</{tag}>"
|
||||||
|
| text s => s
|
||||||
|
|
||||||
|
def toString (html : Html) : String :=
|
||||||
|
html.toStringAux.trimRight
|
||||||
|
|
||||||
|
instance : ToString Html :=
|
||||||
|
⟨toString⟩
|
||||||
|
|
||||||
|
partial def textLength : Html → Nat
|
||||||
|
| text s => s.length
|
||||||
|
| element _ _ _ children =>
|
||||||
|
let lengths := children.map textLength
|
||||||
|
lengths.foldl Nat.add 0
|
||||||
|
|
||||||
|
def escapePairs : Array (String × String) :=
|
||||||
|
#[
|
||||||
|
("&", "&"),
|
||||||
|
("<", "<"),
|
||||||
|
(">", ">"),
|
||||||
|
("\"", """)
|
||||||
|
]
|
||||||
|
|
||||||
|
def escape (s : String) : String :=
|
||||||
|
escapePairs.foldl (fun acc (o, r) => acc.replace o r) s
|
||||||
|
|
||||||
|
end Html
|
||||||
|
|
||||||
|
namespace Jsx
|
||||||
|
open Parser PrettyPrinter
|
||||||
|
|
||||||
|
declare_syntax_cat jsxElement
|
||||||
|
declare_syntax_cat jsxChild
|
||||||
|
|
||||||
|
-- JSXTextCharacter : SourceCharacter but not one of {, <, > or }
|
||||||
|
def jsxText : Parser :=
|
||||||
|
withAntiquot (mkAntiquot "jsxText" `jsxText) {
|
||||||
|
fn := fun c s =>
|
||||||
|
let startPos := s.pos
|
||||||
|
let s := takeWhile1Fn (not ∘ "[{<>}]$".contains) "expected JSX text" c s
|
||||||
|
mkNodeToken `jsxText startPos c s }
|
||||||
|
|
||||||
|
@[combinator_formatter DocGen4.Jsx.jsxText] def jsxText.formatter : Formatter := pure ()
|
||||||
|
@[combinator_parenthesizer DocGen4.Jsx.jsxText] def jsxText.parenthesizer : Parenthesizer := pure ()
|
||||||
|
|
||||||
|
syntax jsxAttrName := rawIdent <|> str
|
||||||
|
syntax jsxAttrVal := str <|> group("{" term "}")
|
||||||
|
syntax jsxSimpleAttr := jsxAttrName "=" jsxAttrVal
|
||||||
|
syntax jsxAttrSpread := "[" term "]"
|
||||||
|
syntax jsxAttr := jsxSimpleAttr <|> jsxAttrSpread
|
||||||
|
|
||||||
|
syntax "<" rawIdent jsxAttr* "/>" : jsxElement
|
||||||
|
syntax "<" rawIdent jsxAttr* ">" jsxChild* "</" rawIdent ">" : jsxElement
|
||||||
|
|
||||||
|
syntax jsxText : jsxChild
|
||||||
|
syntax "{" term "}" : jsxChild
|
||||||
|
syntax "[" term "]" : jsxChild
|
||||||
|
syntax jsxElement : jsxChild
|
||||||
|
|
||||||
|
scoped syntax:max jsxElement : term
|
||||||
|
|
||||||
|
def translateAttrs (attrs : Array (TSyntax `DocGen4.Jsx.jsxAttr)) : MacroM (TSyntax `term) := do
|
||||||
|
let mut as ← `(#[])
|
||||||
|
for attr in attrs.map TSyntax.raw do
|
||||||
|
as ← match attr with
|
||||||
|
| `(jsxAttr| $n:jsxAttrName=$v:jsxAttrVal) =>
|
||||||
|
let n ← match n with
|
||||||
|
| `(jsxAttrName| $n:str) => pure n
|
||||||
|
| `(jsxAttrName| $n:ident) => pure <| quote (toString n.getId)
|
||||||
|
| _ => Macro.throwUnsupported
|
||||||
|
let v ← match v with
|
||||||
|
| `(jsxAttrVal| {$v}) => pure v
|
||||||
|
| `(jsxAttrVal| $v:str) => pure v
|
||||||
|
| _ => Macro.throwUnsupported
|
||||||
|
`(($as).push ($n, ($v : String)))
|
||||||
|
| `(jsxAttr| [$t]) => `($as ++ ($t : Array (String × String)))
|
||||||
|
| _ => Macro.throwUnsupported
|
||||||
|
return as
|
||||||
|
|
||||||
|
private def htmlHelper (n : Syntax) (children : Array Syntax) (m : Syntax) : MacroM (String × (TSyntax `term)):= do
|
||||||
|
unless n.getId == m.getId do
|
||||||
|
withRef m <| Macro.throwError s!"Leading and trailing part of tags don't match: '{n}', '{m}'"
|
||||||
|
let mut cs ← `(#[])
|
||||||
|
for child in children do
|
||||||
|
cs ← match child with
|
||||||
|
| `(jsxChild|$t:jsxText) => `(($cs).push (Html.text $(quote t.raw[0]!.getAtomVal)))
|
||||||
|
-- TODO(WN): elab as list of children if type is `t Html` where `Foldable t`
|
||||||
|
| `(jsxChild|{$t}) => `(($cs).push ($t : Html))
|
||||||
|
| `(jsxChild|[$t]) => `($cs ++ ($t : Array Html))
|
||||||
|
| `(jsxChild|$e:jsxElement) => `(($cs).push ($e:jsxElement : Html))
|
||||||
|
| _ => Macro.throwUnsupported
|
||||||
|
let tag := toString n.getId
|
||||||
|
pure <| (tag, cs)
|
||||||
|
|
||||||
|
macro_rules
|
||||||
|
| `(<$n $attrs* />) => do
|
||||||
|
let kind := quote (toString n.getId)
|
||||||
|
let attrs ← translateAttrs attrs
|
||||||
|
`(Html.element $kind true $attrs #[])
|
||||||
|
| `(<$n $attrs* >$children*</$m>) => do
|
||||||
|
let (tag, children) ← htmlHelper n children m
|
||||||
|
`(Html.element $(quote tag) true $(← translateAttrs attrs) $children)
|
||||||
|
|
||||||
|
end Jsx
|
||||||
|
|
||||||
|
/-- A type which implements `ToHtmlFormat` will be visualized
|
||||||
|
as the resulting HTML in editors which support it. -/
|
||||||
|
class ToHtmlFormat (α : Type u) where
|
||||||
|
formatHtml : α → Html
|
||||||
|
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,126 @@
|
||||||
|
import Lean
|
||||||
|
import DocGen4.Process
|
||||||
|
import DocGen4.Output.Base
|
||||||
|
import DocGen4.Output.Module
|
||||||
|
import Lean.Data.RBMap
|
||||||
|
|
||||||
|
namespace DocGen4.Output
|
||||||
|
|
||||||
|
open Lean
|
||||||
|
|
||||||
|
structure JsonDeclarationInfo where
|
||||||
|
name : String
|
||||||
|
kind : String
|
||||||
|
doc : String
|
||||||
|
docLink : String
|
||||||
|
sourceLink : String
|
||||||
|
line : Nat
|
||||||
|
deriving FromJson, ToJson
|
||||||
|
|
||||||
|
structure JsonDeclaration where
|
||||||
|
info : JsonDeclarationInfo
|
||||||
|
header : String
|
||||||
|
deriving FromJson, ToJson
|
||||||
|
|
||||||
|
structure JsonInstance where
|
||||||
|
name : String
|
||||||
|
className : String
|
||||||
|
typeNames : Array String
|
||||||
|
deriving FromJson, ToJson
|
||||||
|
|
||||||
|
structure JsonModule where
|
||||||
|
name : String
|
||||||
|
declarations : List JsonDeclaration
|
||||||
|
instances : Array JsonInstance
|
||||||
|
imports : Array String
|
||||||
|
deriving FromJson, ToJson
|
||||||
|
|
||||||
|
structure JsonHeaderIndex where
|
||||||
|
headers : List (String × String) := []
|
||||||
|
|
||||||
|
structure JsonIndex where
|
||||||
|
declarations : List (String × JsonDeclarationInfo) := []
|
||||||
|
instances : HashMap String (RBTree String Ord.compare) := .empty
|
||||||
|
importedBy : HashMap String (Array String) := .empty
|
||||||
|
modules : List (String × String) := []
|
||||||
|
instancesFor : HashMap String (RBTree String Ord.compare) := .empty
|
||||||
|
|
||||||
|
instance : ToJson JsonHeaderIndex where
|
||||||
|
toJson idx := Json.mkObj <| idx.headers.map (fun (k, v) => (k, toJson v))
|
||||||
|
|
||||||
|
instance : ToJson JsonIndex where
|
||||||
|
toJson idx := Id.run do
|
||||||
|
let jsonDecls := Json.mkObj <| idx.declarations.map (fun (k, v) => (k, toJson v))
|
||||||
|
let jsonInstances := Json.mkObj <| idx.instances.toList.map (fun (k, v) => (k, toJson v.toArray))
|
||||||
|
let jsonImportedBy := Json.mkObj <| idx.importedBy.toList.map (fun (k, v) => (k, toJson v))
|
||||||
|
let jsonModules := Json.mkObj <| idx.modules.map (fun (k, v) => (k, toJson v))
|
||||||
|
let jsonInstancesFor := Json.mkObj <| idx.instancesFor.toList.map (fun (k, v) => (k, toJson v.toArray))
|
||||||
|
let finalJson := Json.mkObj [
|
||||||
|
("declarations", jsonDecls),
|
||||||
|
("instances", jsonInstances),
|
||||||
|
("importedBy", jsonImportedBy),
|
||||||
|
("modules", jsonModules),
|
||||||
|
("instancesFor", jsonInstancesFor)
|
||||||
|
]
|
||||||
|
return finalJson
|
||||||
|
|
||||||
|
def JsonHeaderIndex.addModule (index : JsonHeaderIndex) (module : JsonModule) : JsonHeaderIndex :=
|
||||||
|
let merge idx decl := { idx with headers := (decl.info.name, decl.header) :: idx.headers }
|
||||||
|
module.declarations.foldl merge index
|
||||||
|
|
||||||
|
def JsonIndex.addModule (index : JsonIndex) (module : JsonModule) : BaseHtmlM JsonIndex := do
|
||||||
|
let mut index := index
|
||||||
|
let newModule := (module.name, ← moduleNameToHtmlLink (String.toName module.name))
|
||||||
|
let newDecls := module.declarations.map (fun d => (d.info.name, d.info))
|
||||||
|
index := { index with
|
||||||
|
modules := newModule :: index.modules
|
||||||
|
declarations := newDecls ++ index.declarations
|
||||||
|
}
|
||||||
|
-- TODO: In theory one could sort instances and imports by name and batch the writes
|
||||||
|
for inst in module.instances do
|
||||||
|
let mut insts := index.instances.findD inst.className {}
|
||||||
|
insts := insts.insert inst.name
|
||||||
|
index := { index with instances := index.instances.insert inst.className insts }
|
||||||
|
for typeName in inst.typeNames do
|
||||||
|
let mut instsFor := index.instancesFor.findD typeName {}
|
||||||
|
instsFor := instsFor.insert inst.name
|
||||||
|
index := { index with instancesFor := index.instancesFor.insert typeName instsFor }
|
||||||
|
|
||||||
|
for imp in module.imports do
|
||||||
|
let mut impBy := index.importedBy.findD imp #[]
|
||||||
|
impBy := impBy.push module.name
|
||||||
|
index := { index with importedBy := index.importedBy.insert imp impBy }
|
||||||
|
return index
|
||||||
|
|
||||||
|
def DocInfo.toJson (module : Name) (info : Process.DocInfo) : HtmlM JsonDeclaration := do
|
||||||
|
let name := info.getName.toString
|
||||||
|
let kind := info.getKind
|
||||||
|
let doc := info.getDocString.getD ""
|
||||||
|
let docLink ← declNameToLink info.getName
|
||||||
|
let sourceLink ← getSourceUrl module info.getDeclarationRange
|
||||||
|
let line := info.getDeclarationRange.pos.line
|
||||||
|
let header := (← docInfoHeader info).toString
|
||||||
|
let info := { name, kind, doc, docLink, sourceLink, line }
|
||||||
|
return { info, header }
|
||||||
|
|
||||||
|
def Process.Module.toJson (module : Process.Module) : HtmlM Json := do
|
||||||
|
let mut jsonDecls := []
|
||||||
|
let mut instances := #[]
|
||||||
|
let declInfo := Process.filterDocInfo module.members
|
||||||
|
for decl in declInfo do
|
||||||
|
jsonDecls := (← DocInfo.toJson module.name decl) :: jsonDecls
|
||||||
|
if let .instanceInfo i := decl then
|
||||||
|
instances := instances.push {
|
||||||
|
name := i.name.toString,
|
||||||
|
className := i.className.toString
|
||||||
|
typeNames := i.typeNames.map Name.toString
|
||||||
|
}
|
||||||
|
let jsonMod : JsonModule := {
|
||||||
|
name := module.name.toString,
|
||||||
|
declarations := jsonDecls,
|
||||||
|
instances,
|
||||||
|
imports := module.imports.map Name.toString
|
||||||
|
}
|
||||||
|
return ToJson.toJson jsonMod
|
||||||
|
|
||||||
|
end DocGen4.Output
|
|
@ -0,0 +1,21 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
|
||||||
|
import DocGen4.Process.Analyze
|
||||||
|
import DocGen4.Process.Attributes
|
||||||
|
import DocGen4.Process.AxiomInfo
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.ClassInfo
|
||||||
|
import DocGen4.Process.DefinitionInfo
|
||||||
|
import DocGen4.Process.DocInfo
|
||||||
|
import DocGen4.Process.Hierarchy
|
||||||
|
import DocGen4.Process.InductiveInfo
|
||||||
|
import DocGen4.Process.InstanceInfo
|
||||||
|
import DocGen4.Process.NameExt
|
||||||
|
import DocGen4.Process.NameInfo
|
||||||
|
import DocGen4.Process.OpaqueInfo
|
||||||
|
import DocGen4.Process.StructureInfo
|
||||||
|
import DocGen4.Process.TheoremInfo
|
|
@ -0,0 +1,158 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
|
||||||
|
import Lean
|
||||||
|
import Lean.Data.HashMap
|
||||||
|
import Lean.Data.HashSet
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.Hierarchy
|
||||||
|
import DocGen4.Process.DocInfo
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
|
||||||
|
open Lean Meta
|
||||||
|
|
||||||
|
/--
|
||||||
|
Member of a module, either a declaration or some module doc string.
|
||||||
|
-/
|
||||||
|
inductive ModuleMember where
|
||||||
|
| docInfo (info : DocInfo) : ModuleMember
|
||||||
|
| modDoc (doc : ModuleDoc) : ModuleMember
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
A Lean module.
|
||||||
|
-/
|
||||||
|
structure Module where
|
||||||
|
/--
|
||||||
|
Name of the module.
|
||||||
|
-/
|
||||||
|
name : Name
|
||||||
|
/--
|
||||||
|
All members of the module, sorted according to their line numbers.
|
||||||
|
-/
|
||||||
|
members : Array ModuleMember
|
||||||
|
imports : Array Name
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
The result of running a full doc-gen analysis on a project.
|
||||||
|
-/
|
||||||
|
structure AnalyzerResult where
|
||||||
|
/--
|
||||||
|
The map from module names to indices of the `moduleNames` array.
|
||||||
|
-/
|
||||||
|
name2ModIdx : HashMap Name ModuleIdx
|
||||||
|
/--
|
||||||
|
The list of all modules, accessible nicely via `name2ModIdx`.
|
||||||
|
-/
|
||||||
|
moduleNames : Array Name
|
||||||
|
/--
|
||||||
|
A map from module names to information about these modules.
|
||||||
|
-/
|
||||||
|
moduleInfo : HashMap Name Module
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
namespace ModuleMember
|
||||||
|
|
||||||
|
def getDeclarationRange : ModuleMember → DeclarationRange
|
||||||
|
| docInfo i => i.getDeclarationRange
|
||||||
|
| modDoc i => i.declarationRange
|
||||||
|
|
||||||
|
/--
|
||||||
|
An order for module members, based on their declaration range.
|
||||||
|
-/
|
||||||
|
def order (l r : ModuleMember) : Bool :=
|
||||||
|
Position.lt l.getDeclarationRange.pos r.getDeclarationRange.pos
|
||||||
|
|
||||||
|
def getName : ModuleMember → Name
|
||||||
|
| docInfo i => i.getName
|
||||||
|
| modDoc _ => Name.anonymous
|
||||||
|
|
||||||
|
def getDocString : ModuleMember → Option String
|
||||||
|
| docInfo i => i.getDocString
|
||||||
|
| modDoc i => i.doc
|
||||||
|
|
||||||
|
def shouldRender : ModuleMember → Bool
|
||||||
|
| docInfo i => i.shouldRender
|
||||||
|
| modDoc _ => true
|
||||||
|
|
||||||
|
end ModuleMember
|
||||||
|
|
||||||
|
inductive AnalyzeTask where
|
||||||
|
| loadAll (load : List Name) : AnalyzeTask
|
||||||
|
| loadAllLimitAnalysis (analyze : List Name) : AnalyzeTask
|
||||||
|
|
||||||
|
def AnalyzeTask.getLoad : AnalyzeTask → List Name
|
||||||
|
| loadAll load => load
|
||||||
|
| loadAllLimitAnalysis load => load
|
||||||
|
|
||||||
|
def getAllModuleDocs (relevantModules : Array Name) : MetaM (HashMap Name Module) := do
|
||||||
|
let env ← getEnv
|
||||||
|
let mut res := mkHashMap relevantModules.size
|
||||||
|
for module in relevantModules do
|
||||||
|
let modDocs := getModuleDoc? env module |>.getD #[] |>.map .modDoc
|
||||||
|
let some modIdx := env.getModuleIdx? module | unreachable!
|
||||||
|
let moduleData := env.header.moduleData.get! modIdx
|
||||||
|
let imports := moduleData.imports.map Import.module
|
||||||
|
res := res.insert module <| Module.mk module modDocs imports
|
||||||
|
return res
|
||||||
|
|
||||||
|
/--
|
||||||
|
Run the doc-gen analysis on all modules that are loaded into the `Environment`
|
||||||
|
of this `MetaM` run and mentioned by the `AnalyzeTask`.
|
||||||
|
-/
|
||||||
|
def process (task : AnalyzeTask) : MetaM (AnalyzerResult × Hierarchy) := do
|
||||||
|
let env ← getEnv
|
||||||
|
let relevantModules := match task with
|
||||||
|
| .loadAll _ => HashSet.fromArray env.header.moduleNames
|
||||||
|
| .loadAllLimitAnalysis analysis => HashSet.fromArray analysis.toArray
|
||||||
|
let allModules := env.header.moduleNames
|
||||||
|
|
||||||
|
let mut res ← getAllModuleDocs relevantModules.toArray
|
||||||
|
|
||||||
|
for (name, cinfo) in env.constants.toList do
|
||||||
|
let some modidx := env.getModuleIdxFor? name | unreachable!
|
||||||
|
let moduleName := env.allImportedModuleNames.get! modidx
|
||||||
|
if !relevantModules.contains moduleName then
|
||||||
|
continue
|
||||||
|
|
||||||
|
try
|
||||||
|
let config := {
|
||||||
|
maxHeartbeats := 5000000,
|
||||||
|
options := ← getOptions,
|
||||||
|
fileName := ← getFileName,
|
||||||
|
fileMap := ← getFileMap
|
||||||
|
}
|
||||||
|
let analysis ← Prod.fst <$> Meta.MetaM.toIO (DocInfo.ofConstant (name, cinfo)) config { env := env } {} {}
|
||||||
|
if let some dinfo := analysis then
|
||||||
|
let moduleName := env.allImportedModuleNames.get! modidx
|
||||||
|
let module := res.find! moduleName
|
||||||
|
res := res.insert moduleName {module with members := module.members.push (ModuleMember.docInfo dinfo)}
|
||||||
|
catch e =>
|
||||||
|
IO.println s!"WARNING: Failed to obtain information for: {name}: {← e.toMessageData.toString}"
|
||||||
|
|
||||||
|
-- TODO: This could probably be faster if we did sorted insert above instead
|
||||||
|
for (moduleName, module) in res.toArray do
|
||||||
|
res := res.insert moduleName {module with members := module.members.qsort ModuleMember.order}
|
||||||
|
|
||||||
|
let hierarchy := Hierarchy.fromArray allModules
|
||||||
|
let analysis := {
|
||||||
|
name2ModIdx := env.const2ModIdx,
|
||||||
|
moduleNames := allModules,
|
||||||
|
moduleInfo := res,
|
||||||
|
}
|
||||||
|
return (analysis, hierarchy)
|
||||||
|
|
||||||
|
def filterDocInfo (ms : Array ModuleMember) : Array DocInfo :=
|
||||||
|
ms.filterMap filter
|
||||||
|
where
|
||||||
|
filter : ModuleMember → Option DocInfo
|
||||||
|
| ModuleMember.docInfo i => some i
|
||||||
|
| _ => none
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,174 @@
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
|
||||||
|
open Lean Meta
|
||||||
|
-- The following is probably completely overengineered but I love it
|
||||||
|
|
||||||
|
/--
|
||||||
|
Captures the notion of a value based attributes, `attrKind` is things like
|
||||||
|
`EnumAttributes`.
|
||||||
|
-/
|
||||||
|
class ValueAttr (attrKind : Type → Type) where
|
||||||
|
/--
|
||||||
|
Given a certain value based attribute, an `Environment` and the `Name` of
|
||||||
|
a declaration returns the value of the attribute on this declaration if present.
|
||||||
|
-/
|
||||||
|
getValue {α : Type} [Inhabited α] [ToString α] : attrKind α → Environment → Name → Option String
|
||||||
|
|
||||||
|
/--
|
||||||
|
Contains a specific attribute declaration of a certain attribute kind (enum based, parametric etc.).
|
||||||
|
-/
|
||||||
|
structure ValueAttrWrapper (attrKind : Type → Type) [ValueAttr attrKind] where
|
||||||
|
{α : Type}
|
||||||
|
attr : attrKind α
|
||||||
|
[str : ToString α]
|
||||||
|
[inhab : Inhabited α]
|
||||||
|
|
||||||
|
/--
|
||||||
|
Obtain the value of an enum attribute for a certain name.
|
||||||
|
-/
|
||||||
|
def enumGetValue {α : Type} [Inhabited α] [ToString α] (attr : EnumAttributes α) (env : Environment) (decl : Name) : Option String := do
|
||||||
|
let val ← EnumAttributes.getValue attr env decl
|
||||||
|
some (toString val)
|
||||||
|
|
||||||
|
instance : ValueAttr EnumAttributes where
|
||||||
|
getValue := enumGetValue
|
||||||
|
|
||||||
|
/--
|
||||||
|
Obtain the value of a parametric attribute for a certain name.
|
||||||
|
-/
|
||||||
|
def parametricGetValue {α : Type} [Inhabited α] [ToString α] (attr : ParametricAttribute α) (env : Environment) (decl : Name) : Option String := do
|
||||||
|
let val ← ParametricAttribute.getParam? attr env decl
|
||||||
|
some (attr.attr.name.toString ++ " " ++ toString val)
|
||||||
|
|
||||||
|
instance : ValueAttr ParametricAttribute where
|
||||||
|
getValue := parametricGetValue
|
||||||
|
|
||||||
|
abbrev EnumAttrWrapper := ValueAttrWrapper EnumAttributes
|
||||||
|
abbrev ParametricAttrWrapper := ValueAttrWrapper ParametricAttribute
|
||||||
|
|
||||||
|
/--
|
||||||
|
The list of all tag based attributes doc-gen knows about and can recover.
|
||||||
|
-/
|
||||||
|
def tagAttributes : Array TagAttribute :=
|
||||||
|
#[IR.UnboxResult.unboxAttr, neverExtractAttr,
|
||||||
|
Elab.Term.elabWithoutExpectedTypeAttr, matchPatternAttr]
|
||||||
|
|
||||||
|
deriving instance Repr for Compiler.InlineAttributeKind
|
||||||
|
deriving instance Repr for Compiler.SpecializeAttributeKind
|
||||||
|
|
||||||
|
open Compiler in
|
||||||
|
instance : ToString InlineAttributeKind where
|
||||||
|
toString kind :=
|
||||||
|
match kind with
|
||||||
|
| .inline => "inline"
|
||||||
|
| .noinline => "noinline"
|
||||||
|
| .macroInline => "macro_inline"
|
||||||
|
| .inlineIfReduce => "inline_if_reduce"
|
||||||
|
| .alwaysInline => "always_inline"
|
||||||
|
|
||||||
|
open Compiler in
|
||||||
|
instance : ToString SpecializeAttributeKind where
|
||||||
|
toString kind :=
|
||||||
|
match kind with
|
||||||
|
| .specialize => "specialize"
|
||||||
|
| .nospecialize => "nospecialize"
|
||||||
|
|
||||||
|
instance : ToString ReducibilityStatus where
|
||||||
|
toString kind :=
|
||||||
|
match kind with
|
||||||
|
| .reducible => "reducible"
|
||||||
|
| .semireducible => "semireducible"
|
||||||
|
| .irreducible => "irreducible"
|
||||||
|
|
||||||
|
/--
|
||||||
|
The list of all enum based attributes doc-gen knows about and can recover.
