More progress.
parent
a368f32558
commit
a8520e74bd
|
@ -9584,6 +9584,9 @@
|
|||
Assume that $A$ is finite and $f \colon A \rightarrow A$.
|
||||
Show that $f$ is one-to-one iff $\ran{f} = A$.
|
||||
|
||||
\code*{Bookshelf/Enderton/Set/Chapter\_6}
|
||||
{Enderton.Set.Chapter\_6.exercise\_6\_7}
|
||||
|
||||
\begin{proof}
|
||||
Let $A$ be a \nameref{ref:finite-set} and $f \colon A \rightarrow A$.
|
||||
|
||||
|
|
|
@ -675,50 +675,52 @@ theorem corollary_6g {S S' : Set α} (hS : Set.Finite S) (hS' : S' ⊆ S)
|
|||
· intro h
|
||||
rwa [h]
|
||||
|
||||
/-- #### Exercise 6.1
|
||||
/-- #### Exercise 6.7
|
||||
|
||||
Show that the equation
|
||||
```
|
||||
f(m, n) = 2ᵐ(2n + 1) - 1
|
||||
```
|
||||
defines a one-to-one correspondence between `ω × ω` and `ω`.
|
||||
Assume that `A` is finite and `f : A → A`. Show that `f` is one-to-one **iff**
|
||||
`ran f = A`.
|
||||
-/
|
||||
theorem exercise_6_1
|
||||
: Function.Bijective (fun p : ℕ × ℕ => 2 ^ p.1 * (2 * p.2 + 1) - 1) := by
|
||||
theorem exercise_6_7 [DecidableEq α] [Nonempty α] {A : Set α} {f : α → α}
|
||||
(hA₁ : Set.Finite A) (hA₂ : Set.MapsTo f A A)
|
||||
: Set.InjOn f A ↔ f '' A = A := by
|
||||
apply Iff.intro
|
||||
· intro hf
|
||||
have hf₂ : A ≈ f '' A := by
|
||||
refine ⟨f, ?_, hf, ?_⟩
|
||||
· -- `Set.MapsTo f A (f '' A)`
|
||||
intro x hx
|
||||
simp only [Set.mem_image]
|
||||
exact ⟨x, hx, rfl⟩
|
||||
· -- `Set.SurjOn f A (f '' A)`
|
||||
intro _ hx
|
||||
exact hx
|
||||
have hf₃ : f '' A ⊆ A := by
|
||||
show ∀ x, x ∈ f '' A → x ∈ A
|
||||
intro x ⟨a, ha₁, ha₂⟩
|
||||
rw [← ha₂]
|
||||
exact hA₂ ha₁
|
||||
rw [subset_iff_ssubset_or_eq] at hf₃
|
||||
exact Or.elim hf₃ (fun h => absurd hf₂ (corollary_6c hA₁ h)) id
|
||||
· intro hf₁
|
||||
sorry
|
||||
|
||||
/-- #### Exercise 6.8
|
||||
|
||||
Prove that the union of two finites sets is finite, without any use of
|
||||
arithmetic.
|
||||
-/
|
||||
theorem exercise_6_8 {A B : Set α} (hA : Set.Finite A) (hB : Set.Finite B)
|
||||
: Set.Finite (A ∪ B) := by
|
||||
sorry
|
||||
|
||||
/-- #### Exercise 6.2
|
||||
/-- #### Exercise 6.9
|
||||
|
||||
Show that in Fig. 32 we have:
|
||||
```
|
||||
J(m, n) = [1 + 2 + ⋯ + (m + n)] + m
|
||||
= (1 / 2)[(m + n)² + 3m + n].
|
||||
```
|
||||
Prove that the Cartesian product of two finites sets is finite, without any use
|
||||
of arithmetic.
|
||||
-/
|
||||
theorem exercise_6_2
|
||||
: Function.Bijective
|
||||
(fun p : ℕ × ℕ => (1 / 2) * ((p.1 + p.2) ^ 2 + 3 * p.1 + p.2)) := by
|
||||
sorry
|
||||
|
||||
/-- #### Exercise 6.3
|
||||
|
||||
Find a one-to-one correspondence between the open unit interval `(0, 1)` and `ℝ`
|
||||
that takes rationals to rationals and irrationals to irrationals.
|
||||
-/
|
||||
theorem exercise_6_3
|
||||
: True := by
|
||||
sorry
|
||||
|
||||
/-- #### Exercise 6.4
|
||||
|
||||
Construct a one-to-one correspondence between the closed unit interval
|
||||
```
|
||||
[0, 1] = {x ∈ ℝ | 0 ≤ x ≤ 1}
|
||||
```
|
||||
and the open unit interval `(0, 1)`.
|
||||
-/
|
||||
theorem exercise_6_4
|
||||
: ∃ F, Set.BijOn F (Set.Ioo 0 1) (@Set.univ ℝ) := by
|
||||
theorem exercise_6_9 {A : Set α} {B : Set β}
|
||||
(hA : Set.Finite A) (hB : Set.Finite B)
|
||||
: Set.Finite (Set.prod A B) := by
|
||||
sorry
|
||||
|
||||
end Enderton.Set.Chapter_6
|
||||
|
|
Loading…
Reference in New Issue