Enderton. Function question prompts.

finite-set-exercises
Joshua Potter 2023-06-28 15:31:37 -06:00
parent 76d294a47f
commit f885f6e334
1 changed files with 285 additions and 0 deletions
Bookshelf/Enderton

View File

@ -3644,4 +3644,289 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\end{proof}
\section{Exercise 8}%
\label{sec:exercise-8}
\subsection{\unverified{Exercise 8.11}}%
\label{sub:exercise-8.11}
Prove the following version (for functions) of the extensionality principle:
Assume that $F$ and $G$ are functions, $\dom{F} = \dom{G}$, and
$F(x) = G(x)$ for all $x$ in the common domain.
Then $F = G$.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.12}}%
\label{sub:exercise-8.12}
Assume that $f$ and $g$ are functions and show that
$$f \subseteq g \iff \dom{f} \subseteq \dom{g} \land
(\forall x \in \dom{f}) f(x) = g(x).$$
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.13}}%
\label{sub:exercise-8.13}
Assume that $f$ and $g$ are functions with $f \subseteq g$ and
$\dom{g} \subseteq \dom{f}$.
Show that $f = g$.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.14}}%
\label{sub:exercise-8.14}
Assume that $f$ and $g$ are functions.
\begin{enumerate}[(a)]
\item Show that $f \cap g$ is a function.
\item Show that $f \cup g$ is a function iff $f(x) = g(x)$ for every $x$ in
$(\dom{f}) \cap (\dom{g})$.
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.15}}%
\label{sub:exercise-8.15}
Let $\mathscr{A}$ be a set of functions such that for any $f$ and $g$ in
$\mathscr{A}$, either $f \subseteq g$ or $g \subseteq f$.
Show that $\bigcup \mathscr{A}$ is a function.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.16}}%
\label{sub:exercise-8.16}
Show that there is no set to which every function belongs.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.17}}%
\label{sub:exercise-8.17}
Show that the composition of two single-rooted sets is again single-rooted.
Conclude that the composition of two one-to-one functions is again one-to-one.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.18}}%
\label{sub:exercise-8.18}
Let $R$ be the set
$$\{ \left< 0, 1 \right>, \left< 0, 2 \right>, \left< 0, 3 \right>,
\left< 1, 2 \right>, \left< 1, 3 \right>, \left< 2, 3 \right>\}.$$
Evaluate the following: $R \circ R$, $R \restriction \{1\}$,
$R^{-1} \restriction \{1\}$, $\img{R}{\{1\}}$, and $\img{R^{-1}}{\{1\}}$.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.19}}%
\label{sub:exercise-8.19}
Let $$A = \{
\left< \emptyset, \{\emptyset, \{\emptyset\}\} \right>,
\left< \{\emptyset\}, \emptyset \right>
\}.$$
Evaluate each of the following: $A(\emptyset)$, $\img{A}{\emptyset}$,
$\img{A}{\{\emptyset\}}$, $\img{A}{\{\emptyset, \{\emptyset\}\}}$,
$A^{-1}$, $A \circ A$, $A \restriction \emptyset$,
$A \restriction \{\emptyset\}$, $A \restriction \{\emptyset, \{\emptyset\}\}$,
$\bigcup\bigcup A$.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.20}}%
\label{sub:exercise-8.20}
Show that $F \restriction A = F \cap (A \times \ran{F})$.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.21}}%
\label{sub:exercise-8.21}
Show that $(R \circ S) \circ T = R \circ (S \circ T)$.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.22}}%
\label{sub:exercise-8.22}
Show that the following are correct for any sets.
\begin{enumerate}[(a)]
\item $A \subseteq B \Rightarrow \img{F}{A} \subseteq \img{F}{B}$.
\item $\img{(F \circ G)}{A} = \img{F}{\img{G}{A}}$.
\item $Q \restriction (A \cup B) =
(Q \restriction A) \cup (Q \restriction B)$.
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.23}}%
\label{sub:exercise-8.23}
Let $I_A$ be the identity function on the set $A$.
Show that for any sets $B$ and $C$,
$$B \circ I_A = B \restriction A \quad\text{and}\quad
\img{I_A}{C} = A \cap C.$$
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.24}}%
\label{sub:exercise-8.24}
Show that for a function $F$,
$\img{F^{-1}}{A} = \{x \in \dom{F} \mid F(x) \in A\}$.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.25}}%
\label{sub:exercise-8.25}
\begin{enumerate}[(a)]
\item Assume that $G$ is a one-to-one function.
Show that $G \circ G^{-1}$ is $I_{\ran{G}}$, the identity function on
$\ran{G}$.
\item Show that the result of part (a) holds for any function $G$, not
necessarily one-to-one.
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.26}}%
\label{sub:exercise-8.26}
Prove the second halves of parts (a) and (b) of Theorem 3K.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.27}}%
\label{sub:exercise-8.27}
Show that $\dom{(F \circ G)} = \img{G^{-1}}{\dom{F}}$ for any sets $F$ and $G$.
($F$ and $G$ need not be functions.)
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.28}}%
\label{sub:exercise-8.28}
Assume that $f$ is a one-to-one function from $A$ into $B$, and that $G$ is the
function with $\dom{G} = \powerset{A}$ defined by the equation
$G(X) = \img{f}{x}$.
Show that $G$ maps $\powerset{A}$ one-to-one into $\powerset{B}$.
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.29}}%
\label{sub:exercise-8.29}
Assume that $f \colon A \rightarrow B$ and define a function
$G \colon B \rightarrow \powerset{A}$ by
$$G(b) = \{x \in A \mid f(x) = b\}.$$
Show that if $f$ maps $A$ \textit{onto} $B$, then $G$ is one-to-one.
Does the converse hold?
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Exercise 8.30}}%
\label{sub:exercise-8.30}
Assume that $F \colon \powerset{A} \rightarrow \powerset{A}$ and that $F$ has
the monotonicity property:
$$X \subseteq Y \subseteq A \Rightarrow F(X) \subseteq F(Y).$$
Define
$$B = \bigcap\{X \subseteq A \mid F(X) \subseteq X\} \quad\text{and}\quad
C = \bigcup\{X \subseteq A \mid X \subseteq F(X)\}.$$
\begin{enumerate}[(a)]
\item Show that $F(B) = B$ and $F(C) = C$.
\item Show that if $F(X) = X$, then $B \subseteq X \subseteq C$.
\end{enumerate}
\begin{proof}
TODO
\end{proof}
\end{document}