|
||||||
|
-/
|
||||||
|
@[reducible]
|
||||||
|
def enumAttributes : Array EnumAttrWrapper := #[⟨Compiler.inlineAttrs⟩, ⟨reducibilityAttrs⟩]
|
||||||
|
|
||||||
|
instance : ToString ExternEntry where
|
||||||
|
toString entry :=
|
||||||
|
match entry with
|
||||||
|
| .adhoc `all => ""
|
||||||
|
| .adhoc backend => s!"{backend} adhoc"
|
||||||
|
| .standard `all fn => fn
|
||||||
|
| .standard backend fn => s!"{backend} {fn}"
|
||||||
|
| .inline backend pattern => s!"{backend} inline {String.quote pattern}"
|
||||||
|
-- TODO: The docs in the module dont specific how to render this
|
||||||
|
| .foreign backend fn => s!"{backend} foreign {fn}"
|
||||||
|
|
||||||
|
instance : ToString ExternAttrData where
|
||||||
|
toString data := (data.arity?.map toString |>.getD "") ++ " " ++ String.intercalate " " (data.entries.map toString)
|
||||||
|
|
||||||
|
/--
|
||||||
|
The list of all parametric attributes (that is, attributes with any kind of information attached)
|
||||||
|
doc-gen knows about and can recover.
|
||||||
|
-/
|
||||||
|
def parametricAttributes : Array ParametricAttrWrapper := #[⟨externAttr⟩, ⟨Compiler.implementedByAttr⟩, ⟨exportAttr⟩, ⟨Compiler.specializeAttr⟩]
|
||||||
|
|
||||||
|
def getTags (decl : Name) : MetaM (Array String) := do
|
||||||
|
let env ← getEnv
|
||||||
|
return tagAttributes.filter (TagAttribute.hasTag · env decl) |>.map (·.attr.name.toString)
|
||||||
|
|
||||||
|
def getValuesAux {α : Type} {attrKind : Type → Type} [va : ValueAttr attrKind] [Inhabited α] [ToString α] (decl : Name) (attr : attrKind α) : MetaM (Option String) := do
|
||||||
|
let env ← getEnv
|
||||||
|
return va.getValue attr env decl
|
||||||
|
|
||||||
|
def getValues {attrKind : Type → Type} [ValueAttr attrKind] (decl : Name) (attrs : Array (ValueAttrWrapper attrKind)) : MetaM (Array String) := do
|
||||||
|
let mut res := #[]
|
||||||
|
for attr in attrs do
|
||||||
|
if let some val ← @getValuesAux attr.α attrKind _ attr.inhab attr.str decl attr.attr then
|
||||||
|
res := res.push val
|
||||||
|
return res
|
||||||
|
|
||||||
|
def getEnumValues (decl : Name) : MetaM (Array String) := getValues decl enumAttributes
|
||||||
|
def getParametricValues (decl : Name) : MetaM (Array String) := getValues decl parametricAttributes
|
||||||
|
|
||||||
|
def getDefaultInstance (decl : Name) (className : Name) : MetaM (Option String) := do
|
||||||
|
let insts ← getDefaultInstances className
|
||||||
|
for (inst, prio) in insts do
|
||||||
|
if inst == decl then
|
||||||
|
return some s!"defaultInstance {prio}"
|
||||||
|
return none
|
||||||
|
|
||||||
|
def hasSimp (decl : Name) : MetaM (Option String) := do
|
||||||
|
let thms ← simpExtension.getTheorems
|
||||||
|
if thms.isLemma (.decl decl) then
|
||||||
|
return "simp"
|
||||||
|
else
|
||||||
|
return none
|
||||||
|
|
||||||
|
def hasCsimp (decl : Name) : MetaM (Option String) := do
|
||||||
|
let env ← getEnv
|
||||||
|
if Compiler.hasCSimpAttribute env decl then
|
||||||
|
return some "csimp"
|
||||||
|
else
|
||||||
|
return none
|
||||||
|
|
||||||
|
/--
|
||||||
|
The list of custom attributes, that don't fit in the parametric or enum
|
||||||
|
attribute kinds, doc-gen konws about and can recover.
|
||||||
|
-/
|
||||||
|
def customAttrs := #[hasSimp, hasCsimp]
|
||||||
|
|
||||||
|
def getCustomAttrs (decl : Name) : MetaM (Array String) := do
|
||||||
|
let mut values := #[]
|
||||||
|
for attr in customAttrs do
|
||||||
|
if let some value ← attr decl then
|
||||||
|
values := values.push value
|
||||||
|
return values
|
||||||
|
|
||||||
|
/--
|
||||||
|
The main entry point for recovering all attribute values for a given
|
||||||
|
declaration.
|
||||||
|
-/
|
||||||
|
def getAllAttributes (decl : Name) : MetaM (Array String) := do
|
||||||
|
let tags ← getTags decl
|
||||||
|
let enums ← getEnumValues decl
|
||||||
|
let parametric ← getParametricValues decl
|
||||||
|
let customs ← getCustomAttrs decl
|
||||||
|
return customs ++ tags ++ enums ++ parametric
|
||||||
|
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,22 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.NameInfo
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
|
||||||
|
open Lean Meta
|
||||||
|
|
||||||
|
def AxiomInfo.ofAxiomVal (v : AxiomVal) : MetaM AxiomInfo := do
|
||||||
|
let info ← Info.ofConstantVal v.toConstantVal
|
||||||
|
return {
|
||||||
|
toInfo := info,
|
||||||
|
isUnsafe := v.isUnsafe
|
||||||
|
}
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,196 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
open Lean Widget Meta
|
||||||
|
|
||||||
|
/--
|
||||||
|
Stores information about a typed name.
|
||||||
|
-/
|
||||||
|
structure NameInfo where
|
||||||
|
/--
|
||||||
|
The name that has this info attached.
|
||||||
|
-/
|
||||||
|
name : Name
|
||||||
|
/--
|
||||||
|
The pretty printed type of this name.
|
||||||
|
-/
|
||||||
|
type : CodeWithInfos
|
||||||
|
/--
|
||||||
|
The doc string of the name if it exists.
|
||||||
|
-/
|
||||||
|
doc : Option String
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
An argument to a declaration, e.g. the `(x : Nat)` in `def foo (x : Nat) := x`.
|
||||||
|
-/
|
||||||
|
structure Arg where
|
||||||
|
/--
|
||||||
|
The name of the argument.
|
||||||
|
-/
|
||||||
|
name : Name
|
||||||
|
/--
|
||||||
|
The pretty printed type of the argument.
|
||||||
|
-/
|
||||||
|
type : CodeWithInfos
|
||||||
|
/--
|
||||||
|
What kind of binder was used for the argument.
|
||||||
|
-/
|
||||||
|
binderInfo : BinderInfo
|
||||||
|
|
||||||
|
/--
|
||||||
|
A base structure for information about a declaration.
|
||||||
|
-/
|
||||||
|
structure Info extends NameInfo where
|
||||||
|
/--
|
||||||
|
The list of arguments to the declaration.
|
||||||
|
-/
|
||||||
|
args : Array Arg
|
||||||
|
/--
|
||||||
|
In which lines the declaration was created.
|
||||||
|
-/
|
||||||
|
declarationRange : DeclarationRange
|
||||||
|
/--
|
||||||
|
A list of (known) attributes that are attached to the declaration.
|
||||||
|
-/
|
||||||
|
attrs : Array String
|
||||||
|
/--
|
||||||
|
Whether this info item should be rendered
|
||||||
|
-/
|
||||||
|
render : Bool := true
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about an `axiom` declaration.
|
||||||
|
-/
|
||||||
|
structure AxiomInfo extends Info where
|
||||||
|
isUnsafe : Bool
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about a `theorem` declaration.
|
||||||
|
-/
|
||||||
|
structure TheoremInfo extends Info
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about an `opaque` declaration.
|
||||||
|
-/
|
||||||
|
structure OpaqueInfo extends Info where
|
||||||
|
/--
|
||||||
|
The pretty printed value of the declaration.
|
||||||
|
-/
|
||||||
|
value : CodeWithInfos
|
||||||
|
/--
|
||||||
|
A value of partial is interpreted as this opaque being part of a partial def
|
||||||
|
since the actual definition for a partial def is hidden behind an inaccessible value.
|
||||||
|
-/
|
||||||
|
definitionSafety : DefinitionSafety
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about a `def` declaration, note that partial defs are handled by `OpaqueInfo`.
|
||||||
|
-/
|
||||||
|
structure DefinitionInfo extends Info where
|
||||||
|
isUnsafe : Bool
|
||||||
|
hints : ReducibilityHints
|
||||||
|
equations : Option (Array CodeWithInfos)
|
||||||
|
isNonComputable : Bool
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about an `instance` declaration.
|
||||||
|
-/
|
||||||
|
structure InstanceInfo extends DefinitionInfo where
|
||||||
|
className : Name
|
||||||
|
typeNames : Array Name
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about an `inductive` declaration
|
||||||
|
-/
|
||||||
|
structure InductiveInfo extends Info where
|
||||||
|
/--
|
||||||
|
List of all constructors of this inductive type.
|
||||||
|
-/
|
||||||
|
ctors : List NameInfo
|
||||||
|
isUnsafe : Bool
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about a `structure` declaration.
|
||||||
|
-/
|
||||||
|
structure StructureInfo extends Info where
|
||||||
|
/--
|
||||||
|
Information about all the fields of the structure.
|
||||||
|
-/
|
||||||
|
fieldInfo : Array NameInfo
|
||||||
|
/--
|
||||||
|
All the structures this one inherited from.
|
||||||
|
-/
|
||||||
|
parents : Array Name
|
||||||
|
/--
|
||||||
|
The constructor of the structure.
|
||||||
|
-/
|
||||||
|
ctor : NameInfo
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about a `class` declaration.
|
||||||
|
-/
|
||||||
|
abbrev ClassInfo := StructureInfo
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about a `class inductive` declaration.
|
||||||
|
-/
|
||||||
|
abbrev ClassInductiveInfo := InductiveInfo
|
||||||
|
|
||||||
|
|
||||||
|
/--
|
||||||
|
Information about a constructor of an inductive type
|
||||||
|
-/
|
||||||
|
abbrev ConstructorInfo := Info
|
||||||
|
|
||||||
|
/--
|
||||||
|
A general type for informations about declarations.
|
||||||
|
-/
|
||||||
|
inductive DocInfo where
|
||||||
|
| axiomInfo (info : AxiomInfo) : DocInfo
|
||||||
|
| theoremInfo (info : TheoremInfo) : DocInfo
|
||||||
|
| opaqueInfo (info : OpaqueInfo) : DocInfo
|
||||||
|
| definitionInfo (info : DefinitionInfo) : DocInfo
|
||||||
|
| instanceInfo (info : InstanceInfo) : DocInfo
|
||||||
|
| inductiveInfo (info : InductiveInfo) : DocInfo
|
||||||
|
| structureInfo (info : StructureInfo) : DocInfo
|
||||||
|
| classInfo (info : ClassInfo) : DocInfo
|
||||||
|
| classInductiveInfo (info : ClassInductiveInfo) : DocInfo
|
||||||
|
| ctorInfo (info : ConstructorInfo) : DocInfo
|
||||||
|
deriving Inhabited
|
||||||
|
|
||||||
|
/--
|
||||||
|
Turns an `Expr` into a pretty printed `CodeWithInfos`.
|
||||||
|
-/
|
||||||
|
def prettyPrintTerm (expr : Expr) : MetaM CodeWithInfos := do
|
||||||
|
let ⟨fmt, infos⟩ ← PrettyPrinter.ppExprWithInfos expr
|
||||||
|
let tt := TaggedText.prettyTagged fmt
|
||||||
|
let ctx := {
|
||||||
|
env := ← getEnv
|
||||||
|
mctx := ← getMCtx
|
||||||
|
options := ← getOptions
|
||||||
|
currNamespace := ← getCurrNamespace
|
||||||
|
openDecls := ← getOpenDecls
|
||||||
|
fileMap := default,
|
||||||
|
ngen := ← getNGen
|
||||||
|
}
|
||||||
|
return tagCodeInfos ctx infos tt
|
||||||
|
|
||||||
|
def isInstance (declName : Name) : MetaM Bool := do
|
||||||
|
return (instanceExtension.getState (← getEnv)).instanceNames.contains declName
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,24 @@
|
||||||
|
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.NameInfo
|
||||||
|
import DocGen4.Process.StructureInfo
|
||||||
|
import DocGen4.Process.InductiveInfo
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
|
||||||
|
open Lean Meta
|
||||||
|
|
||||||
|
def ClassInfo.ofInductiveVal (v : InductiveVal) : MetaM ClassInfo := do
|
||||||
|
StructureInfo.ofInductiveVal v
|
||||||
|
|
||||||
|
def ClassInductiveInfo.ofInductiveVal (v : InductiveVal) : MetaM ClassInductiveInfo := do
|
||||||
|
InductiveInfo.ofInductiveVal v
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,75 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.NameInfo
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
|
||||||
|
open Lean Meta Widget
|
||||||
|
|
||||||
|
partial def stripArgs (e : Expr) : Expr :=
|
||||||
|
match e.consumeMData with
|
||||||
|
| Expr.lam name _ body _ =>
|
||||||
|
let name := name.eraseMacroScopes
|
||||||
|
stripArgs (Expr.instantiate1 body (mkFVar ⟨name⟩))
|
||||||
|
| Expr.forallE name _ body _ =>
|
||||||
|
let name := name.eraseMacroScopes
|
||||||
|
stripArgs (Expr.instantiate1 body (mkFVar ⟨name⟩))
|
||||||
|
| _ => e
|
||||||
|
|
||||||
|
def processEq (eq : Name) : MetaM CodeWithInfos := do
|
||||||
|
let type ← (mkConstWithFreshMVarLevels eq >>= inferType)
|
||||||
|
let final := stripArgs type
|
||||||
|
prettyPrintTerm final
|
||||||
|
|
||||||
|
def valueToEq (v : DefinitionVal) : MetaM Expr := withLCtx {} {} do
|
||||||
|
withOptions (tactic.hygienic.set . false) do
|
||||||
|
lambdaTelescope v.value fun xs body => do
|
||||||
|
let us := v.levelParams.map mkLevelParam
|
||||||
|
let type ← mkEq (mkAppN (Lean.mkConst v.name us) xs) body
|
||||||
|
let type ← mkForallFVars xs type
|
||||||
|
return type
|
||||||
|
|
||||||
|
def DefinitionInfo.ofDefinitionVal (v : DefinitionVal) : MetaM DefinitionInfo := do
|
||||||
|
let info ← Info.ofConstantVal v.toConstantVal
|
||||||
|
let isUnsafe := v.safety == DefinitionSafety.unsafe
|
||||||
|
let isNonComputable := isNoncomputable (← getEnv) v.name
|
||||||
|
try
|
||||||
|
let eqs? ← getEqnsFor? v.name
|
||||||
|
match eqs? with
|
||||||
|
| some eqs =>
|
||||||
|
let equations ← eqs.mapM processEq
|
||||||
|
return {
|
||||||
|
toInfo := info,
|
||||||
|
isUnsafe,
|
||||||
|
hints := v.hints,
|
||||||
|
equations,
|
||||||
|
isNonComputable
|
||||||
|
}
|
||||||
|
| none =>
|
||||||
|
let equations := #[← prettyPrintTerm <| stripArgs (← valueToEq v)]
|
||||||
|
return {
|
||||||
|
toInfo := info,
|
||||||
|
isUnsafe,
|
||||||
|
hints := v.hints,
|
||||||
|
equations,
|
||||||
|
isNonComputable
|
||||||
|
}
|
||||||
|
catch err =>
|
||||||
|
IO.println s!"WARNING: Failed to calculate equational lemmata for {v.name}: {← err.toMessageData.toString}"
|
||||||
|
return {
|
||||||
|
toInfo := info,
|
||||||
|
isUnsafe,
|
||||||
|
hints := v.hints,
|
||||||
|
equations := none,
|
||||||
|
isNonComputable
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,223 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.AxiomInfo
|
||||||
|
import DocGen4.Process.TheoremInfo
|
||||||
|
import DocGen4.Process.OpaqueInfo
|
||||||
|
import DocGen4.Process.InstanceInfo
|
||||||
|
import DocGen4.Process.DefinitionInfo
|
||||||
|
import DocGen4.Process.ClassInfo
|
||||||
|
import DocGen4.Process.StructureInfo
|
||||||
|
import DocGen4.Process.InductiveInfo
|
||||||
|
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
namespace DocInfo
|
||||||
|
|
||||||
|
open Lean Meta Widget
|
||||||
|
|
||||||
|
def getDeclarationRange : DocInfo → DeclarationRange
|
||||||
|
| axiomInfo i => i.declarationRange
|
||||||
|
| theoremInfo i => i.declarationRange
|
||||||
|
| opaqueInfo i => i.declarationRange
|
||||||
|
| definitionInfo i => i.declarationRange
|
||||||
|
| instanceInfo i => i.declarationRange
|
||||||
|
| inductiveInfo i => i.declarationRange
|
||||||
|
| structureInfo i => i.declarationRange
|
||||||
|
| classInfo i => i.declarationRange
|
||||||
|
| classInductiveInfo i => i.declarationRange
|
||||||
|
| ctorInfo i => i.declarationRange
|
||||||
|
|
||||||
|
def getName : DocInfo → Name
|
||||||
|
| axiomInfo i => i.name
|
||||||
|
| theoremInfo i => i.name
|
||||||
|
| opaqueInfo i => i.name
|
||||||
|
| definitionInfo i => i.name
|
||||||
|
| instanceInfo i => i.name
|
||||||
|
| inductiveInfo i => i.name
|
||||||
|
| structureInfo i => i.name
|
||||||
|
| classInfo i => i.name
|
||||||
|
| classInductiveInfo i => i.name
|
||||||
|
| ctorInfo i => i.name
|
||||||
|
|
||||||
|
def getKind : DocInfo → String
|
||||||
|
| axiomInfo _ => "axiom"
|
||||||
|
| theoremInfo _ => "theorem"
|
||||||
|
| opaqueInfo _ => "opaque"
|
||||||
|
| definitionInfo _ => "def"
|
||||||
|
| instanceInfo _ => "instance"
|
||||||
|
| inductiveInfo _ => "inductive"
|
||||||
|
| structureInfo _ => "structure"
|
||||||
|
| classInfo _ => "class"
|
||||||
|
| classInductiveInfo _ => "class"
|
||||||
|
| ctorInfo _ => "ctor" -- TODO: kind ctor support in js
|
||||||
|
|
||||||
|
def getType : DocInfo → CodeWithInfos
|
||||||
|
| axiomInfo i => i.type
|
||||||
|
| theoremInfo i => i.type
|
||||||
|
| opaqueInfo i => i.type
|
||||||
|
| definitionInfo i => i.type
|
||||||
|
| instanceInfo i => i.type
|
||||||
|
| inductiveInfo i => i.type
|
||||||
|
| structureInfo i => i.type
|
||||||
|
| classInfo i => i.type
|
||||||
|
| classInductiveInfo i => i.type
|
||||||
|
| ctorInfo i => i.type
|
||||||
|
|
||||||
|
def getArgs : DocInfo → Array Arg
|
||||||
|
| axiomInfo i => i.args
|
||||||
|
| theoremInfo i => i.args
|
||||||
|
| opaqueInfo i => i.args
|
||||||
|
| definitionInfo i => i.args
|
||||||
|
| instanceInfo i => i.args
|
||||||
|
| inductiveInfo i => i.args
|
||||||
|
| structureInfo i => i.args
|
||||||
|
| classInfo i => i.args
|
||||||
|
| classInductiveInfo i => i.args
|
||||||
|
| ctorInfo i => i.args
|
||||||
|
|
||||||
|
def getAttrs : DocInfo → Array String
|
||||||
|
| axiomInfo i => i.attrs
|
||||||
|
| theoremInfo i => i.attrs
|
||||||
|
| opaqueInfo i => i.attrs
|
||||||
|
| definitionInfo i => i.attrs
|
||||||
|
| instanceInfo i => i.attrs
|
||||||
|
| inductiveInfo i => i.attrs
|
||||||
|
| structureInfo i => i.attrs
|
||||||
|
| classInfo i => i.attrs
|
||||||
|
| classInductiveInfo i => i.attrs
|
||||||
|
| ctorInfo i => i.attrs
|
||||||
|
|
||||||
|
def getDocString : DocInfo → Option String
|
||||||
|
| axiomInfo i => i.doc
|
||||||
|
| theoremInfo i => i.doc
|
||||||
|
| opaqueInfo i => i.doc
|
||||||
|
| definitionInfo i => i.doc
|
||||||
|
| instanceInfo i => i.doc
|
||||||
|
| inductiveInfo i => i.doc
|
||||||
|
| structureInfo i => i.doc
|
||||||
|
| classInfo i => i.doc
|
||||||
|
| classInductiveInfo i => i.doc
|
||||||
|
| ctorInfo i => i.doc
|
||||||
|
|
||||||
|
def shouldRender : DocInfo → Bool
|
||||||
|
| axiomInfo i => i.render
|
||||||
|
| theoremInfo i => i.render
|
||||||
|
| opaqueInfo i => i.render
|
||||||
|
| definitionInfo i => i.render
|
||||||
|
| instanceInfo i => i.render
|
||||||
|
| inductiveInfo i => i.render
|
||||||
|
| structureInfo i => i.render
|
||||||
|
| classInfo i => i.render
|
||||||
|
| classInductiveInfo i => i.render
|
||||||
|
| ctorInfo i => i.render
|
||||||
|
|
||||||
|
def isBlackListed (declName : Name) : MetaM Bool := do
|
||||||
|
match ← findDeclarationRanges? declName with
|
||||||
|
| some _ =>
|
||||||
|
let env ← getEnv
|
||||||
|
pure (declName.isInternal)
|
||||||
|
<||> (pure <| isAuxRecursor env declName)
|
||||||
|
<||> (pure <| isNoConfusion env declName)
|
||||||
|
<||> isRec declName
|
||||||
|
<||> isMatcher declName
|
||||||
|
-- TODO: Evaluate whether filtering out declarations without range is sensible
|
||||||
|
| none => return true
|
||||||
|
|
||||||
|
-- TODO: Is this actually the best way?
|
||||||
|
def isProjFn (declName : Name) : MetaM Bool := do
|
||||||
|
let env ← getEnv
|
||||||
|
match declName with
|
||||||
|
| Name.str parent name =>
|
||||||
|
if isStructure env parent then
|
||||||
|
match getStructureInfo? env parent with
|
||||||
|
| some i =>
|
||||||
|
match i.fieldNames.find? (· == name) with
|
||||||
|
| some _ => return true
|
||||||
|
| none => return false
|
||||||
|
| none => panic! s!"{parent} is not a structure"
|
||||||
|
else
|
||||||
|
return false
|
||||||
|
| _ => return false
|
||||||
|
|
||||||
|
def ofConstant : (Name × ConstantInfo) → MetaM (Option DocInfo) := fun (name, info) => do
|
||||||
|
if ← isBlackListed name then
|
||||||
|
return none
|
||||||
|
match info with
|
||||||
|
| ConstantInfo.axiomInfo i => return some <| axiomInfo (← AxiomInfo.ofAxiomVal i)
|
||||||
|
| ConstantInfo.thmInfo i => return some <| theoremInfo (← TheoremInfo.ofTheoremVal i)
|
||||||
|
| ConstantInfo.opaqueInfo i => return some <| opaqueInfo (← OpaqueInfo.ofOpaqueVal i)
|
||||||
|
| ConstantInfo.defnInfo i =>
|
||||||
|
if ← isProjFn i.name then
|
||||||
|
let info ← DefinitionInfo.ofDefinitionVal i
|
||||||
|
return some <| definitionInfo { info with render := false }
|
||||||
|
else
|
||||||
|
if ← isInstance i.name then
|
||||||
|
let info ← InstanceInfo.ofDefinitionVal i
|
||||||
|
return some <| instanceInfo info
|
||||||
|
else
|
||||||
|
let info ← DefinitionInfo.ofDefinitionVal i
|
||||||
|
return some <| definitionInfo info
|
||||||
|
| ConstantInfo.inductInfo i =>
|
||||||
|
let env ← getEnv
|
||||||
|
if isStructure env i.name then
|
||||||
|
if isClass env i.name then
|
||||||
|
return some <| classInfo (← ClassInfo.ofInductiveVal i)
|
||||||
|
else
|
||||||
|
return some <| structureInfo (← StructureInfo.ofInductiveVal i)
|
||||||
|
else
|
||||||
|
if isClass env i.name then
|
||||||
|
return some <| classInductiveInfo (← ClassInductiveInfo.ofInductiveVal i)
|
||||||
|
else
|
||||||
|
return some <| inductiveInfo (← InductiveInfo.ofInductiveVal i)
|
||||||
|
| ConstantInfo.ctorInfo i =>
|
||||||
|
let info ← Info.ofConstantVal i.toConstantVal
|
||||||
|
return some <| ctorInfo { info with render := false }
|
||||||
|
-- we ignore these for now
|
||||||
|
| ConstantInfo.recInfo _ | ConstantInfo.quotInfo _ => return none
|
||||||
|
|
||||||
|
def getKindDescription : DocInfo → String
|
||||||
|
| axiomInfo i => if i.isUnsafe then "unsafe axiom" else "axiom"
|
||||||
|
| theoremInfo _ => "theorem"
|
||||||
|
| opaqueInfo i =>
|
||||||
|
match i.definitionSafety with
|
||||||
|
| DefinitionSafety.safe => "opaque"
|
||||||
|
| DefinitionSafety.unsafe => "unsafe opaque"
|
||||||
|
| DefinitionSafety.partial => "partial def"
|
||||||
|
| definitionInfo i => Id.run do
|
||||||
|
let mut modifiers := #[]
|
||||||
|
if i.isUnsafe then
|
||||||
|
modifiers := modifiers.push "unsafe"
|
||||||
|
if i.isNonComputable then
|
||||||
|
modifiers := modifiers.push "noncomputable"
|
||||||
|
|
||||||
|
let defKind :=
|
||||||
|
if i.hints.isAbbrev then
|
||||||
|
"abbrev"
|
||||||
|
else
|
||||||
|
"def"
|
||||||
|
modifiers := modifiers.push defKind
|
||||||
|
return String.intercalate " " modifiers.toList
|
||||||
|
| instanceInfo i => Id.run do
|
||||||
|
let mut modifiers := #[]
|
||||||
|
if i.isUnsafe then
|
||||||
|
modifiers := modifiers.push "unsafe"
|
||||||
|
if i.isNonComputable then
|
||||||
|
modifiers := modifiers.push "noncomputable"
|
||||||
|
|
||||||
|
modifiers := modifiers.push "instance"
|
||||||
|
return String.intercalate " " modifiers.toList
|
||||||
|
| inductiveInfo i => if i.isUnsafe then "unsafe inductive" else "inductive"
|
||||||
|
| structureInfo _ => "structure"
|
||||||
|
| classInfo _ => "class"
|
||||||
|
| classInductiveInfo _ => "class inductive"
|
||||||
|
| ctorInfo _ => "constructor"
|
||||||
|
|
||||||
|
end DocInfo
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,136 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2021 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
import Lean.Data.HashMap
|
||||||
|
|
||||||
|
import DocGen4.Process.NameExt
|
||||||
|
|
||||||
|
def Lean.HashSet.fromArray [BEq α] [Hashable α] (xs : Array α) : Lean.HashSet α :=
|
||||||
|
xs.foldr (flip .insert) .empty
|
||||||
|
|
||||||
|
namespace DocGen4
|
||||||
|
|
||||||
|
open Lean Name
|
||||||
|
|
||||||
|
def getNLevels (name : Name) (levels: Nat) : Name :=
|
||||||
|
let components := name.componentsRev
|
||||||
|
(components.drop (components.length - levels)).reverse.foldl (· ++ ·) Name.anonymous
|
||||||
|
|
||||||
|
inductive Hierarchy where
|
||||||
|
| node (name : NameExt) (isFile : Bool) (children : RBNode NameExt (fun _ => Hierarchy)) : Hierarchy
|
||||||
|
|
||||||
|
instance : Inhabited Hierarchy := ⟨Hierarchy.node ⟨.anonymous, .html⟩ false RBNode.leaf⟩
|
||||||
|
|
||||||
|
abbrev HierarchyMap := RBNode NameExt (fun _ => Hierarchy)
|
||||||
|
|
||||||
|
-- Everything in this namespace is adapted from stdlib's RBNode
|
||||||
|
namespace HierarchyMap
|
||||||
|
|
||||||
|
def toList : HierarchyMap → List (NameExt × Hierarchy)
|
||||||
|
| t => t.revFold (fun ps k v => (k, v)::ps) []
|
||||||
|
|
||||||
|
def toArray : HierarchyMap → Array (NameExt × Hierarchy)
|
||||||
|
| t => t.fold (fun ps k v => ps ++ #[(k, v)] ) #[]
|
||||||
|
|
||||||
|
def hForIn [Monad m] (t : HierarchyMap) (init : σ) (f : (NameExt × Hierarchy) → σ → m (ForInStep σ)) : m σ :=
|
||||||
|
t.forIn init (fun a b acc => f (a, b) acc)
|
||||||
|
|
||||||
|
instance : ForIn m HierarchyMap (NameExt × Hierarchy) where
|
||||||
|
forIn := HierarchyMap.hForIn
|
||||||
|
|
||||||
|
end HierarchyMap
|
||||||
|
|
||||||
|
namespace Hierarchy
|
||||||
|
|
||||||
|
def empty (n : NameExt) (isFile : Bool) : Hierarchy :=
|
||||||
|
node n isFile RBNode.leaf
|
||||||
|
|
||||||
|
def getName : Hierarchy → Name
|
||||||
|
| node n _ _ => n.name
|
||||||
|
|
||||||
|
def getNameExt : Hierarchy → NameExt
|
||||||
|
| node n _ _ => n
|
||||||
|
|
||||||
|
def getChildren : Hierarchy → HierarchyMap
|
||||||
|
| node _ _ c => c
|
||||||
|
|
||||||
|
def isFile : Hierarchy → Bool
|
||||||
|
| node _ f _ => f
|
||||||
|
|
||||||
|
partial def insert! (h : Hierarchy) (n : NameExt) : Hierarchy := Id.run do
|
||||||
|
let hn := h.getNameExt
|
||||||
|
let mut cs := h.getChildren
|
||||||
|
|
||||||
|
if getNumParts hn.name + 1 == getNumParts n.name then
|
||||||
|
match cs.find NameExt.cmp n with
|
||||||
|
| none =>
|
||||||
|
node hn h.isFile (cs.insert NameExt.cmp n <| empty n true)
|
||||||
|
| some (node _ true _) => h
|
||||||
|
| some (node _ false ccs) =>
|
||||||
|
cs := cs.erase NameExt.cmp n
|
||||||
|
node hn h.isFile (cs.insert NameExt.cmp n <| node n true ccs)
|
||||||
|
else
|
||||||
|
let leveled := ⟨getNLevels n.name (getNumParts hn.name + 1), .html⟩
|
||||||
|
match cs.find NameExt.cmp leveled with
|
||||||
|
| some nextLevel =>
|
||||||
|
cs := cs.erase NameExt.cmp leveled
|
||||||
|
-- BUG?
|
||||||
|
node hn h.isFile <| cs.insert NameExt.cmp leveled (nextLevel.insert! n)
|
||||||
|
| none =>
|
||||||
|
let child := (insert! (empty leveled false) n)
|
||||||
|
node hn h.isFile <| cs.insert NameExt.cmp leveled child
|
||||||
|
|
||||||
|
partial def fromArray (names : Array Name) : Hierarchy :=
|
||||||
|
(names.map (fun n => NameExt.mk n .html)).foldl insert! (empty ⟨anonymous, .html⟩ false)
|
||||||
|
|
||||||
|
partial def fromArrayExt (names : Array NameExt) : Hierarchy :=
|
||||||
|
names.foldl insert! (empty ⟨anonymous, .html⟩ false)
|
||||||
|
|
||||||
|
def baseDirBlackList : HashSet String :=
|
||||||
|
HashSet.fromArray #[
|
||||||
|
"404.html",
|
||||||
|
"color-scheme.js",
|
||||||
|
"declaration-data.js",
|
||||||
|
"declarations",
|
||||||
|
"find",
|
||||||
|
"how-about.js",
|
||||||
|
"index.html",
|
||||||
|
"search.html",
|
||||||
|
"foundational_types.html",
|
||||||
|
"mathjax-config.js",
|
||||||
|
"navbar.html",
|
||||||
|
"nav.js",
|
||||||
|
"search.js",
|
||||||
|
"src",
|
||||||
|
"style.css"
|
||||||
|
]
|
||||||
|
|
||||||
|
partial def fromDirectoryAux (dir : System.FilePath) (previous : Name) : IO (Array NameExt) := do
|
||||||
|
let mut children := #[]
|
||||||
|
for entry in ← System.FilePath.readDir dir do
|
||||||
|
if ← entry.path.isDir then
|
||||||
|
children := children ++ (← fromDirectoryAux entry.path (.str previous entry.fileName))
|
||||||
|
else if entry.path.extension = some "html" then
|
||||||
|
children := children.push <| ⟨.str previous (entry.fileName.dropRight ".html".length), .html⟩
|
||||||
|
else if entry.path.extension = some "pdf" then
|
||||||
|
children := children.push <| ⟨.str previous (entry.fileName.dropRight ".pdf".length), .pdf⟩
|
||||||
|
return children
|
||||||
|
|
||||||
|
def fromDirectory (dir : System.FilePath) : IO Hierarchy := do
|
||||||
|
let mut children := #[]
|
||||||
|
for entry in ← System.FilePath.readDir dir do
|
||||||
|
if baseDirBlackList.contains entry.fileName then
|
||||||
|
continue
|
||||||
|
else if ← entry.path.isDir then
|
||||||
|
children := children ++ (← fromDirectoryAux entry.path (.mkSimple entry.fileName))
|
||||||
|
else if entry.path.extension = some "html" then
|
||||||
|
children := children.push <| ⟨.mkSimple (entry.fileName.dropRight ".html".length), .html⟩
|
||||||
|
else if entry.path.extension = some "pdf" then
|
||||||
|
children := children.push <| ⟨.mkSimple (entry.fileName.dropRight ".pdf".length), .pdf⟩
|
||||||
|
return Hierarchy.fromArrayExt children
|
||||||
|
|
||||||
|
end Hierarchy
|
||||||
|
end DocGen4
|
|
@ -0,0 +1,30 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.NameInfo
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
|
||||||
|
open Lean Meta
|
||||||
|
|
||||||
|
def getConstructorType (ctor : Name) : MetaM Expr := do
|
||||||
|
let env ← getEnv
|
||||||
|
match env.find? ctor with
|
||||||
|
| some (ConstantInfo.ctorInfo i) => pure i.type
|
||||||
|
| _ => panic! s!"Constructor {ctor} was requested but does not exist"
|
||||||
|
|
||||||
|
def InductiveInfo.ofInductiveVal (v : InductiveVal) : MetaM InductiveInfo := do
|
||||||
|
let info ← Info.ofConstantVal v.toConstantVal
|
||||||
|
let ctors ← v.ctors.mapM (fun name => do NameInfo.ofTypedName name (← getConstructorType name))
|
||||||
|
return {
|
||||||
|
toInfo := info,
|
||||||
|
ctors,
|
||||||
|
isUnsafe := v.isUnsafe
|
||||||
|
}
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,41 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.NameInfo
|
||||||
|
import DocGen4.Process.DefinitionInfo
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
|
||||||
|
open Lean Meta
|
||||||
|
|
||||||
|
def getInstanceTypes (typ : Expr) : MetaM (Array Name) := do
|
||||||
|
let (_, _, tail) ← forallMetaTelescopeReducing typ
|
||||||
|
let args := tail.getAppArgs
|
||||||
|
let (_, names) ← args.mapM (Expr.forEach · findName) |>.run .empty
|
||||||
|
return names
|
||||||
|
where
|
||||||
|
findName : Expr → StateRefT (Array Name) MetaM Unit
|
||||||
|
| .const name _ => modify (·.push name)
|
||||||
|
| .sort .zero => modify (·.push "_builtin_prop")
|
||||||
|
| .sort (.succ _) => modify (·.push "_builtin_typeu")
|
||||||
|
| .sort _ => modify (·.push "_builtin_sortu")
|
||||||
|
| _ => return ()
|
||||||
|
|
||||||
|
def InstanceInfo.ofDefinitionVal (v : DefinitionVal) : MetaM InstanceInfo := do
|
||||||
|
let mut info ← DefinitionInfo.ofDefinitionVal v
|
||||||
|
let some className ← isClass? v.type | unreachable!
|
||||||
|
if let some instAttr ← getDefaultInstance v.name className then
|
||||||
|
info := { info with attrs := info.attrs.push instAttr }
|
||||||
|
let typeNames ← getInstanceTypes v.type
|
||||||
|
return {
|
||||||
|
toDefinitionInfo := info,
|
||||||
|
className,
|
||||||
|
typeNames
|
||||||
|
}
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,48 @@
|
||||||
|
/-
|
||||||
|
A generalization of `Lean.Name` that includes a file extension.
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
open Lean Name
|
||||||
|
|
||||||
|
inductive Extension where
|
||||||
|
| html
|
||||||
|
| pdf
|
||||||
|
deriving Repr
|
||||||
|
|
||||||
|
namespace Extension
|
||||||
|
|
||||||
|
def cmp : Extension → Extension → Ordering
|
||||||
|
| html, html => Ordering.eq
|
||||||
|
| html, _ => Ordering.lt
|
||||||
|
| pdf, pdf => Ordering.eq
|
||||||
|
| pdf, _ => Ordering.gt
|
||||||
|
|
||||||
|
instance : BEq Extension where
|
||||||
|
beq e1 e2 :=
|
||||||
|
match cmp e1 e2 with
|
||||||
|
| Ordering.eq => true
|
||||||
|
| _ => false
|
||||||
|
|
||||||
|
def toString : Extension → String
|
||||||
|
| html => "html"
|
||||||
|
| pdf => "pdf"
|
||||||
|
|
||||||
|
end Extension
|
||||||
|
|
||||||
|
structure NameExt where
|
||||||
|
name : Name
|
||||||
|
ext : Extension
|
||||||
|
|
||||||
|
namespace NameExt
|
||||||
|
|
||||||
|
def cmp (n₁ n₂ : NameExt) : Ordering :=
|
||||||
|
match Name.cmp n₁.name n₂.name with
|
||||||
|
| Ordering.eq => Extension.cmp n₁.ext n₂.ext
|
||||||
|
| ord => ord
|
||||||
|
|
||||||
|
def getString! : NameExt → String
|
||||||
|
| ⟨str _ s, _⟩ => s
|
||||||
|
| _ => unreachable!
|
||||||
|
|
||||||
|
end NameExt
|
|
@ -0,0 +1,50 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.Attributes
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
open Lean Meta
|
||||||
|
|
||||||
|
def NameInfo.ofTypedName (n : Name) (t : Expr) : MetaM NameInfo := do
|
||||||
|
let env ← getEnv
|
||||||
|
return { name := n, type := ← prettyPrintTerm t, doc := ← findDocString? env n}
|
||||||
|
|
||||||
|
partial def typeToArgsType (e : Expr) : (Array (Name × Expr × BinderInfo) × Expr) :=
|
||||||
|
let helper := fun name type body data =>
|
||||||
|
-- Once we hit a name with a macro scope we stop traversing the expression
|
||||||
|
-- and print what is left after the : instead. The only exception
|
||||||
|
-- to this is instances since these almost never have a name
|
||||||
|
-- but should still be printed as arguments instead of after the :.
|
||||||
|
if name.hasMacroScopes && !data.isInstImplicit then
|
||||||
|
(#[], e)
|
||||||
|
else
|
||||||
|
let name := name.eraseMacroScopes
|
||||||
|
let arg := (name, type, data)
|
||||||
|
let (args, final) := typeToArgsType (Expr.instantiate1 body (mkFVar ⟨name⟩))
|
||||||
|
(#[arg] ++ args, final)
|
||||||
|
match e.consumeMData with
|
||||||
|
| Expr.lam name type body binderInfo => helper name type body binderInfo
|
||||||
|
| Expr.forallE name type body binderInfo => helper name type body binderInfo
|
||||||
|
| _ => (#[], e)
|
||||||
|
|
||||||
|
def Info.ofConstantVal (v : ConstantVal) : MetaM Info := do
|
||||||
|
let (args, type) := typeToArgsType v.type
|
||||||
|
let args ← args.mapM (fun (n, e, b) => do return Arg.mk n (← prettyPrintTerm e) b)
|
||||||
|
let nameInfo ← NameInfo.ofTypedName v.name type
|
||||||
|
match ← findDeclarationRanges? v.name with
|
||||||
|
-- TODO: Maybe selection range is more relevant? Figure this out in the future
|
||||||
|
| some range => return {
|
||||||
|
toNameInfo := nameInfo,
|
||||||
|
args,
|
||||||
|
declarationRange := range.range,
|
||||||
|
attrs := ← getAllAttributes v.name
|
||||||
|
}
|
||||||
|
| none => panic! s!"{v.name} is a declaration without position"
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,33 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.NameInfo
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
|
||||||
|
open Lean Meta
|
||||||
|
|
||||||
|
def OpaqueInfo.ofOpaqueVal (v : OpaqueVal) : MetaM OpaqueInfo := do
|
||||||
|
let info ← Info.ofConstantVal v.toConstantVal
|
||||||
|
let value ← prettyPrintTerm v.value
|
||||||
|
let env ← getEnv
|
||||||
|
let isPartial := env.find? (Compiler.mkUnsafeRecName v.name) |>.isSome
|
||||||
|
let definitionSafety :=
|
||||||
|
if isPartial then
|
||||||
|
DefinitionSafety.partial
|
||||||
|
else if v.isUnsafe then
|
||||||
|
DefinitionSafety.unsafe
|
||||||
|
else
|
||||||
|
DefinitionSafety.safe
|
||||||
|
return {
|
||||||
|
toInfo := info,
|
||||||
|
value,
|
||||||
|
definitionSafety
|
||||||
|
}
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,58 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.NameInfo
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
|
||||||
|
open Lean Meta
|
||||||
|
|
||||||
|
-- TODO: replace with Leos variant from Zulip
|
||||||
|
def dropArgs (type : Expr) (n : Nat) : (Expr × List (Name × Expr)) :=
|
||||||
|
match type, n with
|
||||||
|
| e, 0 => (e, [])
|
||||||
|
| Expr.forallE name type body _, x + 1 =>
|
||||||
|
let body := body.instantiate1 <| mkFVar ⟨name⟩
|
||||||
|
let next := dropArgs body x
|
||||||
|
{ next with snd := (name, type) :: next.snd}
|
||||||
|
| _, _ + 1 => panic! s!"No forallE left"
|
||||||
|
|
||||||
|
def getFieldTypes (struct : Name) (ctor : ConstructorVal) (parents : Nat) : MetaM (Array NameInfo) := do
|
||||||
|
let type := ctor.type
|
||||||
|
let (fieldFunction, _) := dropArgs type (ctor.numParams + parents)
|
||||||
|
let (_, fields) := dropArgs fieldFunction (ctor.numFields - parents)
|
||||||
|
let mut fieldInfos := #[]
|
||||||
|
for (name, type) in fields do
|
||||||
|
fieldInfos := fieldInfos.push <| ← NameInfo.ofTypedName (struct.append name) type
|
||||||
|
return fieldInfos
|
||||||
|
|
||||||
|
def StructureInfo.ofInductiveVal (v : InductiveVal) : MetaM StructureInfo := do
|
||||||
|
let info ← Info.ofConstantVal v.toConstantVal
|
||||||
|
let env ← getEnv
|
||||||
|
let parents := getParentStructures env v.name
|
||||||
|
let ctorVal := getStructureCtor env v.name
|
||||||
|
let ctor ← NameInfo.ofTypedName ctorVal.name ctorVal.type
|
||||||
|
match getStructureInfo? env v.name with
|
||||||
|
| some i =>
|
||||||
|
if i.fieldNames.size - parents.size > 0 then
|
||||||
|
return {
|
||||||
|
toInfo := info,
|
||||||
|
fieldInfo := ← getFieldTypes v.name ctorVal parents.size,
|
||||||
|
parents,
|
||||||
|
ctor
|
||||||
|
}
|
||||||
|
else
|
||||||
|
return {
|
||||||
|
toInfo := info,
|
||||||
|
fieldInfo := #[],
|
||||||
|
parents,
|
||||||
|
ctor
|
||||||
|
}
|
||||||
|
| none => panic! s!"{v.name} is not a structure"
|
||||||
|
|
||||||
|
end DocGen4.Process
|
|
@ -0,0 +1,19 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2022 Henrik Böving. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Henrik Böving
|
||||||
|
-/
|
||||||
|
import Lean
|
||||||
|
|
||||||
|
import DocGen4.Process.Base
|
||||||
|
import DocGen4.Process.NameInfo
|
||||||
|
|
||||||
|
namespace DocGen4.Process
|
||||||
|
|
||||||
|
open Lean Meta
|
||||||
|
|
||||||
|
def TheoremInfo.ofTheoremVal (v : TheoremVal) : MetaM TheoremInfo := do
|
||||||
|
let info ← Info.ofConstantVal v.toConstantVal
|
||||||
|
return { toInfo := info }
|
||||||
|
|
||||||
|
end DocGen4.Process
|
30
Main.lean
30
Main.lean
|
@ -11,12 +11,16 @@ def getTopLevelModules (p : Parsed) : IO (List String) := do
|
||||||
return topLevelModules
|
return topLevelModules
|
||||||
|
|
||||||
def runSingleCmd (p : Parsed) : IO UInt32 := do
|
def runSingleCmd (p : Parsed) : IO UInt32 := do
|
||||||
let relevantModules := #[p.positionalArg! "module" |>.as! String |> String.toName]
|
let relevantModules := [p.positionalArg! "module" |>.as! String |> String.toName]
|
||||||
let gitUrl := p.positionalArg! "gitUrl" |>.as! String
|
let res ← lakeSetup
|
||||||
let (doc, hierarchy) ← load <| .loadAllLimitAnalysis relevantModules
|
match res with
|
||||||
let baseConfig ← getSimpleBaseContext hierarchy
|
| Except.ok ws =>
|
||||||
htmlOutputResults baseConfig doc (some gitUrl) (p.hasFlag "ink")
|
let (doc, hierarchy) ← load <| .loadAllLimitAnalysis relevantModules
|
||||||
return 0
|
IO.println "Outputting HTML"
|
||||||
|
let baseConfig ← getSimpleBaseContext hierarchy
|
||||||
|
htmlOutputResults baseConfig doc ws (p.hasFlag "ink")
|
||||||
|
return 0
|
||||||
|
| Except.error rc => pure rc
|
||||||
|
|
||||||
def runIndexCmd (_p : Parsed) : IO UInt32 := do
|
def runIndexCmd (_p : Parsed) : IO UInt32 := do
|
||||||
let hierarchy ← Hierarchy.fromDirectory Output.basePath
|
let hierarchy ← Hierarchy.fromDirectory Output.basePath
|
||||||
|
@ -25,10 +29,15 @@ def runIndexCmd (_p : Parsed) : IO UInt32 := do
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
def runGenCoreCmd (_p : Parsed) : IO UInt32 := do
|
def runGenCoreCmd (_p : Parsed) : IO UInt32 := do
|
||||||
let (doc, hierarchy) ← loadCore
|
let res ← lakeSetup
|
||||||
let baseConfig ← getSimpleBaseContext hierarchy
|
match res with
|
||||||
htmlOutputResults baseConfig doc none (ink := False)
|
| Except.ok ws =>
|
||||||
return 0
|
let (doc, hierarchy) ← loadCore
|
||||||
|
IO.println "Outputting HTML"
|
||||||
|
let baseConfig ← getSimpleBaseContext hierarchy
|
||||||
|
htmlOutputResults baseConfig doc ws (ink := False)
|
||||||
|
return 0
|
||||||
|
| Except.error rc => pure rc
|
||||||
|
|
||||||
def runDocGenCmd (_p : Parsed) : IO UInt32 := do
|
def runDocGenCmd (_p : Parsed) : IO UInt32 := do
|
||||||
IO.println "You most likely want to use me via Lake now, check my README on Github on how to:"
|
IO.println "You most likely want to use me via Lake now, check my README on Github on how to:"
|
||||||
|
@ -44,7 +53,6 @@ def singleCmd := `[Cli|
|
||||||
|
|
||||||
ARGS:
|
ARGS:
|
||||||
module : String; "The module to generate the HTML for. Does not have to be part of topLevelModules."
|
module : String; "The module to generate the HTML for. Does not have to be part of topLevelModules."
|
||||||
gitUrl : String; "The gitUrl as computed by the Lake facet"
|
|
||||||
]
|
]
|
||||||
|
|
||||||
def indexCmd := `[Cli|
|
def indexCmd := `[Cli|
|
||||||
|
|
|
@ -0,0 +1,14 @@
|
||||||
|
all:
|
||||||
|
@echo "Please specify a build target."
|
||||||
|
|
||||||
|
docs:
|
||||||
|
-ls build/doc | \
|
||||||
|
grep -v -E 'Init|Lean|Mathlib' | \
|
||||||
|
xargs -I {} rm -r "build/doc/{}"
|
||||||
|
-./scripts/run_pdflatex.sh build > /dev/null
|
||||||
|
lake build Bookshelf:docs
|
||||||
|
|
||||||
|
docs!:
|
||||||
|
-rm -r build/doc
|
||||||
|
-./scripts/run_pdflatex.sh build > /dev/null
|
||||||
|
lake build Bookshelf:docs
|
40
README.md
40
README.md
|
@ -1,11 +1,7 @@
|
||||||
# bookshelf
|
# bookshelf
|
||||||
|
|
||||||
A study of the books listed below.
|
A study of the books listed below. Most proofs are conducted in LaTeX. Where
|
||||||
|
feasible, theorems are also formally proven in [Lean](https://leanprover.github.io/).
|
||||||
## Overview
|
|
||||||
|
|
||||||
Most proofs are conducted in LaTeX. Where feasible, theorems are also formally
|
|
||||||
proven in [Lean](https://leanprover.github.io/).
|
|
||||||
|
|
||||||
- [ ] Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.
|
- [ ] Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.
|
||||||
- [x] Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
- [x] Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
||||||
|
@ -18,21 +14,23 @@ proven in [Lean](https://leanprover.github.io/).
|
||||||
- [ ] Ross, Sheldon. A First Course in Probability Theory. 8th ed. Pearson Prentice Hall, n.d.
|
- [ ] Ross, Sheldon. A First Course in Probability Theory. 8th ed. Pearson Prentice Hall, n.d.
|
||||||
- [ ] Smullyan, Raymond M. To Mock a Mockingbird: And Other Logic Puzzles Including an Amazing Adventure in Combinatory Logic. Oxford: Oxford university press, 2000.
|
- [ ] Smullyan, Raymond M. To Mock a Mockingbird: And Other Logic Puzzles Including an Amazing Adventure in Combinatory Logic. Oxford: Oxford university press, 2000.
|
||||||
|
|
||||||
## Building
|
## Documentation
|
||||||
|
|
||||||
|
This project has absorbed [doc-gen4](https://github.com/leanprover/doc-gen4) to
|
||||||
|
ease customization. In particular, the `DocGen4` module found in this project
|
||||||
|
allows generating PDFs and including them in the navbar. To generate
|
||||||
|
documentation and serve files locally, run the following:
|
||||||
|
|
||||||
[direnv](https://direnv.net/) can be used to launch a dev shell upon entering
|
|
||||||
this directory (refer to `.envrc`). Otherwise run via:
|
|
||||||
```bash
|
```bash
|
||||||
$ nix develop
|
> make docs[!]
|
||||||
|
> lake run server
|
||||||
```
|
```
|
||||||
If you prefer not to use `nix`, you can also use the [elan](https://github.com/leanprover/elan)
|
|
||||||
package manager like normal. Afterward, build the project by running
|
The `docs` build target avoids cleaning files that are expected to not change
|
||||||
```bash
|
often (e.g. `Lean`, `Init`, and `Mathlib` related content). If you've upgraded
|
||||||
$ lake build
|
Lean or Mathlib, run `make docs!` instead to generate documentation from
|
||||||
```
|
scratch.
|
||||||
Optionally build documentation by running:
|
|
||||||
```bash
|
Both assume you have `pdflatex` and `python3` available in your `$PATH`. To
|
||||||
$ lake build Bookshelf:docs
|
change how the server behaves, refer to the `.env` file located in the root
|
||||||
```
|
directory of this project.
|
||||||
Afterward, you can view the generated files by running `python3 -m http.server`
|
|
||||||
from within the `.lake/build/doc` directory.
|
|
||||||
|
|
76
flake.lock
76
flake.lock
|
@ -1,76 +0,0 @@
|
||||||
{
|
|
||||||
"nodes": {
|
|
||||||
"flake-compat": {
|
|
||||||
"locked": {
|
|
||||||
"lastModified": 1696426674,
|
|
||||||
"narHash": "sha256-kvjfFW7WAETZlt09AgDn1MrtKzP7t90Vf7vypd3OL1U=",
|
|
||||||
"rev": "0f9255e01c2351cc7d116c072cb317785dd33b33",
|
|
||||||
"revCount": 57,
|
|
||||||
"type": "tarball",
|
|
||||||
"url": "https://api.flakehub.com/f/pinned/edolstra/flake-compat/1.0.1/018afb31-abd1-7bff-a5e4-cff7e18efb7a/source.tar.gz"
|
|
||||||
},
|
|
||||||
"original": {
|
|
||||||
"type": "tarball",
|
|
||||||
"url": "https://flakehub.com/f/edolstra/flake-compat/1.tar.gz"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"flake-utils": {
|
|
||||||
"inputs": {
|
|
||||||
"systems": "systems"
|
|
||||||
},
|
|
||||||
"locked": {
|
|
||||||
"lastModified": 1701680307,
|
|
||||||
"narHash": "sha256-kAuep2h5ajznlPMD9rnQyffWG8EM/C73lejGofXvdM8=",
|
|
||||||
"owner": "numtide",
|
|
||||||
"repo": "flake-utils",
|
|
||||||
"rev": "4022d587cbbfd70fe950c1e2083a02621806a725",
|
|
||||||
"type": "github"
|
|
||||||
},
|
|
||||||
"original": {
|
|
||||||
"owner": "numtide",
|
|
||||||
"repo": "flake-utils",
|
|
||||||
"type": "github"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nixpkgs": {
|
|
||||||
"locked": {
|
|
||||||
"lastModified": 1702312524,
|
|
||||||
"narHash": "sha256-gkZJRDBUCpTPBvQk25G0B7vfbpEYM5s5OZqghkjZsnE=",
|
|
||||||
"owner": "NixOS",
|
|
||||||
"repo": "nixpkgs",
|
|
||||||
"rev": "a9bf124c46ef298113270b1f84a164865987a91c",
|
|
||||||
"type": "github"
|
|
||||||
},
|
|
||||||
"original": {
|
|
||||||
"owner": "NixOS",
|
|
||||||
"ref": "nixos-unstable",
|
|
||||||
"repo": "nixpkgs",
|
|
||||||
"type": "github"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"root": {
|
|
||||||
"inputs": {
|
|
||||||
"flake-compat": "flake-compat",
|
|
||||||
"flake-utils": "flake-utils",
|
|
||||||
"nixpkgs": "nixpkgs"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"systems": {
|
|
||||||
"locked": {
|
|
||||||
"lastModified": 1681028828,
|
|
||||||
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
|
||||||
"owner": "nix-systems",
|
|
||||||
"repo": "default",
|
|
||||||
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
|
||||||
"type": "github"
|
|
||||||
},
|
|
||||||
"original": {
|
|
||||||
"owner": "nix-systems",
|
|
||||||
"repo": "default",
|
|
||||||
"type": "github"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"root": "root",
|
|
||||||
"version": 7
|
|
||||||
}
|
|
79
flake.nix
79
flake.nix
|
@ -1,79 +0,0 @@
|
||||||
{
|
|
||||||
description = "";
|
|
||||||
|
|
||||||
inputs = {
|
|
||||||
flake-compat.url = "https://flakehub.com/f/edolstra/flake-compat/1.tar.gz";
|
|
||||||
flake-utils.url = "github:numtide/flake-utils";
|
|
||||||
nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable";
|
|
||||||
};
|
|
||||||
|
|
||||||
outputs = { self, nixpkgs, flake-utils, ... }:
|
|
||||||
flake-utils.lib.eachDefaultSystem (system:
|
|
||||||
let
|
|
||||||
pkgs = nixpkgs.legacyPackages.${system};
|
|
||||||
manifest = import ./lake-manifest.nix { inherit pkgs; };
|
|
||||||
scheme-custom = with pkgs; (texlive.combine {
|
|
||||||
inherit (texlive) scheme-basic
|
|
||||||
bigfoot
|
|
||||||
comment
|
|
||||||
enumitem
|
|
||||||
environ
|
|
||||||
etoolbox
|
|
||||||
fontawesome5
|
|
||||||
jknapltx
|
|
||||||
mathabx
|
|
||||||
mathabx-type1
|
|
||||||
metafont
|
|
||||||
ncctools
|
|
||||||
pgf
|
|
||||||
rsfs
|
|
||||||
soul
|
|
||||||
stmaryrd
|
|
||||||
tcolorbox
|
|
||||||
xcolor;
|
|
||||||
});
|
|
||||||
in
|
|
||||||
{
|
|
||||||
packages = {
|
|
||||||
app = pkgs.stdenv.mkDerivation {
|
|
||||||
pname = "bookshelf";
|
|
||||||
version = "0.1.0";
|
|
||||||
src = ./.;
|
|
||||||
nativeBuildInputs = with pkgs; [
|
|
||||||
git
|
|
||||||
lean4
|
|
||||||
scheme-custom
|
|
||||||
];
|
|
||||||
buildPhase = ''
|
|
||||||
mkdir -p .lake/packages
|
|
||||||
${pkgs.lib.foldlAttrs (s: key: val: s + ''
|
|
||||||
cp -a ${val}/src .lake/packages/${key}
|
|
||||||
chmod 755 .lake/packages/${key}/{,.git}
|
|
||||||
'') "" manifest}
|
|
||||||
|
|
||||||
export GIT_ORIGIN_URL="https://github.com/jrpotter/bookshelf.git"
|
|
||||||
export GIT_REVISION="${self.rev or "dirty"}"
|
|
||||||
lake build Bookshelf:docs
|
|
||||||
|
|
||||||
find .lake/build/doc \
|
|
||||||
\( -name "*.html.trace" -o -name "*.html.hash" \) \
|
|
||||||
-exec rm {} +
|
|
||||||
'';
|
|
||||||
installPhase = ''
|
|
||||||
mkdir $out
|
|
||||||
cp -a .lake/build/doc/* $out
|
|
||||||
'';
|
|
||||||
};
|
|
||||||
|
|
||||||
default = self.packages.${system}.app;
|
|
||||||
};
|
|
||||||
|
|
||||||
devShells.default = pkgs.mkShell {
|
|
||||||
packages = with pkgs; [
|
|
||||||
lean4
|
|
||||||
python3
|
|
||||||
scheme-custom
|
|
||||||
];
|
|
||||||
};
|
|
||||||
});
|
|
||||||
}
|
|
|
@ -1,95 +1,75 @@
|
||||||
{"version": 7,
|
{"version": 5,
|
||||||
"packagesDir": ".lake/packages",
|
"packagesDir": "lake-packages",
|
||||||
"packages":
|
"packages":
|
||||||
[{"url": "https://github.com/leanprover/std4.git",
|
[{"git":
|
||||||
"type": "git",
|
{"url": "https://github.com/xubaiw/CMark.lean",
|
||||||
"subDir": null,
|
"subDir?": null,
|
||||||
"rev": "2e4a3586a8f16713f16b2d2b3af3d8e65f3af087",
|
"rev": "0077cbbaa92abf855fc1c0413e158ffd8195ec77",
|
||||||
"name": "std",
|
"opts": {},
|
||||||
"manifestFile": "lake-manifest.json",
|
"name": "CMark",
|
||||||
"inputRev": "v4.3.0",
|
"inputRev?": "main",
|
||||||
"inherited": false,
|
"inherited": false}},
|
||||||
"configFile": "lakefile.lean"},
|
{"git":
|
||||||
{"url": "https://github.com/leanprover-community/quote4",
|
{"url": "https://github.com/EdAyers/ProofWidgets4",
|
||||||
"type": "git",
|
"subDir?": null,
|
||||||
"subDir": null,
|
"rev": "a0c2cd0ac3245a0dade4f925bcfa97e06dd84229",
|
||||||
"rev": "d3a1d25f3eba0d93a58d5d3d027ffa78ece07755",
|
"opts": {},
|
||||||
"name": "Qq",
|
"name": "proofwidgets",
|
||||||
"manifestFile": "lake-manifest.json",
|
"inputRev?": "v0.0.13",
|
||||||
"inputRev": "master",
|
"inherited": true}},
|
||||||
"inherited": true,
|
{"git":
|
||||||
"configFile": "lakefile.lean"},
|
{"url": "https://github.com/fgdorais/lean4-unicode-basic",
|
||||||
{"url": "https://github.com/leanprover-community/aesop",
|
"subDir?": null,
|
||||||
"type": "git",
|
"rev": "2491e781ae478b6e6f1d86a7157f1c58fc50f895",
|
||||||
"subDir": null,
|
"opts": {},
|
||||||
"rev": "c7cff4551258d31c0d2d453b3f9cbca757d445f1",
|
"name": "«lean4-unicode-basic»",
|
||||||
"name": "aesop",
|
"inputRev?": "main",
|
||||||
"manifestFile": "lake-manifest.json",
|
"inherited": false}},
|
||||||
"inputRev": "master",
|
{"git":
|
||||||
"inherited": true,
|
{"url": "https://github.com/mhuisi/lean4-cli",
|
||||||
"configFile": "lakefile.lean"},
|
"subDir?": null,
|
||||||
{"url": "https://github.com/leanprover-community/ProofWidgets4",
|
"rev": "21dac2e9cc7e3cf7da5800814787b833e680b2fd",
|
||||||
"type": "git",
|
"opts": {},
|
||||||
"subDir": null,
|
"name": "Cli",
|
||||||
"rev": "909febc72b4f64628f8d35cd0554f8a90b6e0749",
|
"inputRev?": "nightly",
|
||||||
"name": "proofwidgets",
|
"inherited": false}},
|
||||||
"manifestFile": "lake-manifest.json",
|
{"git":
|
||||||
"inputRev": "v0.0.23",
|
{"url": "https://github.com/leanprover-community/mathlib4.git",
|
||||||
"inherited": true,
|
"subDir?": null,
|
||||||
"configFile": "lakefile.lean"},
|
"rev": "43718b8bde561e133edfd4ab8b5def9fb438c18d",
|
||||||
{"url": "https://github.com/leanprover/lean4-cli",
|
"opts": {},
|
||||||
"type": "git",
|
"name": "mathlib",
|
||||||
"subDir": null,
|
"inputRev?": "master",
|
||||||
"rev": "a751d21d4b68c999accb6fc5d960538af26ad5ec",
|
"inherited": false}},
|
||||||
"name": "Cli",
|
{"git":
|
||||||
"manifestFile": "lake-manifest.json",
|
{"url": "https://github.com/gebner/quote4",
|
||||||
"inputRev": "main",
|
"subDir?": null,
|
||||||
"inherited": true,
|
"rev": "e75daed95ad1c92af4e577fea95e234d7a8401c1",
|
||||||
"configFile": "lakefile.lean"},
|
"opts": {},
|
||||||
{"url": "https://github.com/leanprover-community/mathlib4.git",
|
"name": "Qq",
|
||||||
"type": "git",
|
"inputRev?": "master",
|
||||||
"subDir": null,
|
"inherited": true}},
|
||||||
"rev": "f04afed5ac9fea0e1355bc6f6bee2bd01f4a888d",
|
{"git":
|
||||||
"name": "mathlib",
|
{"url": "https://github.com/JLimperg/aesop",
|
||||||
"manifestFile": "lake-manifest.json",
|
"subDir?": null,
|
||||||
"inputRev": "v4.3.0",
|
"rev": "1a0cded2be292b5496e659b730d2accc742de098",
|
||||||
"inherited": false,
|
"opts": {},
|
||||||
"configFile": "lakefile.lean"},
|
"name": "aesop",
|
||||||
{"url": "https://github.com/xubaiw/CMark.lean",
|
"inputRev?": "master",
|
||||||
"type": "git",
|
"inherited": true}},
|
||||||
"subDir": null,
|
{"git":
|
||||||
"rev": "0077cbbaa92abf855fc1c0413e158ffd8195ec77",
|
{"url": "https://github.com/hargonix/LeanInk",
|
||||||
"name": "CMark",
|
"subDir?": null,
|
||||||
"manifestFile": "lake-manifest.json",
|
"rev": "2447df5cc6e48eb965c3c3fba87e46d353b5e9f1",
|
||||||
"inputRev": "main",
|
"opts": {},
|
||||||
"inherited": true,
|
"name": "leanInk",
|
||||||
"configFile": "lakefile.lean"},
|
"inputRev?": "doc-gen",
|
||||||
{"url": "https://github.com/fgdorais/lean4-unicode-basic",
|
"inherited": false}},
|
||||||
"type": "git",
|
{"git":
|
||||||
"subDir": null,
|
{"url": "https://github.com/leanprover/std4.git",
|
||||||
"rev": "dc62b29a26fcc3da545472ab8ad2c98ef3433634",
|
"subDir?": null,
|
||||||
"name": "UnicodeBasic",
|
"rev": "28459f72f3190b0f540b49ab769745819eeb1c5e",
|
||||||
"manifestFile": "lake-manifest.json",
|
"opts": {},
|
||||||
"inputRev": "main",
|
"name": "std",
|
||||||
"inherited": true,
|
"inputRev?": "main",
|
||||||
"configFile": "lakefile.lean"},
|
"inherited": false}}]}
|
||||||
{"url": "https://github.com/hargonix/LeanInk",
|
|
||||||
"type": "git",
|
|
||||||
"subDir": null,
|
|
||||||
"rev": "2447df5cc6e48eb965c3c3fba87e46d353b5e9f1",
|
|
||||||
"name": "leanInk",
|
|
||||||
"manifestFile": "lake-manifest.json",
|
|
||||||
"inputRev": "doc-gen",
|
|
||||||
"inherited": true,
|
|
||||||
"configFile": "lakefile.lean"},
|
|
||||||
{"url": "https://github.com/jrpotter/bookshelf-doc",
|
|
||||||
"type": "git",
|
|
||||||
"subDir": null,
|
|
||||||
"rev": "9bd217dc37ea79a3f118a313583f539cdbc762e6",
|
|
||||||
"name": "«doc-gen4»",
|
|
||||||
"manifestFile": "lake-manifest.json",
|
|
||||||
"inputRev": "main",
|
|
||||||
"inherited": false,
|
|
||||||
"configFile": "lakefile.lean"}],
|
|
||||||
"name": "bookshelf",
|
|
||||||
"lakeDir": ".lake"}
|
|
||||||
|
|
|
@ -1,119 +0,0 @@
|
||||||
{ pkgs }:
|
|
||||||
let
|
|
||||||
fetchGitPackage = { pname, version, owner, repo, rev, hash }:
|
|
||||||
pkgs.stdenv.mkDerivation {
|
|
||||||
inherit pname version;
|
|
||||||
src = pkgs.fetchgit {
|
|
||||||
inherit rev hash;
|
|
||||||
url = "https://github.com/${owner}/${repo}";
|
|
||||||
# We need to keep this attribute enabled to prevent Lake from trying to
|
|
||||||
# update the package. This attribute ensures the specified commit is
|
|
||||||
# accessible at HEAD:
|
|
||||||
# https://github.com/leanprover/lean4/blob/cddc8089bc736a1532d6092f69476bd2d205a9eb/src/lake/Lake/Load/Materialize.lean#L22
|
|
||||||
leaveDotGit = true;
|
|
||||||
};
|
|
||||||
nativeBuildInputs = with pkgs; [ git ];
|
|
||||||
# Lake will perform a compulsory check that `git remote get-url origin`
|
|
||||||
# returns the value we set here:
|
|
||||||
# https://github.com/leanprover/lean4/blob/cddc8089bc736a1532d6092f69476bd2d205a9eb/src/lake/Lake/Load/Materialize.lean#L54
|
|
||||||
buildPhase = ''
|
|
||||||
git remote add origin https://github.com/${owner}/${repo}
|
|
||||||
'';
|
|
||||||
installPhase = ''
|
|
||||||
shopt -s dotglob
|
|
||||||
mkdir -p $out/src
|
|
||||||
cp -a . $out/src
|
|
||||||
'';
|
|
||||||
};
|
|
||||||
in
|
|
||||||
{
|
|
||||||
CMark = fetchGitPackage {
|
|
||||||
pname = "CMark";
|
|
||||||
version = "main";
|
|
||||||
owner = "xubaiw";
|
|
||||||
repo = "CMark.lean";
|
|
||||||
rev = "0077cbbaa92abf855fc1c0413e158ffd8195ec77";
|
|
||||||
hash = "sha256-ge+9V4IsMdPwjhYu66zUUN6CK70K2BdMT98BzBV3a4c=";
|
|
||||||
};
|
|
||||||
|
|
||||||
Cli = fetchGitPackage {
|
|
||||||
pname = "Cli";
|
|
||||||
version = "main";
|
|
||||||
owner = "leanprover";
|
|
||||||
repo = "lean4-cli";
|
|
||||||
rev = "a751d21d4b68c999accb6fc5d960538af26ad5ec";
|
|
||||||
hash = "sha256-n+6x7ZhyKKiIMZ9cH9VV8zay3oTUlJojtxcLYsUwQPU=";
|
|
||||||
};
|
|
||||||
|
|
||||||
Qq = fetchGitPackage {
|
|
||||||
pname = "Qq";
|
|
||||||
version = "master";
|
|
||||||
owner = "leanprover-community";
|
|
||||||
repo = "quote4";
|
|
||||||
rev = "d3a1d25f3eba0d93a58d5d3d027ffa78ece07755";
|
|
||||||
hash = "sha256-l+X+Mi4khC/xdwQmESz8Qzto6noYqhYN4UqC+TVt3cs=";
|
|
||||||
};
|
|
||||||
|
|
||||||
UnicodeBasic = fetchGitPackage {
|
|
||||||
pname = "UnicodeBasic";
|
|
||||||
version = "main";
|
|
||||||
owner = "fgdorais";
|
|
||||||
repo = "lean4-unicode-basic";
|
|
||||||
rev = "dc62b29a26fcc3da545472ab8ad2c98ef3433634";
|
|
||||||
hash = "sha256-EimohrYMr01CnGx8xCg4q4XX663QuxKfpTDNnDnosO4=";
|
|
||||||
};
|
|
||||||
|
|
||||||
aesop = fetchGitPackage {
|
|
||||||
pname = "aesop";
|
|
||||||
version = "master";
|
|
||||||
owner = "leanprover-community";
|
|
||||||
repo = "aesop";
|
|
||||||
rev = "c7cff4551258d31c0d2d453b3f9cbca757d445f1";
|
|
||||||
hash = "sha256-uzkxE9XJ4y3WMtmiNQn2Je1hNkQ2FgE1/0vqz8f98cw=";
|
|
||||||
};
|
|
||||||
|
|
||||||
doc-gen4 = fetchGitPackage {
|
|
||||||
pname = "doc-gen4";
|
|
||||||
version = "main";
|
|
||||||
owner = "jrpotter";
|
|
||||||
repo = "bookshelf-doc";
|
|
||||||
rev = "9bd217dc37ea79a3f118a313583f539cdbc762e6";
|
|
||||||
hash = "sha256-L7Uca5hJV19/WHYG+MkFWX6BwXDInfSYsOrnZdM9ejY=";
|
|
||||||
};
|
|
||||||
|
|
||||||
leanInk = fetchGitPackage {
|
|
||||||
pname = "leanInk";
|
|
||||||
version = "doc-gen";
|
|
||||||
owner = "hargonix";
|
|
||||||
repo = "LeanInk";
|
|
||||||
rev = "2447df5cc6e48eb965c3c3fba87e46d353b5e9f1";
|
|
||||||
hash = "sha256-asHVaa1uOxpz5arCvfllIrJmMC9VDm1F+bufsu3XwN0=";
|
|
||||||
};
|
|
||||||
|
|
||||||
mathlib = fetchGitPackage {
|
|
||||||
pname = "mathlib";
|
|
||||||
version = "v4.3.0";
|
|
||||||
owner = "leanprover-community";
|
|
||||||
repo = "mathlib4.git";
|
|
||||||
rev = "f04afed5ac9fea0e1355bc6f6bee2bd01f4a888d";
|
|
||||||
hash = "sha256-B0pZ7HwJwOrEXTMMyJSzMLLyh66Bcs/CqNwC3EKZ60I=";
|
|
||||||
};
|
|
||||||
|
|
||||||
proofwidgets = fetchGitPackage {
|
|
||||||
pname = "proofwidgets";
|
|
||||||
version = "v0.0.23";
|
|
||||||
owner = "leanprover-community";
|
|
||||||
repo = "ProofWidgets4";
|
|
||||||
rev = "909febc72b4f64628f8d35cd0554f8a90b6e0749";
|
|
||||||
hash = "sha256-twXXKXXONQpfzG+YLoXYY+3kTU0F40Tsv2+SKfF2Qsc=";
|
|
||||||
};
|
|
||||||
|
|
||||||
std = fetchGitPackage {
|
|
||||||
pname = "std";
|
|
||||||
version = "v4.3.0";
|
|
||||||
owner = "leanprover";
|
|
||||||
repo = "std4";
|
|
||||||
rev = "2e4a3586a8f16713f16b2d2b3af3d8e65f3af087";
|
|
||||||
hash = "sha256-agWcsRIEJbHSjIdiA6z/HQHLZkb72ASW9SPnIM0voeo=";
|
|
||||||
};
|
|
||||||
}
|
|
156
lakefile.lean
156
lakefile.lean
|
@ -4,17 +4,165 @@ open System Lake DSL
|
||||||
|
|
||||||
package «bookshelf»
|
package «bookshelf»
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Imports
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
require Cli from git
|
||||||
|
"https://github.com/mhuisi/lean4-cli" @
|
||||||
|
"nightly"
|
||||||
|
require CMark from git
|
||||||
|
"https://github.com/xubaiw/CMark.lean" @
|
||||||
|
"main"
|
||||||
|
require «lean4-unicode-basic» from git
|
||||||
|
"https://github.com/fgdorais/lean4-unicode-basic" @
|
||||||
|
"main"
|
||||||
|
require leanInk from git
|
||||||
|
"https://github.com/hargonix/LeanInk" @
|
||||||
|
"doc-gen"
|
||||||
require mathlib from git
|
require mathlib from git
|
||||||
"https://github.com/leanprover-community/mathlib4.git" @
|
"https://github.com/leanprover-community/mathlib4.git" @
|
||||||
"v4.3.0"
|
"master"
|
||||||
require std from git
|
require std from git
|
||||||
"https://github.com/leanprover/std4.git" @
|
"https://github.com/leanprover/std4.git" @
|
||||||
"v4.3.0"
|
|
||||||
require «doc-gen4» from git
|
|
||||||
"https://github.com/jrpotter/bookshelf-doc" @
|
|
||||||
"main"
|
"main"
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Documentation Generator
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
lean_lib DocGen4
|
||||||
|
|
||||||
|
lean_exe «doc-gen4» {
|
||||||
|
root := `Main
|
||||||
|
supportInterpreter := true
|
||||||
|
}
|
||||||
|
|
||||||
|
module_facet docs (mod) : FilePath := do
|
||||||
|
let some docGen4 ← findLeanExe? `«doc-gen4»
|
||||||
|
| error "no doc-gen4 executable configuration found in workspace"
|
||||||
|
let exeJob ← docGen4.exe.fetch
|
||||||
|
let modJob ← mod.leanBin.fetch
|
||||||
|
let buildDir := (← getWorkspace).root.buildDir
|
||||||
|
let docFile := mod.filePath (buildDir / "doc") "html"
|
||||||
|
exeJob.bindAsync fun exeFile exeTrace => do
|
||||||
|
modJob.bindSync fun _ modTrace => do
|
||||||
|
let depTrace := exeTrace.mix modTrace
|
||||||
|
let trace ← buildFileUnlessUpToDate docFile depTrace do
|
||||||
|
logInfo s!"Documenting module: {mod.name}"
|
||||||
|
proc {
|
||||||
|
cmd := exeFile.toString
|
||||||
|
args := #["single", mod.name.toString]
|
||||||
|
env := #[("LEAN_PATH", (← getAugmentedLeanPath).toString)]
|
||||||
|
}
|
||||||
|
return (docFile, trace)
|
||||||
|
|
||||||
|
-- TODO: technically speaking this facet does not show all file dependencies
|
||||||
|
target coreDocs : FilePath := do
|
||||||
|
let some docGen4 ← findLeanExe? `«doc-gen4»
|
||||||
|
| error "no doc-gen4 executable configuration found in workspace"
|
||||||
|
let exeJob ← docGen4.exe.fetch
|
||||||
|
let basePath := (←getWorkspace).root.buildDir / "doc"
|
||||||
|
let dataFile := basePath / "declarations" / "declaration-data-Lean.bmp"
|
||||||
|
exeJob.bindSync fun exeFile exeTrace => do
|
||||||
|
let trace ← buildFileUnlessUpToDate dataFile exeTrace do
|
||||||
|
logInfo "Documenting Lean core: Init and Lean"
|
||||||
|
proc {
|
||||||
|
cmd := exeFile.toString
|
||||||
|
args := #["genCore"]
|
||||||
|
env := #[("LEAN_PATH", (← getAugmentedLeanPath).toString)]
|
||||||
|
}
|
||||||
|
return (dataFile, trace)
|
||||||
|
|
||||||
|
library_facet docs (lib) : FilePath := do
|
||||||
|
-- Ordering is important. The index file is generated by walking through the
|
||||||
|
-- filesystem directory. Files copied from the shell scripts need to exist
|
||||||
|
-- prior to this.
|
||||||
|
let mods ← lib.modules.fetch
|
||||||
|
let moduleJobs ← BuildJob.mixArray <| ← mods.mapM (fetch <| ·.facet `docs)
|
||||||
|
let coreJob : BuildJob FilePath ← coreDocs.fetch
|
||||||
|
let exeJob ← «doc-gen4».fetch
|
||||||
|
-- Shared with DocGen4.Output
|
||||||
|
let basePath := (←getWorkspace).root.buildDir / "doc"
|
||||||
|
let dataFile := basePath / "declarations" / "declaration-data.bmp"
|
||||||
|
let staticFiles := #[
|
||||||
|
basePath / "style.css",
|
||||||
|
basePath / "declaration-data.js",
|
||||||
|
basePath / "color-scheme.js",
|
||||||
|
basePath / "nav.js",
|
||||||
|
basePath / "how-about.js",
|
||||||
|
basePath / "search.js",
|
||||||
|
basePath / "mathjax-config.js",
|
||||||
|
basePath / "instances.js",
|
||||||
|
basePath / "importedBy.js",
|
||||||
|
basePath / "index.html",
|
||||||
|
basePath / "404.html",
|
||||||
|
basePath / "navbar.html",
|
||||||
|
basePath / "search.html",
|
||||||
|
basePath / "find" / "index.html",
|
||||||
|
basePath / "find" / "find.js",
|
||||||
|
basePath / "src" / "alectryon.css",
|
||||||
|
basePath / "src" / "alectryon.js",
|
||||||
|
basePath / "src" / "docutils_basic.css",
|
||||||
|
basePath / "src" / "pygments.css"
|
||||||
|
]
|
||||||
|
coreJob.bindAsync fun _ coreInputTrace => do
|
||||||
|
exeJob.bindAsync fun exeFile exeTrace => do
|
||||||
|
moduleJobs.bindSync fun _ inputTrace => do
|
||||||
|
let depTrace := mixTraceArray #[inputTrace, exeTrace, coreInputTrace]
|
||||||
|
let trace ← buildFileUnlessUpToDate dataFile depTrace do
|
||||||
|
logInfo "Documentation indexing"
|
||||||
|
proc {
|
||||||
|
cmd := exeFile.toString
|
||||||
|
args := #["index"]
|
||||||
|
}
|
||||||
|
let traces ← staticFiles.mapM computeTrace
|
||||||
|
let indexTrace := mixTraceArray traces
|
||||||
|
|
||||||
|
return (dataFile, trace.mix indexTrace)
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Bookshelf
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
@[default_target]
|
@[default_target]
|
||||||
lean_lib «Bookshelf» {
|
lean_lib «Bookshelf» {
|
||||||
roots := #[`Bookshelf, `Common]
|
roots := #[`Bookshelf, `Common]
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/--
|
||||||
|
The contents of our `.env` file.
|
||||||
|
-/
|
||||||
|
structure Config where
|
||||||
|
port : Nat := 5555
|
||||||
|
|
||||||
|
/--
|
||||||
|
Read in the `.env` file into an in-memory structure.
|
||||||
|
-/
|
||||||
|
private def readConfig : StateT Config ScriptM Unit := do
|
||||||
|
let env <- IO.FS.readFile ".env"
|
||||||
|
for line in env.trim.split (fun c => c == '\n') do
|
||||||
|
match line.split (fun c => c == '=') with
|
||||||
|
| ["PORT", port] => modify (fun c => { c with port := String.toNat! port })
|
||||||
|
| _ => error "Malformed `.env` file."
|
||||||
|
return ()
|
||||||
|
|
||||||
|
/--
|
||||||
|
Start an HTTP server for locally serving documentation. It is expected the
|
||||||
|
documentation has already been generated prior via
|
||||||
|
|
||||||
|
```bash
|
||||||
|
> lake build Bookshelf:docs
|
||||||
|
```
|
||||||
|
|
||||||
|
USAGE:
|
||||||
|
lake run server
|
||||||
|
-/
|
||||||
|
script server (_args) do
|
||||||
|
let ((), config) <- StateT.run readConfig {}
|
||||||
|
IO.println s!"Running Lean on `http://localhost:{config.port}`"
|
||||||
|
_ <- IO.Process.run {
|
||||||
|
cmd := "python3",
|
||||||
|
args := #["-m", "http.server", toString config.port, "-d", "build/doc"],
|
||||||
|
}
|
||||||
|
return 0
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
leanprover/lean4:v4.3.0
|
leanprover/lean4:4.0.0
|
|
@ -170,7 +170,7 @@
|
||||||
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
|
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
|
||||||
\newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>}
|
\newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>}
|
||||||
\newcommand{\dom}[1]{\textop{dom}{#1}}
|
\newcommand{\dom}[1]{\textop{dom}{#1}}
|
||||||
\newcommand{\equin}{\approx}
|
\newcommand{\equinumerous}[2]{#1 \approx #2}
|
||||||
\newcommand{\fld}[1]{\textop{fld}{#1}}
|
\newcommand{\fld}[1]{\textop{fld}{#1}}
|
||||||
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
|
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
|
||||||
\newcommand{\icc}[2]{\left[#1, #2\right]}
|
\newcommand{\icc}[2]{\left[#1, #2\right]}
|
||||||
|
|
|
@ -0,0 +1,26 @@
|
||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
if ! command -v pdflatex > /dev/null; then
|
||||||
|
>&2 echo 'pdflatex was not found in the current $PATH.'
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
BUILD_DIR="$1"
|
||||||
|
|
||||||
|
function process_file () {
|
||||||
|
REL_DIR=$(dirname "$1")
|
||||||
|
REL_BASE=$(basename -s ".tex" "$1")
|
||||||
|
mkdir -p "$BUILD_DIR/doc/$REL_DIR"
|
||||||
|
(cd "$REL_DIR" && pdflatex "$REL_BASE.tex")
|
||||||
|
cp "$REL_DIR/$REL_BASE.pdf" "$BUILD_DIR/doc/$REL_DIR/"
|
||||||
|
}
|
||||||
|
|
||||||
|
export BUILD_DIR
|
||||||
|
export -f process_file
|
||||||
|
|
||||||
|
# We run this command twice to allow any cross-references to resolve correctly.
|
||||||
|
# https://tex.stackexchange.com/questions/41539/does-hyperref-work-between-two-files
|
||||||
|
for _ in {1..2}; do
|
||||||
|
find ./* \( -path build -o -path lake-packages \) -prune -o -name "*.tex" -print0 \
|
||||||
|
| xargs -0 -I{} bash -c "process_file {}"
|
||||||
|
done
|
|
@ -0,0 +1,777 @@
|
||||||
|
@charset "UTF-8";
|
||||||
|
/*
|
||||||
|
Copyright © 2019 Clément Pit-Claudel
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/*******************************/
|
||||||
|
/* CSS reset for .alectryon-io */
|
||||||
|
/*******************************/
|
||||||
|
|
||||||
|
.alectryon-io blockquote {
|
||||||
|
line-height: inherit;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io blockquote:after {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io label {
|
||||||
|
display: inline;
|
||||||
|
font-size: inherit;
|
||||||
|
margin: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io a {
|
||||||
|
text-decoration: none !important;
|
||||||
|
font-style: oblique !important;
|
||||||
|
color: unset;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Undo <small> and <blockquote>, added to improve RSS rendering. */
|
||||||
|
|
||||||
|
.alectryon-io small.alectryon-output,
|
||||||
|
.alectryon-io small.alectryon-type-info {
|
||||||
|
font-size: inherit;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io blockquote.alectryon-goal,
|
||||||
|
.alectryon-io blockquote.alectryon-message {
|
||||||
|
font-weight: normal;
|
||||||
|
font-size: inherit;
|
||||||
|
}
|
||||||
|
|
||||||
|
/***************/
|
||||||
|
/* Main styles */
|
||||||
|
/***************/
|
||||||
|
|
||||||
|
.alectryon-coqdoc .doc .code,
|
||||||
|
.alectryon-coqdoc .doc .comment,
|
||||||
|
.alectryon-coqdoc .doc .inlinecode,
|
||||||
|
.alectryon-mref,
|
||||||
|
.alectryon-block, .alectryon-io,
|
||||||
|
.alectryon-toggle-label, .alectryon-banner {
|
||||||
|
font-family: "Source Code Pro", Consolas, "Ubuntu Mono", Menlo, "DejaVu Sans Mono", monospace, monospace !important;
|
||||||
|
font-size: 0.875em;
|
||||||
|
font-feature-settings: "COQX" 1 /* Coq ligatures */, "XV00" 1 /* Legacy */, "calt" 1 /* Fallback */;
|
||||||
|
line-height: initial;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io, .alectryon-block, .alectryon-toggle-label, .alectryon-banner {
|
||||||
|
overflow: visible;
|
||||||
|
overflow-wrap: break-word;
|
||||||
|
position: relative;
|
||||||
|
white-space: pre-wrap;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
CoqIDE doesn't turn off the unicode bidirectional algorithm (and PG simply
|
||||||
|
respects the user's `bidi-display-reordering` setting), so don't turn it off
|
||||||
|
here either. But beware unexpected results like `Definition test_אב := 0.`
|
||||||
|
|
||||||
|
.alectryon-io span {
|
||||||
|
direction: ltr;
|
||||||
|
unicode-bidi: bidi-override;
|
||||||
|
}
|
||||||
|
|
||||||
|
In any case, make an exception for comments:
|
||||||
|
|
||||||
|
.highlight .c {
|
||||||
|
direction: embed;
|
||||||
|
unicode-bidi: initial;
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
.alectryon-mref,
|
||||||
|
.alectryon-mref-marker {
|
||||||
|
align-self: center;
|
||||||
|
box-sizing: border-box;
|
||||||
|
display: inline-block;
|
||||||
|
font-size: 80%;
|
||||||
|
font-weight: bold;
|
||||||
|
line-height: 1;
|
||||||
|
box-shadow: 0 0 0 1pt black;
|
||||||
|
padding: 1pt 0.3em;
|
||||||
|
text-decoration: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-block .alectryon-mref-marker,
|
||||||
|
.alectryon-io .alectryon-mref-marker {
|
||||||
|
user-select: none;
|
||||||
|
margin: -0.25em 0 -0.25em 0.5em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-inline .alectryon-mref-marker {
|
||||||
|
margin: -0.25em 0.15em -0.25em 0.625em; /* 625 = 0.5em / 80% */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-mref {
|
||||||
|
color: inherit;
|
||||||
|
margin: -0.5em 0.25em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-goal:target .goal-separator .alectryon-mref-marker,
|
||||||
|
:target > .alectryon-mref-marker {
|
||||||
|
animation: blink 0.2s step-start 0s 3 normal none;
|
||||||
|
background-color: #fcaf3e;
|
||||||
|
position: relative;
|
||||||
|
}
|
||||||
|
|
||||||
|
@keyframes blink {
|
||||||
|
50% {
|
||||||
|
box-shadow: 0 0 0 3pt #fcaf3e, 0 0 0 4pt black;
|
||||||
|
z-index: 10;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-toggle,
|
||||||
|
.alectryon-io .alectryon-extra-goal-toggle {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-bubble,
|
||||||
|
.alectryon-io label,
|
||||||
|
.alectryon-toggle-label {
|
||||||
|
cursor: pointer;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-toggle-label {
|
||||||
|
display: block;
|
||||||
|
font-size: 0.8em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-input {
|
||||||
|
padding: 0.1em 0; /* Enlarge the hitbox slightly to fill interline gaps */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-token {
|
||||||
|
white-space: pre-wrap;
|
||||||
|
display: inline;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-sentence.alectryon-target .alectryon-input {
|
||||||
|
/* FIXME if keywords were ‘bolder’ we wouldn't need !important */
|
||||||
|
font-weight: bold !important; /* Use !important to avoid a * selector */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-bubble:before,
|
||||||
|
.alectryon-toggle-label:before,
|
||||||
|
.alectryon-io label.alectryon-input:after,
|
||||||
|
.alectryon-io .alectryon-goal > label:before {
|
||||||
|
border: 1px solid #babdb6;
|
||||||
|
border-radius: 1em;
|
||||||
|
box-sizing: border-box;
|
||||||
|
content: '';
|
||||||
|
display: inline-block;
|
||||||
|
font-weight: bold;
|
||||||
|
height: 0.25em;
|
||||||
|
margin-bottom: 0.15em;
|
||||||
|
vertical-align: middle;
|
||||||
|
width: 0.75em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-toggle-label:before,
|
||||||
|
.alectryon-io .alectryon-goal > label:before {
|
||||||
|
margin-right: 0.25em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-goal > label:before {
|
||||||
|
margin-top: 0.125em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io label.alectryon-input {
|
||||||
|
padding-right: 1em; /* Prevent line wraps before the checkbox bubble */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io label.alectryon-input:after {
|
||||||
|
margin-left: 0.25em;
|
||||||
|
margin-right: -1em; /* Compensate for the anti-wrapping space */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-failed {
|
||||||
|
/* Underlines are broken in Chrome (they reset at each element boundary)… */
|
||||||
|
/* text-decoration: red wavy underline; */
|
||||||
|
/* … but it isn't too noticeable with dots */
|
||||||
|
text-decoration: red dotted underline;
|
||||||
|
text-decoration-skip-ink: none;
|
||||||
|
/* Chrome prints background images in low resolution, yielding a blurry underline */
|
||||||
|
/* background: bottom / 0.3em auto repeat-x url(); */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Wrapping :hover rules in a media query ensures that tapping a Coq sentence
|
||||||
|
doesn't trigger its :hover state (otherwise, on mobile, tapping a sentence to
|
||||||
|
hide its output causes it to remain visible (its :hover state gets triggered.
|
||||||
|
We only do it for the default style though, since other styles don't put the
|
||||||
|
output over the main text, so showing too much is not an issue. */
|
||||||
|
@media (any-hover: hover) {
|
||||||
|
.alectryon-bubble:hover:before,
|
||||||
|
.alectryon-toggle-label:hover:before,
|
||||||
|
.alectryon-io label.alectryon-input:hover:after {
|
||||||
|
background: #eeeeec;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io label.alectryon-input:hover {
|
||||||
|
text-decoration: underline dotted #babdb6;
|
||||||
|
text-shadow: 0 0 1px rgb(46, 52, 54, 0.3); /* #2e3436 + opacity */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-sentence:hover .alectryon-output,
|
||||||
|
.alectryon-io .alectryon-token:hover .alectryon-type-info-wrapper,
|
||||||
|
.alectryon-io .alectryon-token:hover .alectryon-type-info-wrapper {
|
||||||
|
z-index: 2; /* Place hovered goals above .alectryon-sentence.alectryon-target ones */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-toggle:checked + .alectryon-toggle-label:before,
|
||||||
|
.alectryon-io .alectryon-sentence > .alectryon-toggle:checked + label.alectryon-input:after,
|
||||||
|
.alectryon-io .alectryon-extra-goal-toggle:checked + .alectryon-goal > label:before {
|
||||||
|
background-color: #babdb6;
|
||||||
|
border-color: #babdb6;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Disable clicks on sentences when the document-wide toggle is set. */
|
||||||
|
.alectryon-toggle:checked + label + .alectryon-container label.alectryon-input {
|
||||||
|
cursor: unset;
|
||||||
|
pointer-events: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Hide individual checkboxes when the document-wide toggle is set. */
|
||||||
|
.alectryon-toggle:checked + label + .alectryon-container label.alectryon-input:after {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* .alectryon-output is displayed by toggles, :hover, and .alectryon-target rules */
|
||||||
|
.alectryon-io .alectryon-output {
|
||||||
|
box-sizing: border-box;
|
||||||
|
display: none;
|
||||||
|
left: 0;
|
||||||
|
right: 0;
|
||||||
|
position: absolute;
|
||||||
|
padding: 0.25em 0;
|
||||||
|
overflow: visible; /* Let box-shadows overflow */
|
||||||
|
z-index: 1; /* Default to an index lower than that used by :hover */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-type-info-wrapper {
|
||||||
|
position: absolute;
|
||||||
|
display: inline-block;
|
||||||
|
width: 100%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-type-info-wrapper.full-width {
|
||||||
|
left: 0;
|
||||||
|
min-width: 100%;
|
||||||
|
max-width: 100%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-type-info .goal-separator {
|
||||||
|
height: unset;
|
||||||
|
margin-top: 0em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-type-info-wrapper .alectryon-type-info {
|
||||||
|
box-sizing: border-box;
|
||||||
|
bottom: 100%;
|
||||||
|
position: absolute;
|
||||||
|
/*padding: 0.25em 0;*/
|
||||||
|
visibility: hidden;
|
||||||
|
overflow: visible; /* Let box-shadows overflow */
|
||||||
|
z-index: 1; /* Default to an index lower than that used by :hover */
|
||||||
|
white-space: pre-wrap !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-type-info-wrapper .alectryon-type-info .alectryon-goal.alectryon-docstring {
|
||||||
|
white-space: pre-wrap !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
@media (any-hover: hover) { /* See note above about this @media query */
|
||||||
|
.alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) {
|
||||||
|
display: block;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io.output-hidden .alectryon-sentence:hover .alectryon-output:not(:hover) {
|
||||||
|
display: none !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io.type-info-hidden .alectryon-token:hover .alectryon-type-info-wrapper .alectryon-type-info,
|
||||||
|
.alectryon-io.type-info-hidden .alectryon-token:hover .alectryon-type-info-wrapper .alectryon-type-info {
|
||||||
|
/*visibility: hidden !important;*/
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-token:hover .alectryon-type-info-wrapper .alectryon-type-info,
|
||||||
|
.alectryon-io .alectryon-token:hover .alectryon-type-info-wrapper .alectryon-type-info {
|
||||||
|
visibility: visible;
|
||||||
|
transition-delay: 0.5s;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-sentence.alectryon-target .alectryon-output {
|
||||||
|
display: block;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Indicate active (hovered or targeted) goals with a shadow. */
|
||||||
|
.alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) .alectryon-messages,
|
||||||
|
.alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .alectryon-messages,
|
||||||
|
.alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) .alectryon-goals,
|
||||||
|
.alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .alectryon-goals,
|
||||||
|
.alectryon-io .alectryon-token:hover .alectryon-type-info-wrapper .alectryon-type-info {
|
||||||
|
box-shadow: 2px 2px 2px gray;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-extra-goals .alectryon-goal .goal-hyps {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-extra-goals .alectryon-extra-goal-toggle:not(:checked) + .alectryon-goal label.goal-separator hr {
|
||||||
|
/* Dashes indicate that the hypotheses are hidden */
|
||||||
|
border-top-style: dashed;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Show just a small preview of the other goals; this is undone by the
|
||||||
|
"extra-goal" toggle and by :hover and .alectryon-target in windowed mode. */
|
||||||
|
.alectryon-io .alectryon-extra-goals .alectryon-goal .goal-conclusion {
|
||||||
|
max-height: 5.2em;
|
||||||
|
overflow-y: auto;
|
||||||
|
/* Combining ‘overflow-y: auto’ with ‘display: inline-block’ causes extra space
|
||||||
|
to be added below the box. ‘vertical-align: middle’ gets rid of it. */
|
||||||
|
vertical-align: middle;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-goals,
|
||||||
|
.alectryon-io .alectryon-messages {
|
||||||
|
background: #f6f7f6;
|
||||||
|
/*border: thin solid #d3d7cf; /* Convenient when pre's background is already #EEE */
|
||||||
|
display: block;
|
||||||
|
padding: 0.25em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-message::before {
|
||||||
|
content: '';
|
||||||
|
float: right;
|
||||||
|
/* etc/svg/square-bubble-xl.svg */
|
||||||
|
background: url("data:image/svg+xml,%3Csvg width='14' height='14' viewBox='0 0 3.704 3.704' xmlns='http://www.w3.org/2000/svg'%3E%3Cg fill-rule='evenodd' stroke='%23000' stroke-width='.264'%3E%3Cpath d='M.794.934h2.115M.794 1.463h1.455M.794 1.992h1.852'/%3E%3C/g%3E%3Cpath d='M.132.14v2.646h.794v.661l.926-.661h1.72V.14z' fill='none' stroke='%23000' stroke-width='.265'/%3E%3C/svg%3E") top right no-repeat;
|
||||||
|
height: 14px;
|
||||||
|
width: 14px;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-toggle:checked + label + .alectryon-container {
|
||||||
|
width: unset;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Show goals when a toggle is set */
|
||||||
|
.alectryon-toggle:checked + label + .alectryon-container label.alectryon-input + .alectryon-output,
|
||||||
|
.alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-output {
|
||||||
|
display: block;
|
||||||
|
position: static;
|
||||||
|
width: unset;
|
||||||
|
background: unset; /* Override the backgrounds set in floating in windowed mode */
|
||||||
|
padding: 0.25em 0; /* Re-assert so that later :hover rules don't override this padding */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-toggle:checked + label + .alectryon-container label.alectryon-input + .alectryon-output .goal-hyps,
|
||||||
|
.alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-output .goal-hyps {
|
||||||
|
/* Overridden back in windowed style */
|
||||||
|
flex-flow: row wrap;
|
||||||
|
justify-content: flex-start;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-toggle:checked + label + .alectryon-container .alectryon-sentence .alectryon-output > div,
|
||||||
|
.alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-output > div {
|
||||||
|
display: block;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-extra-goal-toggle:checked + .alectryon-goal .goal-hyps {
|
||||||
|
display: flex;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-extra-goal-toggle:checked + .alectryon-goal .goal-conclusion {
|
||||||
|
max-height: unset;
|
||||||
|
overflow-y: unset;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-toggle:checked + label + .alectryon-container .alectryon-sentence > .alectryon-toggle ~ .alectryon-wsp,
|
||||||
|
.alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-wsp {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-messages,
|
||||||
|
.alectryon-io .alectryon-message,
|
||||||
|
.alectryon-io .alectryon-goals,
|
||||||
|
.alectryon-io .alectryon-goal,
|
||||||
|
.alectryon-io .goal-hyps > span,
|
||||||
|
.alectryon-io .goal-conclusion {
|
||||||
|
border-radius: 0.15em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .alectryon-goal,
|
||||||
|
.alectryon-io .alectryon-message {
|
||||||
|
align-items: center;
|
||||||
|
background: #f6f7f6;
|
||||||
|
border: 0em;
|
||||||
|
display: block;
|
||||||
|
flex-direction: column;
|
||||||
|
margin: 0.25em;
|
||||||
|
padding: 0.5em;
|
||||||
|
position: relative;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .goal-hyps {
|
||||||
|
align-content: space-around;
|
||||||
|
align-items: baseline;
|
||||||
|
display: flex;
|
||||||
|
flex-flow: column nowrap; /* re-stated in windowed mode */
|
||||||
|
justify-content: space-around;
|
||||||
|
/* LATER use a ‘gap’ property instead of margins once supported */
|
||||||
|
margin: -0.15em -0.25em; /* -0.15em to cancel the item spacing */
|
||||||
|
padding-bottom: 0.35em; /* 0.5em-0.15em to cancel the 0.5em of .goal-separator */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .goal-hyps > br {
|
||||||
|
display: none; /* Only for RSS readers */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .goal-hyps > span,
|
||||||
|
.alectryon-io .goal-conclusion {
|
||||||
|
/*background: #eeeeec;*/
|
||||||
|
display: inline-block;
|
||||||
|
padding: 0.15em 0.35em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .goal-hyps > span {
|
||||||
|
align-items: baseline;
|
||||||
|
display: inline-flex;
|
||||||
|
margin: 0.15em 0.25em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-block var,
|
||||||
|
.alectryon-inline var,
|
||||||
|
.alectryon-io .goal-hyps > span > var {
|
||||||
|
font-weight: 600;
|
||||||
|
font-style: unset;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .goal-hyps > span > var {
|
||||||
|
/* Shrink the list of names, but let it grow as long as space is available. */
|
||||||
|
flex-basis: min-content;
|
||||||
|
flex-grow: 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .goal-hyps > span b {
|
||||||
|
font-weight: 600;
|
||||||
|
margin: 0 0 0 0.5em;
|
||||||
|
white-space: pre;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .hyp-body,
|
||||||
|
.alectryon-io .hyp-type {
|
||||||
|
display: flex;
|
||||||
|
align-items: baseline;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .goal-separator {
|
||||||
|
align-items: center;
|
||||||
|
display: flex;
|
||||||
|
flex-direction: row;
|
||||||
|
height: 1em; /* Fixed height to ignore goal name and markers */
|
||||||
|
margin-top: -0.5em; /* Compensated in .goal-hyps when shown */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .goal-separator hr {
|
||||||
|
border: none;
|
||||||
|
border-top: thin solid #555753;
|
||||||
|
display: block;
|
||||||
|
flex-grow: 1;
|
||||||
|
margin: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-io .goal-separator .goal-name {
|
||||||
|
font-size: 0.75em;
|
||||||
|
margin-left: 0.5em;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**********/
|
||||||
|
/* Banner */
|
||||||
|
/**********/
|
||||||
|
|
||||||
|
.alectryon-banner {
|
||||||
|
background: #eeeeec;
|
||||||
|
border: 1px solid #babcbd;
|
||||||
|
font-size: 0.75em;
|
||||||
|
padding: 0.25em;
|
||||||
|
text-align: center;
|
||||||
|
margin: 1em 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-banner a {
|
||||||
|
cursor: pointer;
|
||||||
|
text-decoration: underline;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-banner kbd {
|
||||||
|
background: #d3d7cf;
|
||||||
|
border-radius: 0.15em;
|
||||||
|
border: 1px solid #babdb6;
|
||||||
|
box-sizing: border-box;
|
||||||
|
display: inline-block;
|
||||||
|
font-family: inherit;
|
||||||
|
font-size: 0.9em;
|
||||||
|
height: 1.3em;
|
||||||
|
line-height: 1.2em;
|
||||||
|
margin: -0.25em 0;
|
||||||
|
padding: 0 0.25em;
|
||||||
|
vertical-align: middle;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**********/
|
||||||
|
/* Toggle */
|
||||||
|
/**********/
|
||||||
|
|
||||||
|
.alectryon-toggle-label {
|
||||||
|
margin: 1rem 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/******************/
|
||||||
|
/* Floating style */
|
||||||
|
/******************/
|
||||||
|
|
||||||
|
/* If there's space, display goals to the right of the code, not below it. */
|
||||||
|
@media (min-width: 80rem) {
|
||||||
|
/* Unlike the windowed case, we don't want to move output blocks to the side
|
||||||
|
when they are both :checked and -targeted, since it gets confusing as
|
||||||
|
things jump around; hence the commented-output part of the selector,
|
||||||
|
which would otherwise increase specificity */
|
||||||
|
.alectryon-floating .alectryon-sentence.alectryon-target /* > .alectryon-toggle ~ */ .alectryon-output,
|
||||||
|
.alectryon-floating .alectryon-sentence:hover .alectryon-output {
|
||||||
|
top: 0;
|
||||||
|
left: 100%;
|
||||||
|
right: -100%;
|
||||||
|
padding: 0 0.5em;
|
||||||
|
position: absolute;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-floating .alectryon-output {
|
||||||
|
min-height: 100%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-floating .alectryon-sentence:hover .alectryon-output {
|
||||||
|
background: white; /* Ensure that short goals hide long ones */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* This odd margin-bottom property prevents the sticky div from bumping
|
||||||
|
against the bottom of its container (.alectryon-output). The alternative
|
||||||
|
would be enlarging .alectryon-output, but that would cause overflows,
|
||||||
|
enlarging scrollbars and yielding scrolling towards the bottom of the
|
||||||
|
page. Doing things this way instead makes it possible to restrict
|
||||||
|
.alectryon-output to a reasonable size (100%, through top = bottom = 0).
|
||||||
|
See also https://stackoverflow.com/questions/43909940/. */
|
||||||
|
/* See note on specificity above */
|
||||||
|
.alectryon-floating .alectryon-sentence.alectryon-target /* > .alectryon-toggle ~ */ .alectryon-output > div,
|
||||||
|
.alectryon-floating .alectryon-sentence:hover .alectryon-output > div {
|
||||||
|
margin-bottom: -200%;
|
||||||
|
position: sticky;
|
||||||
|
top: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-floating .alectryon-toggle:checked + label + .alectryon-container .alectryon-sentence .alectryon-output > div,
|
||||||
|
.alectryon-floating .alectryon-io .alectryon-sentence > .alectryon-toggle:checked ~ .alectryon-output > div {
|
||||||
|
margin-bottom: unset; /* Undo the margin */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Float underneath the current fragment
|
||||||
|
@media (max-width: 80rem) {
|
||||||
|
.alectryon-floating .alectryon-output {
|
||||||
|
top: 100%;
|
||||||
|
}
|
||||||
|
} */
|
||||||
|
}
|
||||||
|
|
||||||
|
/********************/
|
||||||
|
/* Multi-pane style */
|
||||||
|
/********************/
|
||||||
|
|
||||||
|
.alectryon-windowed {
|
||||||
|
border: 0 solid #2e3436;
|
||||||
|
box-sizing: border-box;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-windowed .alectryon-sentence:hover .alectryon-output {
|
||||||
|
background: white; /* Ensure that short goals hide long ones */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-windowed .alectryon-output {
|
||||||
|
position: fixed; /* Overwritten by the ‘:checked’ rules */
|
||||||
|
}
|
||||||
|
|
||||||
|
/* See note about specificity below */
|
||||||
|
.alectryon-windowed .alectryon-sentence:hover .alectryon-output,
|
||||||
|
.alectryon-windowed .alectryon-sentence.alectryon-target > .alectryon-toggle ~ .alectryon-output {
|
||||||
|
padding: 0.5em;
|
||||||
|
overflow-y: auto; /* Windowed contents may need to scroll */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-windowed .alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) .alectryon-messages,
|
||||||
|
.alectryon-windowed .alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .alectryon-messages,
|
||||||
|
.alectryon-windowed .alectryon-io .alectryon-sentence:hover .alectryon-output:not(:hover) .alectryon-goals,
|
||||||
|
.alectryon-windowed .alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .alectryon-goals {
|
||||||
|
box-shadow: none; /* A shadow is unnecessary here and incompatible with overflow-y set to auto */
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-windowed .alectryon-io .alectryon-sentence.alectryon-target .alectryon-output .goal-hyps {
|
||||||
|
/* Restated to override the :checked style */
|
||||||
|
flex-flow: column nowrap;
|
||||||
|
justify-content: space-around;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
.alectryon-windowed .alectryon-sentence.alectryon-target .alectryon-extra-goals .alectryon-goal .goal-conclusion
|
||||||
|
/* Like .alectryon-io .alectryon-extra-goal-toggle:checked + .alectryon-goal .goal-conclusion */ {
|
||||||
|
max-height: unset;
|
||||||
|
overflow-y: unset;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-windowed .alectryon-output > div {
|
||||||
|
display: flex; /* Put messages after goals */
|
||||||
|
flex-direction: column-reverse;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*********************/
|
||||||
|
/* Standalone styles */
|
||||||
|
/*********************/
|
||||||
|
|
||||||
|
.alectryon-standalone {
|
||||||
|
font-family: 'IBM Plex Serif', 'PT Serif', 'Merriweather', 'DejaVu Serif', serif;
|
||||||
|
line-height: 1.5;
|
||||||
|
}
|
||||||
|
|
||||||
|
@media screen and (min-width: 50rem) {
|
||||||
|
html.alectryon-standalone {
|
||||||
|
/* Prevent flickering when hovering a block causes scrollbars to appear. */
|
||||||
|
margin-left: calc(100vw - 100%);
|
||||||
|
margin-right: 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Coqdoc */
|
||||||
|
|
||||||
|
.alectryon-coqdoc .doc .code,
|
||||||
|
.alectryon-coqdoc .doc .inlinecode,
|
||||||
|
.alectryon-coqdoc .doc .comment {
|
||||||
|
display: inline;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-coqdoc .doc .comment {
|
||||||
|
color: #eeeeec;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-coqdoc .doc .paragraph {
|
||||||
|
height: 0.75em;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Centered, Floating */
|
||||||
|
|
||||||
|
.alectryon-standalone .alectryon-centered,
|
||||||
|
.alectryon-standalone .alectryon-floating {
|
||||||
|
max-width: 50rem;
|
||||||
|
margin: auto;
|
||||||
|
}
|
||||||
|
|
||||||
|
@media (min-width: 80rem) {
|
||||||
|
.alectryon-standalone .alectryon-floating {
|
||||||
|
max-width: 80rem;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-standalone .alectryon-floating > * {
|
||||||
|
width: 50%;
|
||||||
|
margin-left: 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Windowed */
|
||||||
|
|
||||||
|
.alectryon-standalone .alectryon-windowed {
|
||||||
|
display: block;
|
||||||
|
margin: 0;
|
||||||
|
overflow-y: auto;
|
||||||
|
position: absolute;
|
||||||
|
padding: 0 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-standalone .alectryon-windowed > * {
|
||||||
|
/* Override properties of docutils_basic.css */
|
||||||
|
margin-left: 0;
|
||||||
|
max-width: unset;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-standalone .alectryon-windowed .alectryon-io {
|
||||||
|
box-sizing: border-box;
|
||||||
|
width: 100%;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* No need to predicate the ‘:hover’ rules below on ‘:not(:checked)’, since ‘left’,
|
||||||
|
‘right’, ‘top’, and ‘bottom’ will be inactived by the :checked rules setting
|
||||||
|
‘position’ to ‘static’ */
|
||||||
|
|
||||||
|
|
||||||
|
/* Specificity: We want the output to stay inline when hovered while unfolded
|
||||||
|
(:checked), but we want it to move when it's targeted (i.e. when the user
|
||||||
|
is browsing goals one by one using the keyboard, in which case we want to
|
||||||
|
goals to appear in consistent locations). The selectors below ensure
|
||||||
|
that :hover < :checked < -targeted in terms of specificity. */
|
||||||
|
/* LATER: Reimplement this stuff with CSS variables */
|
||||||
|
.alectryon-windowed .alectryon-sentence.alectryon-target > .alectryon-toggle ~ .alectryon-output {
|
||||||
|
position: fixed;
|
||||||
|
}
|
||||||
|
|
||||||
|
@media screen and (min-width: 60rem) {
|
||||||
|
.alectryon-standalone .alectryon-windowed {
|
||||||
|
border-right-width: thin;
|
||||||
|
bottom: 0;
|
||||||
|
left: 0;
|
||||||
|
right: 50%;
|
||||||
|
top: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-standalone .alectryon-windowed .alectryon-sentence:hover .alectryon-output,
|
||||||
|
.alectryon-standalone .alectryon-windowed .alectryon-sentence.alectryon-target .alectryon-output {
|
||||||
|
bottom: 0;
|
||||||
|
left: 50%;
|
||||||
|
right: 0;
|
||||||
|
top: 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@media screen and (max-width: 60rem) {
|
||||||
|
.alectryon-standalone .alectryon-windowed {
|
||||||
|
border-bottom-width: 1px;
|
||||||
|
bottom: 40%;
|
||||||
|
left: 0;
|
||||||
|
right: 0;
|
||||||
|
top: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
.alectryon-standalone .alectryon-windowed .alectryon-sentence:hover .alectryon-output,
|
||||||
|
.alectryon-standalone .alectryon-windowed .alectryon-sentence.alectryon-target .alectryon-output {
|
||||||
|
bottom: 0;
|
||||||
|
left: 0;
|
||||||
|
right: 0;
|
||||||
|
top: 60%;
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,172 @@
|
||||||
|
var Alectryon;
|
||||||
|
(function(Alectryon) {
|
||||||
|
(function (slideshow) {
|
||||||
|
function anchor(sentence) { return "#" + sentence.id; }
|
||||||
|
|
||||||
|
function current_sentence() { return slideshow.sentences[slideshow.pos]; }
|
||||||
|
|
||||||
|
function unhighlight() {
|
||||||
|
var sentence = current_sentence();
|
||||||
|
if (sentence) sentence.classList.remove("alectryon-target");
|
||||||
|
slideshow.pos = -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
function highlight(sentence) {
|
||||||
|
sentence.classList.add("alectryon-target");
|
||||||
|
}
|
||||||
|
|
||||||
|
function scroll(sentence) {
|
||||||
|
// Put the top of the current fragment close to the top of the
|
||||||
|
// screen, but scroll it out of view if showing it requires pushing
|
||||||
|
// the sentence past half of the screen. If sentence is already in
|
||||||
|
// a reasonable position, don't move.
|
||||||
|
var parent = sentence.parentElement;
|
||||||
|
/* We want to scroll the whole document, so start at root… */
|
||||||
|
while (parent && !parent.classList.contains("alectryon-root"))
|
||||||
|
parent = parent.parentElement;
|
||||||
|
/* … and work up from there to find a scrollable element.
|
||||||
|
parent.scrollHeight can be greater than parent.clientHeight
|
||||||
|
without showing scrollbars, so we add a 10px buffer. */
|
||||||
|
while (parent && parent.scrollHeight <= parent.clientHeight + 10)
|
||||||
|
parent = parent.parentElement;
|
||||||
|
/* <body> and <html> elements can have their client rect overflow
|
||||||
|
* the window if their height is unset, so scroll the window
|
||||||
|
* instead */
|
||||||
|
if (parent && (parent.nodeName == "BODY" || parent.nodeName == "HTML"))
|
||||||
|
parent = null;
|
||||||
|
|
||||||
|
var rect = function(e) { return e.getBoundingClientRect(); };
|
||||||
|
var parent_box = parent ? rect(parent) : { y: 0, height: window.innerHeight },
|
||||||
|
sentence_y = rect(sentence).y - parent_box.y,
|
||||||
|
fragment_y = rect(sentence.parentElement).y - parent_box.y;
|
||||||
|
|
||||||
|
// The assertion below sometimes fails for the first element in a block.
|
||||||
|
// console.assert(sentence_y >= fragment_y);
|
||||||
|
|
||||||
|
if (sentence_y < 0.1 * parent_box.height ||
|
||||||
|
sentence_y > 0.7 * parent_box.height) {
|
||||||
|
(parent || window).scrollBy(
|
||||||
|
0, Math.max(sentence_y - 0.5 * parent_box.height,
|
||||||
|
fragment_y - 0.1 * parent_box.height));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function highlighted(pos) {
|
||||||
|
return slideshow.pos == pos;
|
||||||
|
}
|
||||||
|
|
||||||
|
function navigate(pos, inhibitScroll) {
|
||||||
|
unhighlight();
|
||||||
|
slideshow.pos = Math.min(Math.max(pos, 0), slideshow.sentences.length - 1);
|
||||||
|
var sentence = current_sentence();
|
||||||
|
highlight(sentence);
|
||||||
|
if (!inhibitScroll)
|
||||||
|
scroll(sentence);
|
||||||
|
}
|
||||||
|
|
||||||
|
var keys = {
|
||||||
|
PAGE_UP: 33,
|
||||||
|
PAGE_DOWN: 34,
|
||||||
|
ARROW_UP: 38,
|
||||||
|
ARROW_DOWN: 40,
|
||||||
|
h: 72, l: 76, p: 80, n: 78
|
||||||
|
};
|
||||||
|
|
||||||
|
function onkeydown(e) {
|
||||||
|
e = e || window.event;
|
||||||
|
if (e.ctrlKey || e.metaKey) {
|
||||||
|
if (e.keyCode == keys.ARROW_UP)
|
||||||
|
slideshow.previous();
|
||||||
|
else if (e.keyCode == keys.ARROW_DOWN)
|
||||||
|
slideshow.next();
|
||||||
|
else
|
||||||
|
return;
|
||||||
|
} else {
|
||||||
|
// if (e.keyCode == keys.PAGE_UP || e.keyCode == keys.p || e.keyCode == keys.h)
|
||||||
|
// slideshow.previous();
|
||||||
|
// else if (e.keyCode == keys.PAGE_DOWN || e.keyCode == keys.n || e.keyCode == keys.l)
|
||||||
|
// slideshow.next();
|
||||||
|
// else
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
e.preventDefault();
|
||||||
|
}
|
||||||
|
|
||||||
|
function start() {
|
||||||
|
slideshow.navigate(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
function toggleHighlight(idx) {
|
||||||
|
if (highlighted(idx))
|
||||||
|
unhighlight();
|
||||||
|
else
|
||||||
|
navigate(idx, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
function handleClick(evt) {
|
||||||
|
if (evt.ctrlKey || evt.metaKey) {
|
||||||
|
var sentence = evt.currentTarget;
|
||||||
|
|
||||||
|
// Ensure that the goal is shown on the side, not inline
|
||||||
|
var checkbox = sentence.getElementsByClassName("alectryon-toggle")[0];
|
||||||
|
if (checkbox)
|
||||||
|
checkbox.checked = false;
|
||||||
|
|
||||||
|
toggleHighlight(sentence.alectryon_index);
|
||||||
|
evt.preventDefault();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function init() {
|
||||||
|
document.onkeydown = onkeydown;
|
||||||
|
slideshow.pos = -1;
|
||||||
|
slideshow.sentences = Array.from(document.getElementsByClassName("alectryon-sentence"));
|
||||||
|
slideshow.sentences.forEach(function (s, idx) {
|
||||||
|
s.addEventListener('click', handleClick, false);
|
||||||
|
s.alectryon_index = idx;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
slideshow.start = start;
|
||||||
|
slideshow.end = unhighlight;
|
||||||
|
slideshow.navigate = navigate;
|
||||||
|
slideshow.next = function() { navigate(slideshow.pos + 1); };
|
||||||
|
slideshow.previous = function() { navigate(slideshow.pos + -1); };
|
||||||
|
window.addEventListener('DOMContentLoaded', init);
|
||||||
|
})(Alectryon.slideshow || (Alectryon.slideshow = {}));
|
||||||
|
|
||||||
|
(function (styles) {
|
||||||
|
var styleNames = ["centered", "floating", "windowed"];
|
||||||
|
|
||||||
|
function className(style) {
|
||||||
|
return "alectryon-" + style;
|
||||||
|
}
|
||||||
|
|
||||||
|
function setStyle(style) {
|
||||||
|
var root = document.getElementsByClassName("alectryon-root")[0];
|
||||||
|
styleNames.forEach(function (s) {
|
||||||
|
root.classList.remove(className(s)); });
|
||||||
|
root.classList.add(className(style));
|
||||||
|
}
|
||||||
|
|
||||||
|
function init() {
|
||||||
|
var banner = document.getElementsByClassName("alectryon-banner")[0];
|
||||||
|
if (banner) {
|
||||||
|
banner.append(" Style: ");
|
||||||
|
styleNames.forEach(function (styleName, idx) {
|
||||||
|
var s = styleName;
|
||||||
|
var a = document.createElement("a");
|
||||||
|
a.onclick = function() { setStyle(s); };
|
||||||
|
a.append(styleName);
|
||||||
|
if (idx > 0) banner.append("; ");
|
||||||
|
banner.appendChild(a);
|
||||||
|
});
|
||||||
|
banner.append(".");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
window.addEventListener('DOMContentLoaded', init);
|
||||||
|
|
||||||
|
styles.setStyle = setStyle;
|
||||||
|
})(Alectryon.styles || (Alectryon.styles = {}));
|
||||||
|
})(Alectryon || (Alectryon = {}));
|
|
@ -0,0 +1,593 @@
|
||||||
|
/******************************************************************************
|
||||||
|
The MIT License (MIT)
|
||||||
|
|
||||||
|
Copyright (c) 2014 Matthias Eisen
|
||||||
|
Further changes Copyright (c) 2020, 2021 Clément Pit-Claudel
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in
|
||||||
|
all copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||||
|
THE SOFTWARE.
|
||||||
|
******************************************************************************/
|
||||||
|
|
||||||
|
kbd,
|
||||||
|
pre,
|
||||||
|
samp,
|
||||||
|
tt,
|
||||||
|
body code, /* Increase specificity to override IBM's stylesheet */
|
||||||
|
body code.highlight,
|
||||||
|
.docutils.literal {
|
||||||
|
font-family: 'Iosevka Slab Web', 'Iosevka Web', 'Iosevka Slab', 'Iosevka', 'Fira Code', monospace;
|
||||||
|
font-feature-settings: "COQX" 1 /* Coq ligatures */, "XV00" 1 /* Legacy */, "calt" 1 /* Fallback */;
|
||||||
|
}
|
||||||
|
|
||||||
|
body {
|
||||||
|
color: #111;
|
||||||
|
font-family: 'IBM Plex Serif', 'PT Serif', 'Merriweather', 'DejaVu Serif', serif;
|
||||||
|
line-height: 1.5;
|
||||||
|
}
|
||||||
|
|
||||||
|
main, div.document {
|
||||||
|
margin: 0 auto;
|
||||||
|
max-width: 720px;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Headings ========== */
|
||||||
|
|
||||||
|
h1, h2, h3, h4, h5, h6 {
|
||||||
|
font-weight: normal;
|
||||||
|
margin-top: 1.5em;
|
||||||
|
}
|
||||||
|
|
||||||
|
h1.section-subtitle,
|
||||||
|
h2.section-subtitle,
|
||||||
|
h3.section-subtitle,
|
||||||
|
h4.section-subtitle,
|
||||||
|
h5.section-subtitle,
|
||||||
|
h6.section-subtitle {
|
||||||
|
margin-top: 0.4em;
|
||||||
|
}
|
||||||
|
|
||||||
|
h1.title {
|
||||||
|
text-align: center;
|
||||||
|
}
|
||||||
|
|
||||||
|
h2.subtitle {
|
||||||
|
text-align: center;
|
||||||
|
}
|
||||||
|
|
||||||
|
span.section-subtitle {
|
||||||
|
font-size: 80%,
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Headings ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Images ========== */
|
||||||
|
|
||||||
|
img,
|
||||||
|
.figure,
|
||||||
|
object {
|
||||||
|
display: block;
|
||||||
|
margin-left: auto;
|
||||||
|
margin-right: auto;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.figure {
|
||||||
|
margin-left: 2em;
|
||||||
|
margin-right: 2em;
|
||||||
|
}
|
||||||
|
|
||||||
|
img.align-left, .figure.align-left, object.align-left {
|
||||||
|
clear: left;
|
||||||
|
float: left;
|
||||||
|
margin-right: 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
img.align-right, .figure.align-right, object.align-right {
|
||||||
|
clear: right;
|
||||||
|
float: right;
|
||||||
|
margin-left: 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
img.align-center, .figure.align-center, object.align-center {
|
||||||
|
display: block;
|
||||||
|
margin-left: auto;
|
||||||
|
margin-right: auto;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* reset inner alignment in figures */
|
||||||
|
div.align-right {
|
||||||
|
text-align: inherit;
|
||||||
|
}
|
||||||
|
|
||||||
|
object[type="image/svg+xml"],
|
||||||
|
object[type="application/x-shockwave-flash"] {
|
||||||
|
overflow: hidden;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Images ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Literal Blocks ========== */
|
||||||
|
|
||||||
|
.docutils.literal {
|
||||||
|
background-color: #eee;
|
||||||
|
padding: 0 0.2em;
|
||||||
|
border-radius: 0.1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
pre.address {
|
||||||
|
margin-bottom: 0;
|
||||||
|
margin-top: 0;
|
||||||
|
font: inherit;
|
||||||
|
}
|
||||||
|
|
||||||
|
pre.literal-block {
|
||||||
|
border-left: solid 5px #ccc;
|
||||||
|
padding: 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
pre.literal-block, pre.doctest-block, pre.math, pre.code {
|
||||||
|
}
|
||||||
|
|
||||||
|
span.interpreted {
|
||||||
|
}
|
||||||
|
|
||||||
|
span.pre {
|
||||||
|
white-space: pre;
|
||||||
|
}
|
||||||
|
|
||||||
|
pre.code .ln {
|
||||||
|
color: grey;
|
||||||
|
}
|
||||||
|
pre.code, code {
|
||||||
|
border-style: none;
|
||||||
|
/* ! padding: 1em 0; */ /* Removed because that large hitbox bleeds over links on other lines */
|
||||||
|
}
|
||||||
|
pre.code .comment, code .comment {
|
||||||
|
color: #888;
|
||||||
|
}
|
||||||
|
pre.code .keyword, code .keyword {
|
||||||
|
font-weight: bold;
|
||||||
|
color: #080;
|
||||||
|
}
|
||||||
|
pre.code .literal.string, code .literal.string {
|
||||||
|
color: #d20;
|
||||||
|
background-color: #fff0f0;
|
||||||
|
}
|
||||||
|
pre.code .literal.number, code .literal.number {
|
||||||
|
color: #00d;
|
||||||
|
}
|
||||||
|
pre.code .name.builtin, code .name.builtin {
|
||||||
|
color: #038;
|
||||||
|
color: #820;
|
||||||
|
}
|
||||||
|
pre.code .name.namespace, code .name.namespace {
|
||||||
|
color: #b06;
|
||||||
|
}
|
||||||
|
pre.code .deleted, code .deleted {
|
||||||
|
background-color: #fdd;
|
||||||
|
}
|
||||||
|
pre.code .inserted, code .inserted {
|
||||||
|
background-color: #dfd;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* //-------- Literal Blocks --------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Tables ========== */
|
||||||
|
|
||||||
|
table {
|
||||||
|
border-spacing: 0;
|
||||||
|
border-collapse: collapse;
|
||||||
|
border-style: none;
|
||||||
|
border-top: solid thin #111;
|
||||||
|
border-bottom: solid thin #111;
|
||||||
|
}
|
||||||
|
|
||||||
|
td,
|
||||||
|
th {
|
||||||
|
border: none;
|
||||||
|
padding: 0.5em;
|
||||||
|
vertical-align: top;
|
||||||
|
}
|
||||||
|
|
||||||
|
th {
|
||||||
|
border-top: solid thin #111;
|
||||||
|
border-bottom: solid thin #111;
|
||||||
|
background-color: #ddd;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
table.field-list,
|
||||||
|
table.footnote,
|
||||||
|
table.citation,
|
||||||
|
table.option-list {
|
||||||
|
border: none;
|
||||||
|
}
|
||||||
|
table.docinfo {
|
||||||
|
margin: 2em 4em;
|
||||||
|
}
|
||||||
|
|
||||||
|
table.docutils {
|
||||||
|
margin: 1em 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
table.docutils th.field-name,
|
||||||
|
table.docinfo th.docinfo-name {
|
||||||
|
border: none;
|
||||||
|
background: none;
|
||||||
|
font-weight: bold ;
|
||||||
|
text-align: left ;
|
||||||
|
white-space: nowrap ;
|
||||||
|
padding-left: 0;
|
||||||
|
vertical-align: middle;
|
||||||
|
}
|
||||||
|
|
||||||
|
table.docutils.booktabs {
|
||||||
|
border: none;
|
||||||
|
border-top: medium solid;
|
||||||
|
border-bottom: medium solid;
|
||||||
|
border-collapse: collapse;
|
||||||
|
}
|
||||||
|
|
||||||
|
table.docutils.booktabs * {
|
||||||
|
border: none;
|
||||||
|
}
|
||||||
|
table.docutils.booktabs th {
|
||||||
|
border-bottom: thin solid;
|
||||||
|
text-align: left;
|
||||||
|
}
|
||||||
|
|
||||||
|
span.option {
|
||||||
|
white-space: nowrap;
|
||||||
|
}
|
||||||
|
|
||||||
|
table caption {
|
||||||
|
margin-bottom: 2px;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Tables ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Lists ========== */
|
||||||
|
|
||||||
|
ol.simple, ul.simple {
|
||||||
|
margin-bottom: 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
ol.arabic {
|
||||||
|
list-style: decimal;
|
||||||
|
}
|
||||||
|
|
||||||
|
ol.loweralpha {
|
||||||
|
list-style: lower-alpha;
|
||||||
|
}
|
||||||
|
|
||||||
|
ol.upperalpha {
|
||||||
|
list-style: upper-alpha;
|
||||||
|
}
|
||||||
|
|
||||||
|
ol.lowerroman {
|
||||||
|
list-style: lower-roman;
|
||||||
|
}
|
||||||
|
|
||||||
|
ol.upperroman {
|
||||||
|
list-style: upper-roman;
|
||||||
|
}
|
||||||
|
|
||||||
|
dl.docutils dd {
|
||||||
|
margin-bottom: 0.5em;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
dl.docutils dt {
|
||||||
|
font-weight: bold;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Lists ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Sidebar ========== */
|
||||||
|
|
||||||
|
div.sidebar {
|
||||||
|
margin: 0 0 0.5em 1em ;
|
||||||
|
border-left: solid medium #111;
|
||||||
|
padding: 1em ;
|
||||||
|
width: 40% ;
|
||||||
|
float: right ;
|
||||||
|
clear: right;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.sidebar {
|
||||||
|
font-size: 0.9rem;
|
||||||
|
}
|
||||||
|
|
||||||
|
p.sidebar-title {
|
||||||
|
font-size: 1rem;
|
||||||
|
font-weight: bold ;
|
||||||
|
}
|
||||||
|
|
||||||
|
p.sidebar-subtitle {
|
||||||
|
font-weight: bold;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Sidebar ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Topic ========== */
|
||||||
|
|
||||||
|
div.topic {
|
||||||
|
border-left: thin solid #111;
|
||||||
|
padding-left: 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.topic p {
|
||||||
|
padding: 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
p.topic-title {
|
||||||
|
font-weight: bold;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Topic ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Header ========== */
|
||||||
|
|
||||||
|
div.header {
|
||||||
|
font-family: "Century Gothic", CenturyGothic, Geneva, AppleGothic, sans-serif;
|
||||||
|
font-size: 0.9rem;
|
||||||
|
margin: 2em auto 4em auto;
|
||||||
|
max-width: 960px;
|
||||||
|
clear: both;
|
||||||
|
}
|
||||||
|
|
||||||
|
hr.header {
|
||||||
|
border: 0;
|
||||||
|
height: 1px;
|
||||||
|
margin-top: 1em;
|
||||||
|
background-color: #111;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Header ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Footer ========== */
|
||||||
|
|
||||||
|
div.footer {
|
||||||
|
font-family: "Century Gothic", CenturyGothic, Geneva, AppleGothic, sans-serif;
|
||||||
|
font-size: 0.9rem;
|
||||||
|
margin: 6em auto 2em auto;
|
||||||
|
max-width: 960px;
|
||||||
|
clear: both;
|
||||||
|
text-align: center;
|
||||||
|
}
|
||||||
|
|
||||||
|
hr.footer {
|
||||||
|
border: 0;
|
||||||
|
height: 1px;
|
||||||
|
margin-bottom: 2em;
|
||||||
|
background-color: #111;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Footer ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Admonitions ========== */
|
||||||
|
|
||||||
|
div.admonition,
|
||||||
|
div.attention,
|
||||||
|
div.caution,
|
||||||
|
div.danger,
|
||||||
|
div.error,
|
||||||
|
div.hint,
|
||||||
|
div.important,
|
||||||
|
div.note,
|
||||||
|
div.tip,
|
||||||
|
div.warning {
|
||||||
|
border: solid thin #111;
|
||||||
|
padding: 0 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.error,
|
||||||
|
div.danger {
|
||||||
|
border-color: #a94442;
|
||||||
|
background-color: #f2dede;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.hint,
|
||||||
|
div.tip {
|
||||||
|
border-color: #31708f;
|
||||||
|
background-color: #d9edf7;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.attention,
|
||||||
|
div.caution,
|
||||||
|
div.warning {
|
||||||
|
border-color: #8a6d3b;
|
||||||
|
background-color: #fcf8e3;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.hint p.admonition-title,
|
||||||
|
div.tip p.admonition-title {
|
||||||
|
color: #31708f;
|
||||||
|
font-weight: bold ;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.note p.admonition-title,
|
||||||
|
div.admonition p.admonition-title,
|
||||||
|
div.important p.admonition-title {
|
||||||
|
font-weight: bold ;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.attention p.admonition-title,
|
||||||
|
div.caution p.admonition-title,
|
||||||
|
div.warning p.admonition-title {
|
||||||
|
color: #8a6d3b;
|
||||||
|
font-weight: bold ;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.danger p.admonition-title,
|
||||||
|
div.error p.admonition-title,
|
||||||
|
.code .error {
|
||||||
|
color: #a94442;
|
||||||
|
font-weight: bold ;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Admonitions ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Table of Contents ========== */
|
||||||
|
|
||||||
|
div.contents {
|
||||||
|
margin: 2em 0;
|
||||||
|
border: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
ul.auto-toc {
|
||||||
|
list-style-type: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
a.toc-backref {
|
||||||
|
text-decoration: none ;
|
||||||
|
color: #111;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Table of Contents ---------- */
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Line Blocks========== */
|
||||||
|
|
||||||
|
div.line-block {
|
||||||
|
display: block ;
|
||||||
|
margin-top: 1em ;
|
||||||
|
margin-bottom: 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.line-block div.line-block {
|
||||||
|
margin-top: 0 ;
|
||||||
|
margin-bottom: 0 ;
|
||||||
|
margin-left: 1.5em;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Line Blocks---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== System Messages ========== */
|
||||||
|
|
||||||
|
div.system-messages {
|
||||||
|
margin: 5em;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.system-messages h1 {
|
||||||
|
color: red;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.system-message {
|
||||||
|
border: medium outset ;
|
||||||
|
padding: 1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.system-message p.system-message-title {
|
||||||
|
color: red ;
|
||||||
|
font-weight: bold;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- System Messages---------- */
|
||||||
|
|
||||||
|
|
||||||
|
/* ========== Helpers ========== */
|
||||||
|
|
||||||
|
.hidden {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
.align-left {
|
||||||
|
text-align: left;
|
||||||
|
}
|
||||||
|
|
||||||
|
.align-center {
|
||||||
|
clear: both ;
|
||||||
|
text-align: center;
|
||||||
|
}
|
||||||
|
|
||||||
|
.align-right {
|
||||||
|
text-align: right;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* //-------- Helpers---------- */
|
||||||
|
|
||||||
|
|
||||||
|
p.caption {
|
||||||
|
font-style: italic;
|
||||||
|
text-align: center;
|
||||||
|
}
|
||||||
|
|
||||||
|
p.credits {
|
||||||
|
font-style: italic ;
|
||||||
|
font-size: smaller }
|
||||||
|
|
||||||
|
p.label {
|
||||||
|
white-space: nowrap }
|
||||||
|
|
||||||
|
p.rubric {
|
||||||
|
font-weight: bold ;
|
||||||
|
font-size: larger ;
|
||||||
|
color: maroon ;
|
||||||
|
text-align: center }
|
||||||
|
|
||||||
|
p.attribution {
|
||||||
|
text-align: right ;
|
||||||
|
margin-left: 50% }
|
||||||
|
|
||||||
|
blockquote.epigraph {
|
||||||
|
margin: 2em 5em;
|
||||||
|
}
|
||||||
|
|
||||||
|
div.abstract {
|
||||||
|
margin: 2em 5em }
|
||||||
|
|
||||||
|
div.abstract {
|
||||||
|
font-weight: bold ;
|
||||||
|
text-align: center }
|
||||||
|
|
||||||
|
div.dedication {
|
||||||
|
margin: 2em 5em ;
|
||||||
|
text-align: center ;
|
||||||
|
font-style: italic }
|
||||||
|
|
||||||
|
div.dedication {
|
||||||
|
font-weight: bold ;
|
||||||
|
font-style: normal }
|
||||||
|
|
||||||
|
|
||||||
|
span.classifier {
|
||||||
|
font-style: oblique }
|
||||||
|
|
||||||
|
span.classifier-delimiter {
|
||||||
|
font-weight: bold }
|
||||||
|
|
||||||
|
span.problematic {
|
||||||
|
color: red }
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,82 @@
|
||||||
|
/* Pygments stylesheet generated by Alectryon (style=None) */
|
||||||
|
/* Most of the following are unused as of now */
|
||||||
|
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
|
||||||
|
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
|
||||||
|
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
|
||||||
|
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
|
||||||
|
.highlight .hll, .code .hll { background-color: #ffffcc }
|
||||||
|
.highlight .c, .code .c { color: #555753; font-style: italic } /* Comment */
|
||||||
|
.highlight .err, .code .err { color: #a40000; border: 1px solid #cc0000 } /* Error */
|
||||||
|
.highlight .g, .code .g { color: #000000 } /* Generic */
|
||||||
|
.highlight .k, .code .k { color: #8f5902 } /* Keyword */
|
||||||
|
.highlight .l, .code .l { color: #2e3436 } /* Literal */
|
||||||
|
.highlight .n, .code .n { color: #000000 } /* Name */
|
||||||
|
.highlight .o, .code .o { color: #000000 } /* Operator */
|
||||||
|
.highlight .x, .code .x { color: #2e3436 } /* Other */
|
||||||
|
.highlight .p, .code .p { color: #000000 } /* Punctuation */
|
||||||
|
.highlight .ch, .code .ch { color: #555753; font-weight: bold; font-style: italic } /* Comment.Hashbang */
|
||||||
|
.highlight .cm, .code .cm { color: #555753; font-style: italic } /* Comment.Multiline */
|
||||||
|
.highlight .cp, .code .cp { color: #3465a4; font-style: italic } /* Comment.Preproc */
|
||||||
|
.highlight .cpf, .code .cpf { color: #555753; font-style: italic } /* Comment.PreprocFile */
|
||||||
|
.highlight .c1, .code .c1 { color: #555753; font-style: italic } /* Comment.Single */
|
||||||
|
.highlight .cs, .code .cs { color: #3465a4; font-weight: bold; font-style: italic } /* Comment.Special */
|
||||||
|
.highlight .gd, .code .gd { color: #a40000 } /* Generic.Deleted */
|
||||||
|
.highlight .ge, .code .ge { color: #000000; font-style: italic } /* Generic.Emph */
|
||||||
|
.highlight .gr, .code .gr { color: #a40000 } /* Generic.Error */
|
||||||
|
.highlight .gh, .code .gh { color: #a40000; font-weight: bold } /* Generic.Heading */
|
||||||
|
.highlight .gi, .code .gi { color: #4e9a06 } /* Generic.Inserted */
|
||||||
|
.highlight .go, .code .go { color: #000000; font-style: italic } /* Generic.Output */
|
||||||
|
.highlight .gp, .code .gp { color: #8f5902 } /* Generic.Prompt */
|
||||||
|
.highlight .gs, .code .gs { color: #000000; font-weight: bold } /* Generic.Strong */
|
||||||
|
.highlight .gu, .code .gu { color: #000000; font-weight: bold } /* Generic.Subheading */
|
||||||
|
.highlight .gt, .code .gt { color: #000000; font-style: italic } /* Generic.Traceback */
|
||||||
|
.highlight .kc, .code .kc { color: #204a87; font-weight: bold } /* Keyword.Constant */
|
||||||
|
.highlight .kd, .code .kd { color: #4e9a06; font-weight: bold } /* Keyword.Declaration */
|
||||||
|
.highlight .kn, .code .kn { color: #4e9a06; font-weight: bold } /* Keyword.Namespace */
|
||||||
|
.highlight .kp, .code .kp { color: #204a87 } /* Keyword.Pseudo */
|
||||||
|
.highlight .kr, .code .kr { color: #8f5902 } /* Keyword.Reserved */
|
||||||
|
.highlight .kt, .code .kt { color: #204a87 } /* Keyword.Type */
|
||||||
|
.highlight .ld, .code .ld { color: #2e3436 } /* Literal.Date */
|
||||||
|
.highlight .m, .code .m { color: #2e3436 } /* Literal.Number */
|
||||||
|
.highlight .s, .code .s { color: #ad7fa8 } /* Literal.String */
|
||||||
|
.highlight .na, .code .na { color: #c4a000 } /* Name.Attribute */
|
||||||
|
.highlight .nb, .code .nb { color: #75507b } /* Name.Builtin */
|
||||||
|
.highlight .nc, .code .nc { color: #204a87 } /* Name.Class */
|
||||||
|
.highlight .no, .code .no { color: #ce5c00 } /* Name.Constant */
|
||||||
|
.highlight .nd, .code .nd { color: #3465a4; font-weight: bold } /* Name.Decorator */
|
||||||
|
.highlight .ni, .code .ni { color: #c4a000; text-decoration: underline } /* Name.Entity */
|
||||||
|
.highlight .ne, .code .ne { color: #cc0000 } /* Name.Exception */
|
||||||
|
.highlight .nf, .code .nf { color: #a40000 } /* Name.Function */
|
||||||
|
.highlight .nl, .code .nl { color: #3465a4; font-weight: bold } /* Name.Label */
|
||||||
|
.highlight .nn, .code .nn { color: #000000 } /* Name.Namespace */
|
||||||
|
.highlight .nx, .code .nx { color: #000000 } /* Name.Other */
|
||||||
|
.highlight .py, .code .py { color: #000000 } /* Name.Property */
|
||||||
|
.highlight .nt, .code .nt { color: #a40000 } /* Name.Tag */
|
||||||
|
.highlight .nv, .code .nv { color: #ce5c00 } /* Name.Variable */
|
||||||
|
.highlight .ow, .code .ow { color: #8f5902 } /* Operator.Word */
|
||||||
|
.highlight .w, .code .w { color: #d3d7cf; text-decoration: underline } /* Text.Whitespace */
|
||||||
|
.highlight .mb, .code .mb { color: #2e3436 } /* Literal.Number.Bin */
|
||||||
|
.highlight .mf, .code .mf { color: #2e3436 } /* Literal.Number.Float */
|
||||||
|
.highlight .mh, .code .mh { color: #2e3436 } /* Literal.Number.Hex */
|
||||||
|
.highlight .mi, .code .mi { color: #2e3436 } /* Literal.Number.Integer */
|
||||||
|
.highlight .mo, .code .mo { color: #2e3436 } /* Literal.Number.Oct */
|
||||||
|
.highlight .sa, .code .sa { color: #ad7fa8 } /* Literal.String.Affix */
|
||||||
|
.highlight .sb, .code .sb { color: #ad7fa8 } /* Literal.String.Backtick */
|
||||||
|
.highlight .sc, .code .sc { color: #ad7fa8; font-weight: bold } /* Literal.String.Char */
|
||||||
|
.highlight .dl, .code .dl { color: #ad7fa8 } /* Literal.String.Delimiter */
|
||||||
|
.highlight .sd, .code .sd { color: #ad7fa8 } /* Literal.String.Doc */
|
||||||
|
.highlight .s2, .code .s2 { color: #ad7fa8 } /* Literal.String.Double */
|
||||||
|
.highlight .se, .code .se { color: #ad7fa8; font-weight: bold } /* Literal.String.Escape */
|
||||||
|
.highlight .sh, .code .sh { color: #ad7fa8; text-decoration: underline } /* Literal.String.Heredoc */
|
||||||
|
.highlight .si, .code .si { color: #ce5c00 } /* Literal.String.Interpol */
|
||||||
|
.highlight .sx, .code .sx { color: #ad7fa8 } /* Literal.String.Other */
|
||||||
|
.highlight .sr, .code .sr { color: #ad7fa8 } /* Literal.String.Regex */
|
||||||
|
.highlight .s1, .code .s1 { color: #ad7fa8 } /* Literal.String.Single */
|
||||||
|
.highlight .ss, .code .ss { color: #8f5902 } /* Literal.String.Symbol */
|
||||||
|
.highlight .bp, .code .bp { color: #5c35cc } /* Name.Builtin.Pseudo */
|
||||||
|
.highlight .fm, .code .fm { color: #a40000 } /* Name.Function.Magic */
|
||||||
|
.highlight .vc, .code .vc { color: #ce5c00 } /* Name.Variable.Class */
|
||||||
|
.highlight .vg, .code .vg { color: #ce5c00; text-decoration: underline } /* Name.Variable.Global */
|
||||||
|
.highlight .vi, .code .vi { color: #ce5c00 } /* Name.Variable.Instance */
|
||||||
|
.highlight .vm, .code .vm { color: #ce5c00 } /* Name.Variable.Magic */
|
||||||
|
.highlight .il, .code .il { color: #2e3436 } /* Literal.Number.Integer.Long */
|
|
@ -0,0 +1,33 @@
|
||||||
|
function getTheme() {
|
||||||
|
return localStorage.getItem("theme") || "system";
|
||||||
|
}
|
||||||
|
|
||||||
|
function setTheme(themeName) {
|
||||||
|
localStorage.setItem('theme', themeName);
|
||||||
|
if (themeName == "system") {
|
||||||
|
themeName = parent.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light";
|
||||||
|
}
|
||||||
|
// the navbar is in an iframe, so we need to set this variable in the parent document
|
||||||
|
for (const win of [window, parent]) {
|
||||||
|
win.document.documentElement.setAttribute('data-theme', themeName);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
setTheme(getTheme())
|
||||||
|
|
||||||
|
document.addEventListener("DOMContentLoaded", function() {
|
||||||
|
document.querySelectorAll("#color-theme-switcher input").forEach((input) => {
|
||||||
|
if (input.value == getTheme()) {
|
||||||
|
input.checked = true;
|
||||||
|
}
|
||||||
|
input.addEventListener('change', e => setTheme(e.target.value));
|
||||||
|
});
|
||||||
|
|
||||||
|
// also check to see if the user changes their theme settings while the page is loaded.
|
||||||
|
parent.matchMedia('(prefers-color-scheme: dark)').addEventListener('change', event => {
|
||||||
|
setTheme(getTheme());
|
||||||
|
})
|
||||||
|
});
|
||||||
|
|
||||||
|
// un-hide the colorscheme picker
|
||||||
|
document.querySelector("#settings").removeAttribute('hidden');
|
|
@ -0,0 +1,287 @@
|
||||||
|
/**
|
||||||
|
* This module is a wrapper that facilitates manipulating the declaration data.
|
||||||
|
*
|
||||||
|
* Please see {@link DeclarationDataCenter} for more information.
|
||||||
|
*/
|
||||||
|
|
||||||
|
const CACHE_DB_NAME = "declaration-data";
|
||||||
|
const CACHE_DB_VERSION = 1;
|
||||||
|
const CACHE_DB_KEY = "DECLARATIONS_KEY";
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The DeclarationDataCenter is used for declaration searching.
|
||||||
|
*
|
||||||
|
* For usage, see the {@link init} and {@link search} methods.
|
||||||
|
*/
|
||||||
|
export class DeclarationDataCenter {
|
||||||
|
/**
|
||||||
|
* The declaration data. Users should not interact directly with this field.
|
||||||
|
*
|
||||||
|
* *NOTE:* This is not made private to support legacy browsers.
|
||||||
|
*/
|
||||||
|
declarationData = null;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Used to implement the singleton, in case we need to fetch data mutiple times in the same page.
|
||||||
|
*/
|
||||||
|
static requestSingleton = null;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Construct a DeclarationDataCenter with given data.
|
||||||
|
*
|
||||||
|
* Please use {@link DeclarationDataCenter.init} instead, which automates the data fetching process.
|
||||||
|
* @param {*} declarationData
|
||||||
|
*/
|
||||||
|
constructor(declarationData) {
|
||||||
|
this.declarationData = declarationData;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The actual constructor of DeclarationDataCenter
|
||||||
|
* @returns {Promise<DeclarationDataCenter>}
|
||||||
|
*/
|
||||||
|
static async init() {
|
||||||
|
if (DeclarationDataCenter.requestSingleton === null) {
|
||||||
|
DeclarationDataCenter.requestSingleton = DeclarationDataCenter.getData();
|
||||||
|
}
|
||||||
|
return await DeclarationDataCenter.requestSingleton;
|
||||||
|
}
|
||||||
|
|
||||||
|
static async getData() {
|
||||||
|
const dataListUrl = new URL(
|
||||||
|
`${SITE_ROOT}/declarations/declaration-data.bmp`,
|
||||||
|
window.location
|
||||||
|
);
|
||||||
|
|
||||||
|
// try to use cache first
|
||||||
|
const data = await fetchCachedDeclarationData().catch(_e => null);
|
||||||
|
if (data) {
|
||||||
|
// if data is defined, use the cached one.
|
||||||
|
return new DeclarationDataCenter(data);
|
||||||
|
} else {
|
||||||
|
// undefined. then fetch the data from the server.
|
||||||
|
const dataListRes = await fetch(dataListUrl);
|
||||||
|
const data = await dataListRes.json();
|
||||||
|
// TODO https://github.com/leanprover/doc-gen4/issues/133
|
||||||
|
// await cacheDeclarationData(data);
|
||||||
|
return new DeclarationDataCenter(data);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Search for a declaration.
|
||||||
|
* @returns {Array<any>}
|
||||||
|
*/
|
||||||
|
search(pattern, strict = true, allowedKinds=undefined, maxResults=undefined) {
|
||||||
|
if (!pattern) {
|
||||||
|
return [];
|
||||||
|
}
|
||||||
|
if (strict) {
|
||||||
|
let decl = this.declarationData.declarations[pattern];
|
||||||
|
return decl ? [decl] : [];
|
||||||
|
} else {
|
||||||
|
return getMatches(this.declarationData.declarations, pattern, allowedKinds, maxResults);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Search for all instances of a certain typeclass
|
||||||
|
* @returns {Array<String>}
|
||||||
|
*/
|
||||||
|
instancesForClass(className) {
|
||||||
|
const instances = this.declarationData.instances[className];
|
||||||
|
if (!instances) {
|
||||||
|
return [];
|
||||||
|
} else {
|
||||||
|
return instances;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Search for all instances that involve a certain type
|
||||||
|
* @returns {Array<String>}
|
||||||
|
*/
|
||||||
|
instancesForType(typeName) {
|
||||||
|
const instances = this.declarationData.instancesFor[typeName];
|
||||||
|
if (!instances) {
|
||||||
|
return [];
|
||||||
|
} else {
|
||||||
|
return instances;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Analogous to Lean declNameToLink
|
||||||
|
* @returns {String}
|
||||||
|
*/
|
||||||
|
declNameToLink(declName) {
|
||||||
|
return this.declarationData.declarations[declName].docLink;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find all modules that imported the given one.
|
||||||
|
* @returns {Array<String>}
|
||||||
|
*/
|
||||||
|
moduleImportedBy(moduleName) {
|
||||||
|
return this.declarationData.importedBy[moduleName];
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Analogous to Lean moduleNameToLink
|
||||||
|
* @returns {String}
|
||||||
|
*/
|
||||||
|
moduleNameToLink(moduleName) {
|
||||||
|
return this.declarationData.modules[moduleName];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function isSeparater(char) {
|
||||||
|
return char === "." || char === "_";
|
||||||
|
}
|
||||||
|
|
||||||
|
// HACK: the fuzzy matching is quite hacky
|
||||||
|
|
||||||
|
function matchCaseSensitive(declName, lowerDeclName, pattern) {
|
||||||
|
let i = 0,
|
||||||
|
j = 0,
|
||||||
|
err = 0,
|
||||||
|
lastMatch = 0;
|
||||||
|
while (i < declName.length && j < pattern.length) {
|
||||||
|
if (pattern[j] === declName[i] || pattern[j] === lowerDeclName[i]) {
|
||||||
|
err += (isSeparater(pattern[j]) ? 0.125 : 1) * (i - lastMatch);
|
||||||
|
if (pattern[j] !== declName[i]) err += 0.5;
|
||||||
|
lastMatch = i + 1;
|
||||||
|
j++;
|
||||||
|
} else if (isSeparater(declName[i])) {
|
||||||
|
err += 0.125 * (i + 1 - lastMatch);
|
||||||
|
lastMatch = i + 1;
|
||||||
|
}
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
err += 0.125 * (declName.length - lastMatch);
|
||||||
|
if (j === pattern.length) {
|
||||||
|
return err;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function getMatches(declarations, pattern, allowedKinds = undefined, maxResults = undefined) {
|
||||||
|
const lowerPats = pattern.toLowerCase().split(/\s/g);
|
||||||
|
const patNoSpaces = pattern.replace(/\s/g, "");
|
||||||
|
const results = [];
|
||||||
|
for (const [_, {
|
||||||
|
name,
|
||||||
|
kind,
|
||||||
|
doc,
|
||||||
|
docLink,
|
||||||
|
sourceLink,
|
||||||
|
}] of Object.entries(declarations)) {
|
||||||
|
// Apply "kind" filter
|
||||||
|
if (allowedKinds !== undefined) {
|
||||||
|
if (!allowedKinds.has(kind)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
const lowerName = name.toLowerCase();
|
||||||
|
const lowerDoc = doc.toLowerCase();
|
||||||
|
let err = matchCaseSensitive(name, lowerName, patNoSpaces);
|
||||||
|
// match all words as substrings of docstring
|
||||||
|
if (
|
||||||
|
err >= 3 &&
|
||||||
|
pattern.length > 3 &&
|
||||||
|
lowerPats.every((l) => lowerDoc.indexOf(l) != -1)
|
||||||
|
) {
|
||||||
|
err = 3;
|
||||||
|
}
|
||||||
|
if (err !== undefined) {
|
||||||
|
results.push({
|
||||||
|
name,
|
||||||
|
kind,
|
||||||
|
doc,
|
||||||
|
err,
|
||||||
|
lowerName,
|
||||||
|
lowerDoc,
|
||||||
|
docLink,
|
||||||
|
sourceLink,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return results.sort(({ err: a }, { err: b }) => a - b).slice(0, maxResults);
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: refactor the indexedDB part to be more robust
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get the indexedDB database, automatically initialized.
|
||||||
|
* @returns {Promise<IDBDatabase>}
|
||||||
|
*/
|
||||||
|
async function getDeclarationDatabase() {
|
||||||
|
return new Promise((resolve, reject) => {
|
||||||
|
const request = indexedDB.open(CACHE_DB_NAME, CACHE_DB_VERSION);
|
||||||
|
|
||||||
|
request.onerror = function (event) {
|
||||||
|
reject(
|
||||||
|
new Error(
|
||||||
|
`fail to open indexedDB ${CACHE_DB_NAME} of version ${CACHE_DB_VERSION}`
|
||||||
|
)
|
||||||
|
);
|
||||||
|
};
|
||||||
|
request.onupgradeneeded = function (event) {
|
||||||
|
let db = event.target.result;
|
||||||
|
// We only need to store one object, so no key path or increment is needed.
|
||||||
|
db.createObjectStore("declaration");
|
||||||
|
};
|
||||||
|
request.onsuccess = function (event) {
|
||||||
|
resolve(event.target.result);
|
||||||
|
};
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Store data in indexedDB object store.
|
||||||
|
* @param {Map<string, any>} data
|
||||||
|
*/
|
||||||
|
async function cacheDeclarationData(data) {
|
||||||
|
let db = await getDeclarationDatabase();
|
||||||
|
let store = db
|
||||||
|
.transaction("declaration", "readwrite")
|
||||||
|
.objectStore("declaration");
|
||||||
|
return new Promise((resolve, reject) => {
|
||||||
|
let clearRequest = store.clear();
|
||||||
|
let addRequest = store.add(data, CACHE_DB_KEY);
|
||||||
|
|
||||||
|
addRequest.onsuccess = function (event) {
|
||||||
|
resolve();
|
||||||
|
};
|
||||||
|
addRequest.onerror = function (event) {
|
||||||
|
reject(new Error(`fail to store declaration data`));
|
||||||
|
};
|
||||||
|
clearRequest.onerror = function (event) {
|
||||||
|
reject(new Error("fail to clear object store"));
|
||||||
|
};
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Retrieve data from indexedDB database.
|
||||||
|
* @returns {Promise<Map<string, any>|undefined>}
|
||||||
|
*/
|
||||||
|
async function fetchCachedDeclarationData() {
|
||||||
|
let db = await getDeclarationDatabase();
|
||||||
|
let store = db
|
||||||
|
.transaction("declaration", "readonly")
|
||||||
|
.objectStore("declaration");
|
||||||
|
return new Promise((resolve, reject) => {
|
||||||
|
let transactionRequest = store.get(CACHE_DB_KEY);
|
||||||
|
transactionRequest.onsuccess = function (event) {
|
||||||
|
// TODO: This API is not thought 100% through. If we have a DB cached
|
||||||
|
// already it will not even ask the remote for a new one so we end up
|
||||||
|
// with outdated declaration-data. This has to have some form of cache
|
||||||
|
// invalidation: https://github.com/leanprover/doc-gen4/issues/133
|
||||||
|
// resolve(event.target.result);
|
||||||
|
resolve(undefined);
|
||||||
|
};
|
||||||
|
transactionRequest.onerror = function (event) {
|
||||||
|
reject(new Error(`fail to store declaration data`));
|
||||||
|
};
|
||||||
|
});
|
||||||
|
}
|
|
@ -0,0 +1,93 @@
|
||||||
|
/**
|
||||||
|
* This module is used for the `/find` endpoint.
|
||||||
|
*
|
||||||
|
* Two basic kinds of search syntax are supported:
|
||||||
|
*
|
||||||
|
* 1. Query-Fragment syntax: `/find?pattern=Nat.add#doc` for documentation and `/find?pattern=Nat.add#src` for source code.
|
||||||
|
* 2. Fragment-Only syntax:`/find/#doc/Nat.add` for documentation and `/find/#src/Nat.add` for source code.
|
||||||
|
*
|
||||||
|
* Though both of them are valid, the first one is highly recommended, and the second one is for compatibility and taste.
|
||||||
|
*
|
||||||
|
* There are some extended usage for the QF syntax. For example, appending `strict=false` to the query part
|
||||||
|
* (`/find?pattern=Nat.add&strict=false#doc`) will allow you to use the fuzzy search, rather than strict match.
|
||||||
|
* Also, the fragment is extensible as well. For now only `#doc` and `#src` are implement, and the plain query without
|
||||||
|
* hash (`/find?pattern=Nat.add`) is used for computer-friendly data (semantic web is great! :P), while all other fragments
|
||||||
|
* fallback to the `#doc` view.
|
||||||
|
*/
|
||||||
|
|
||||||
|
import { DeclarationDataCenter } from "../declaration-data.js";
|
||||||
|
|
||||||
|
function leanFriendlyRegExp(c) {
|
||||||
|
try {
|
||||||
|
return new RegExp("(?<!«[^»]*)" + c);
|
||||||
|
} catch (e) {
|
||||||
|
if (e instanceof SyntaxError) {
|
||||||
|
// Lookbehind is not implemented yet in WebKit: https://bugs.webkit.org/show_bug.cgi?id=174931
|
||||||
|
// Fall back to less friendly regex.
|
||||||
|
return new RegExp(c);
|
||||||
|
}
|
||||||
|
throw e;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* We don't use browser's default hash and searchParams in case Lean declaration name
|
||||||
|
* can be like `«#»`, rather we manually handle the `window.location.href` with regex.
|
||||||
|
*/
|
||||||
|
const LEAN_FRIENDLY_URL_REGEX = /^[^?#]+(?:\?((?:[^«#»]|«.*»)*))?(?:#(.*))?$/;
|
||||||
|
const LEAN_FRIENDLY_AND_SEPARATOR = leanFriendlyRegExp("&");
|
||||||
|
const LEAN_FRIENDLY_EQUAL_SEPARATOR = leanFriendlyRegExp("=");
|
||||||
|
const LEAN_FRIENDLY_SLASH_SEPARATOR = leanFriendlyRegExp("/");
|
||||||
|
|
||||||
|
const [_, query, fragment] = LEAN_FRIENDLY_URL_REGEX.exec(window.location.href);
|
||||||
|
const queryParams = new Map(
|
||||||
|
query
|
||||||
|
?.split(LEAN_FRIENDLY_AND_SEPARATOR)
|
||||||
|
?.map((p) => p.split(LEAN_FRIENDLY_EQUAL_SEPARATOR))
|
||||||
|
?.filter((l) => l.length == 2 && l[0].length > 0)
|
||||||
|
);
|
||||||
|
const fragmentPaths = fragment?.split(LEAN_FRIENDLY_SLASH_SEPARATOR) ?? [];
|
||||||
|
|
||||||
|
const encodedPattern = queryParams.get("pattern") ?? fragmentPaths[1]; // if first fail then second, may be undefined
|
||||||
|
const pattern = decodeURIComponent(encodedPattern);
|
||||||
|
const strict = (queryParams.get("strict") ?? "true") === "true"; // default to true
|
||||||
|
const view = fragmentPaths[0];
|
||||||
|
|
||||||
|
findAndRedirect(pattern, strict, view);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find the result and redirect to the result page.
|
||||||
|
* @param {string} pattern the pattern to search for
|
||||||
|
* @param {string} view the view of the find result (`"doc"` or `"src"` for now)
|
||||||
|
*/
|
||||||
|
async function findAndRedirect(pattern, strict, view) {
|
||||||
|
// if no pattern provided, directly redirect to the 404 page
|
||||||
|
if (!pattern) {
|
||||||
|
window.location.replace(`${SITE_ROOT}404.html`);
|
||||||
|
}
|
||||||
|
// search for result
|
||||||
|
try {
|
||||||
|
const dataCenter = await DeclarationDataCenter.init();
|
||||||
|
let result = (dataCenter.search(pattern, strict) ?? [])[0]; // in case return non array
|
||||||
|
// if no result found, redirect to the 404 page
|
||||||
|
if (!result) {
|
||||||
|
// TODO: better url semantic for 404, current implementation will lead to duplicate search for fuzzy match if not found.
|
||||||
|
window.location.replace(`${SITE_ROOT}404.html#${pattern ?? ""}`);
|
||||||
|
} else {
|
||||||
|
result.docLink = SITE_ROOT + result.docLink;
|
||||||
|
// success, redirect to doc or source page, or to the semantic rdf.
|
||||||
|
if (!view) {
|
||||||
|
window.location.replace(result.link);
|
||||||
|
} else if (view == "doc") {
|
||||||
|
window.location.replace(result.docLink);
|
||||||
|
} else if (view == "src") {
|
||||||
|
window.location.replace(result.sourceLink);
|
||||||
|
} else {
|
||||||
|
// fallback to doc page
|
||||||
|
window.location.replace(result.docLink);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} catch (e) {
|
||||||
|
document.write(`Cannot fetch data, please check your network connection.\n${e}`);
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,39 @@
|
||||||
|
/**
|
||||||
|
* This module implements the `howabout` functionality in the 404 page.
|
||||||
|
*/
|
||||||
|
|
||||||
|
import { DeclarationDataCenter } from "./declaration-data.js";
|
||||||
|
|
||||||
|
const HOW_ABOUT = document.querySelector("#howabout");
|
||||||
|
|
||||||
|
// Show url of the missing page
|
||||||
|
if (HOW_ABOUT) {
|
||||||
|
HOW_ABOUT.parentNode
|
||||||
|
.insertBefore(document.createElement("pre"), HOW_ABOUT)
|
||||||
|
.appendChild(document.createElement("code")).innerText =
|
||||||
|
window.location.href.replace(/[/]/g, "/\u200b");
|
||||||
|
|
||||||
|
// TODO: add how about functionality for similar page as well.
|
||||||
|
const pattern = window.location.hash.replace("#", "");
|
||||||
|
|
||||||
|
// try to search for similar declarations
|
||||||
|
if (pattern) {
|
||||||
|
HOW_ABOUT.innerText = "Please wait a second. I'll try to help you.";
|
||||||
|
DeclarationDataCenter.init().then((dataCenter) => {
|
||||||
|
let results = dataCenter.search(pattern, false);
|
||||||
|
if (results.length > 0) {
|
||||||
|
HOW_ABOUT.innerText = "How about one of these instead:";
|
||||||
|
const ul = HOW_ABOUT.appendChild(document.createElement("ul"));
|
||||||
|
for (const { name, docLink } of results) {
|
||||||
|
const li = ul.appendChild(document.createElement("li"));
|
||||||
|
const a = li.appendChild(document.createElement("a"));
|
||||||
|
a.href = docLink;
|
||||||
|
a.appendChild(document.createElement("code")).innerText = name;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
HOW_ABOUT.innerText =
|
||||||
|
"Sorry, I cannot find any similar declarations. Check the link or use the module navigation to find what you want :P";
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,19 @@
|
||||||
|
import { DeclarationDataCenter } from "./declaration-data.js";
|
||||||
|
|
||||||
|
fillImportedBy();
|
||||||
|
|
||||||
|
async function fillImportedBy() {
|
||||||
|
if (!MODULE_NAME) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
const dataCenter = await DeclarationDataCenter.init();
|
||||||
|
const moduleName = MODULE_NAME;
|
||||||
|
const importedByList = document.querySelector(".imported-by-list");
|
||||||
|
const importedBy = dataCenter.moduleImportedBy(moduleName);
|
||||||
|
var innerHTML = "";
|
||||||
|
for(var module of importedBy) {
|
||||||
|
const moduleLink = dataCenter.moduleNameToLink(module);
|
||||||
|
innerHTML += `<li><a href="${SITE_ROOT}${moduleLink}">${module}</a></li>`
|
||||||
|
}
|
||||||
|
importedByList.innerHTML = innerHTML;
|
||||||
|
}
|
|
@ -0,0 +1,36 @@
|
||||||
|
import { DeclarationDataCenter } from "./declaration-data.js";
|
||||||
|
|
||||||
|
annotateInstances();
|
||||||
|
annotateInstancesFor()
|
||||||
|
|
||||||
|
async function annotateInstances() {
|
||||||
|
const dataCenter = await DeclarationDataCenter.init();
|
||||||
|
const instanceForLists = [...(document.querySelectorAll(".instances-list"))];
|
||||||
|
|
||||||
|
for (const instanceForList of instanceForLists) {
|
||||||
|
const className = instanceForList.id.slice("instances-list-".length);
|
||||||
|
const instances = dataCenter.instancesForClass(className);
|
||||||
|
var innerHTML = "";
|
||||||
|
for(var instance of instances) {
|
||||||
|
const instanceLink = dataCenter.declNameToLink(instance);
|
||||||
|
innerHTML += `<li><a href="${SITE_ROOT}${instanceLink}">${instance}</a></li>`
|
||||||
|
}
|
||||||
|
instanceForList.innerHTML = innerHTML;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async function annotateInstancesFor() {
|
||||||
|
const dataCenter = await DeclarationDataCenter.init();
|
||||||
|
const instanceForLists = [...(document.querySelectorAll(".instances-for-list"))];
|
||||||
|
|
||||||
|
for (const instanceForList of instanceForLists) {
|
||||||
|
const typeName = instanceForList.id.slice("instances-for-list-".length);
|
||||||
|
const instances = dataCenter.instancesForType(typeName);
|
||||||
|
var innerHTML = "";
|
||||||
|
for(var instance of instances) {
|
||||||
|
const instanceLink = dataCenter.declNameToLink(instance);
|
||||||
|
innerHTML += `<li><a href="${SITE_ROOT}${instanceLink}">${instance}</a></li>`
|
||||||
|
}
|
||||||
|
instanceForList.innerHTML = innerHTML;
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,41 @@
|
||||||
|
/*
|
||||||
|
* This file is for configing MathJax behavior.
|
||||||
|
* See https://docs.mathjax.org/en/latest/web/configuration.html
|
||||||
|
*
|
||||||
|
* This configuration is copied from old doc-gen3
|
||||||
|
* https://github.com/leanprover-community/doc-gen
|
||||||
|
*/
|
||||||
|
MathJax = {
|
||||||
|
tex: {
|
||||||
|
inlineMath: [["$", "$"]],
|
||||||
|
displayMath: [["$$", "$$"]],
|
||||||
|
},
|
||||||
|
options: {
|
||||||
|
skipHtmlTags: [
|
||||||
|
"script",
|
||||||
|
"noscript",
|
||||||
|
"style",
|
||||||
|
"textarea",
|
||||||
|
"pre",
|
||||||
|
"code",
|
||||||
|
"annotation",
|
||||||
|
"annotation-xml",
|
||||||
|
"decl",
|
||||||
|
"decl_meta",
|
||||||
|
"attributes",
|
||||||
|
"decl_args",
|
||||||
|
"decl_header",
|
||||||
|
"decl_name",
|
||||||
|
"decl_type",
|
||||||
|
"equation",
|
||||||
|
"equations",
|
||||||
|
"structure_field",
|
||||||
|
"structure_fields",
|
||||||
|
"constructor",
|
||||||
|
"constructors",
|
||||||
|
"instances",
|
||||||
|
],
|
||||||
|
ignoreHtmlClass: "tex2jax_ignore",
|
||||||
|
processHtmlClass: "tex2jax_process",
|
||||||
|
},
|
||||||
|
};
|
|
@ -0,0 +1,43 @@
|
||||||
|
/**
|
||||||
|
* This module is used to implement persistent navbar expansion.
|
||||||
|
*/
|
||||||
|
|
||||||
|
// The variable to store the expansion information.
|
||||||
|
let expanded = {};
|
||||||
|
|
||||||
|
// Load expansion information from sessionStorage.
|
||||||
|
for (const e of (sessionStorage.getItem("expanded") || "").split(",")) {
|
||||||
|
if (e !== "") {
|
||||||
|
expanded[e] = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Save expansion information to sessionStorage.
|
||||||
|
*/
|
||||||
|
function saveExpanded() {
|
||||||
|
sessionStorage.setItem(
|
||||||
|
"expanded",
|
||||||
|
Object.getOwnPropertyNames(expanded)
|
||||||
|
.filter((e) => expanded[e])
|
||||||
|
.join(",")
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
// save expansion information when user change the expansion.
|
||||||
|
for (const elem of document.getElementsByClassName("nav_sect")) {
|
||||||
|
const id = elem.getAttribute("data-path");
|
||||||
|
if (!id) continue;
|
||||||
|
if (expanded[id]) {
|
||||||
|
elem.open = true;
|
||||||
|
}
|
||||||
|
elem.addEventListener("toggle", () => {
|
||||||
|
expanded[id] = elem.open;
|
||||||
|
saveExpanded();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// Scroll to center.
|
||||||
|
for (const currentFileLink of document.getElementsByClassName("visible")) {
|
||||||
|
currentFileLink.scrollIntoView({ block: "center" });
|
||||||
|
}
|
|
@ -0,0 +1,158 @@
|
||||||
|
/**
|
||||||
|
* This module is used to handle user's interaction with the search form.
|
||||||
|
*/
|
||||||
|
|
||||||
|
import { DeclarationDataCenter } from "./declaration-data.js";
|
||||||
|
|
||||||
|
// Search form and input in the upper right toolbar
|
||||||
|
const SEARCH_FORM = document.querySelector("#search_form");
|
||||||
|
const SEARCH_INPUT = SEARCH_FORM.querySelector("input[name=q]");
|
||||||
|
|
||||||
|
// Search form on the /search.html_page. These may be null.
|
||||||
|
const SEARCH_PAGE_INPUT = document.querySelector("#search_page_query")
|
||||||
|
const SEARCH_RESULTS = document.querySelector("#search_results")
|
||||||
|
|
||||||
|
// Max results to show for autocomplete or /search.html page.
|
||||||
|
const AC_MAX_RESULTS = 30
|
||||||
|
const SEARCH_PAGE_MAX_RESULTS = undefined
|
||||||
|
|
||||||
|
// Create an `div#autocomplete_results` to hold all autocomplete results.
|
||||||
|
let ac_results = document.createElement("div");
|
||||||
|
ac_results.id = "autocomplete_results";
|
||||||
|
SEARCH_FORM.appendChild(ac_results);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Attach `selected` class to the the selected autocomplete result.
|
||||||
|
*/
|
||||||
|
function handleSearchCursorUpDown(down) {
|
||||||
|
const sel = ac_results.querySelector(`.selected`);
|
||||||
|
if (sel) {
|
||||||
|
sel.classList.remove("selected");
|
||||||
|
const toSelect = down
|
||||||
|
? sel.nextSibling
|
||||||
|
: sel.previousSibling;
|
||||||
|
toSelect && toSelect.classList.add("selected");
|
||||||
|
} else {
|
||||||
|
const toSelect = down ? ac_results.firstChild : ac_results.lastChild;
|
||||||
|
toSelect && toSelect.classList.add("selected");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Perform search (when enter is pressed).
|
||||||
|
*/
|
||||||
|
function handleSearchEnter() {
|
||||||
|
const sel = ac_results.querySelector(`.selected .result_link a`) || document.querySelector(`#search_button`);
|
||||||
|
sel.click();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Allow user to navigate autocomplete results with up/down arrow keys, and choose with enter.
|
||||||
|
*/
|
||||||
|
SEARCH_INPUT.addEventListener("keydown", (ev) => {
|
||||||
|
switch (ev.key) {
|
||||||
|
case "Down":
|
||||||
|
case "ArrowDown":
|
||||||
|
ev.preventDefault();
|
||||||
|
handleSearchCursorUpDown(true);
|
||||||
|
break;
|
||||||
|
case "Up":
|
||||||
|
case "ArrowUp":
|
||||||
|
ev.preventDefault();
|
||||||
|
handleSearchCursorUpDown(false);
|
||||||
|
break;
|
||||||
|
case "Enter":
|
||||||
|
ev.preventDefault();
|
||||||
|
handleSearchEnter();
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Remove all children of a DOM node.
|
||||||
|
*/
|
||||||
|
function removeAllChildren(node) {
|
||||||
|
while (node.firstChild) {
|
||||||
|
node.removeChild(node.lastChild);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Handle user input and perform search.
|
||||||
|
*/
|
||||||
|
function handleSearch(dataCenter, err, ev, sr, maxResults, autocomplete) {
|
||||||
|
const text = ev.target.value;
|
||||||
|
|
||||||
|
// If no input clear all.
|
||||||
|
if (!text) {
|
||||||
|
sr.removeAttribute("state");
|
||||||
|
removeAllChildren(sr);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// searching
|
||||||
|
sr.setAttribute("state", "loading");
|
||||||
|
|
||||||
|
if (dataCenter) {
|
||||||
|
var allowedKinds;
|
||||||
|
if (!autocomplete) {
|
||||||
|
allowedKinds = new Set();
|
||||||
|
document.querySelectorAll(".kind_checkbox").forEach((checkbox) =>
|
||||||
|
{
|
||||||
|
if (checkbox.checked) {
|
||||||
|
allowedKinds.add(checkbox.value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
);
|
||||||
|
}
|
||||||
|
const result = dataCenter.search(text, false, allowedKinds, maxResults);
|
||||||
|
|
||||||
|
// in case user has updated the input.
|
||||||
|
if (ev.target.value != text) return;
|
||||||
|
|
||||||
|
// update autocomplete results
|
||||||
|
removeAllChildren(sr);
|
||||||
|
for (const { name, kind, doc, docLink } of result) {
|
||||||
|
const row = sr.appendChild(document.createElement("div"));
|
||||||
|
row.classList.add("search_result")
|
||||||
|
const linkdiv = row.appendChild(document.createElement("div"))
|
||||||
|
linkdiv.classList.add("result_link")
|
||||||
|
const link = linkdiv.appendChild(document.createElement("a"));
|
||||||
|
link.innerText = name;
|
||||||
|
link.title = name;
|
||||||
|
link.href = SITE_ROOT + docLink;
|
||||||
|
if (!autocomplete) {
|
||||||
|
const doctext = row.appendChild(document.createElement("div"));
|
||||||
|
doctext.innerText = doc
|
||||||
|
doctext.classList.add("result_doc")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// handle error
|
||||||
|
else {
|
||||||
|
removeAllChildren(sr);
|
||||||
|
const d = sr.appendChild(document.createElement("a"));
|
||||||
|
d.innerText = `Cannot fetch data, please check your network connection.\n${err}`;
|
||||||
|
}
|
||||||
|
sr.setAttribute("state", "done");
|
||||||
|
}
|
||||||
|
|
||||||
|
DeclarationDataCenter.init()
|
||||||
|
.then((dataCenter) => {
|
||||||
|
// Search autocompletion.
|
||||||
|
SEARCH_INPUT.addEventListener("input", ev => handleSearch(dataCenter, null, ev, ac_results, AC_MAX_RESULTS, true));
|
||||||
|
if(SEARCH_PAGE_INPUT) {
|
||||||
|
SEARCH_PAGE_INPUT.addEventListener("input", ev => handleSearch(dataCenter, null, ev, SEARCH_RESULTS, SEARCH_PAGE_MAX_RESULTS, false))
|
||||||
|
document.querySelectorAll(".kind_checkbox").forEach((checkbox) =>
|
||||||
|
checkbox.addEventListener("input", ev => SEARCH_PAGE_INPUT.dispatchEvent(new Event("input")))
|
||||||
|
);
|
||||||
|
SEARCH_PAGE_INPUT.dispatchEvent(new Event("input"))
|
||||||
|
};
|
||||||
|
SEARCH_INPUT.dispatchEvent(new Event("input"))
|
||||||
|
})
|
||||||
|
.catch(e => {
|
||||||
|
SEARCH_INPUT.addEventListener("input", ev => handleSearch(null, e, ev, ac_results, AC_MAX_RESULTS,true ));
|
||||||
|
if(SEARCH_PAGE_INPUT) {
|
||||||
|
SEARCH_PAGE_INPUT.addEventListener("input", ev => handleSearch(null, e, ev, SEARCH_RESULTS, SEARCH_PAGE_MAX_RESULTS, false));
|
||||||
|
}
|
||||||
|
});
|
|
@ -0,0 +1,4 @@
|
||||||
|
/**
|
||||||
|
* Get the site root, {siteRoot} is to be replaced by doc-gen4.
|
||||||
|
*/
|
||||||
|
export const SITE_ROOT = "{siteRoot}";
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue