From f885f6e33480d2b18440eea105e1cea765770591 Mon Sep 17 00:00:00 2001 From: Joshua Potter Date: Wed, 28 Jun 2023 15:31:37 -0600 Subject: [PATCH] Enderton. Function question prompts. --- Bookshelf/Enderton/Set.tex | 285 +++++++++++++++++++++++++++++++++++++ 1 file changed, 285 insertions(+) diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index 6c2203a..d3965c6 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -3644,4 +3644,289 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one. \end{proof} +\section{Exercise 8}% +\label{sec:exercise-8} + +\subsection{\unverified{Exercise 8.11}}% +\label{sub:exercise-8.11} + +Prove the following version (for functions) of the extensionality principle: + Assume that $F$ and $G$ are functions, $\dom{F} = \dom{G}$, and + $F(x) = G(x)$ for all $x$ in the common domain. +Then $F = G$. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.12}}% +\label{sub:exercise-8.12} + +Assume that $f$ and $g$ are functions and show that + $$f \subseteq g \iff \dom{f} \subseteq \dom{g} \land + (\forall x \in \dom{f}) f(x) = g(x).$$ + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.13}}% +\label{sub:exercise-8.13} + +Assume that $f$ and $g$ are functions with $f \subseteq g$ and + $\dom{g} \subseteq \dom{f}$. +Show that $f = g$. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.14}}% +\label{sub:exercise-8.14} + +Assume that $f$ and $g$ are functions. + +\begin{enumerate}[(a)] + \item Show that $f \cap g$ is a function. + \item Show that $f \cup g$ is a function iff $f(x) = g(x)$ for every $x$ in + $(\dom{f}) \cap (\dom{g})$. +\end{enumerate} + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.15}}% +\label{sub:exercise-8.15} + +Let $\mathscr{A}$ be a set of functions such that for any $f$ and $g$ in + $\mathscr{A}$, either $f \subseteq g$ or $g \subseteq f$. +Show that $\bigcup \mathscr{A}$ is a function. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.16}}% +\label{sub:exercise-8.16} + +Show that there is no set to which every function belongs. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.17}}% +\label{sub:exercise-8.17} + +Show that the composition of two single-rooted sets is again single-rooted. +Conclude that the composition of two one-to-one functions is again one-to-one. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.18}}% +\label{sub:exercise-8.18} + +Let $R$ be the set + $$\{ \left< 0, 1 \right>, \left< 0, 2 \right>, \left< 0, 3 \right>, + \left< 1, 2 \right>, \left< 1, 3 \right>, \left< 2, 3 \right>\}.$$ +Evaluate the following: $R \circ R$, $R \restriction \{1\}$, + $R^{-1} \restriction \{1\}$, $\img{R}{\{1\}}$, and $\img{R^{-1}}{\{1\}}$. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.19}}% +\label{sub:exercise-8.19} + +Let $$A = \{ + \left< \emptyset, \{\emptyset, \{\emptyset\}\} \right>, + \left< \{\emptyset\}, \emptyset \right> + \}.$$ +Evaluate each of the following: $A(\emptyset)$, $\img{A}{\emptyset}$, + $\img{A}{\{\emptyset\}}$, $\img{A}{\{\emptyset, \{\emptyset\}\}}$, + $A^{-1}$, $A \circ A$, $A \restriction \emptyset$, + $A \restriction \{\emptyset\}$, $A \restriction \{\emptyset, \{\emptyset\}\}$, + $\bigcup\bigcup A$. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.20}}% +\label{sub:exercise-8.20} + +Show that $F \restriction A = F \cap (A \times \ran{F})$. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.21}}% +\label{sub:exercise-8.21} + +Show that $(R \circ S) \circ T = R \circ (S \circ T)$. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.22}}% +\label{sub:exercise-8.22} + +Show that the following are correct for any sets. + +\begin{enumerate}[(a)] + \item $A \subseteq B \Rightarrow \img{F}{A} \subseteq \img{F}{B}$. + \item $\img{(F \circ G)}{A} = \img{F}{\img{G}{A}}$. + \item $Q \restriction (A \cup B) = + (Q \restriction A) \cup (Q \restriction B)$. +\end{enumerate} + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.23}}% +\label{sub:exercise-8.23} + +Let $I_A$ be the identity function on the set $A$. +Show that for any sets $B$ and $C$, + $$B \circ I_A = B \restriction A \quad\text{and}\quad + \img{I_A}{C} = A \cap C.$$ + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.24}}% +\label{sub:exercise-8.24} + +Show that for a function $F$, + $\img{F^{-1}}{A} = \{x \in \dom{F} \mid F(x) \in A\}$. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.25}}% +\label{sub:exercise-8.25} + +\begin{enumerate}[(a)] + \item Assume that $G$ is a one-to-one function. + Show that $G \circ G^{-1}$ is $I_{\ran{G}}$, the identity function on + $\ran{G}$. + \item Show that the result of part (a) holds for any function $G$, not + necessarily one-to-one. +\end{enumerate} + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.26}}% +\label{sub:exercise-8.26} + +Prove the second halves of parts (a) and (b) of Theorem 3K. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.27}}% +\label{sub:exercise-8.27} + +Show that $\dom{(F \circ G)} = \img{G^{-1}}{\dom{F}}$ for any sets $F$ and $G$. +($F$ and $G$ need not be functions.) + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.28}}% +\label{sub:exercise-8.28} + +Assume that $f$ is a one-to-one function from $A$ into $B$, and that $G$ is the + function with $\dom{G} = \powerset{A}$ defined by the equation + $G(X) = \img{f}{x}$. +Show that $G$ maps $\powerset{A}$ one-to-one into $\powerset{B}$. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.29}}% +\label{sub:exercise-8.29} + +Assume that $f \colon A \rightarrow B$ and define a function + $G \colon B \rightarrow \powerset{A}$ by + $$G(b) = \{x \in A \mid f(x) = b\}.$$ +Show that if $f$ maps $A$ \textit{onto} $B$, then $G$ is one-to-one. +Does the converse hold? + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\unverified{Exercise 8.30}}% +\label{sub:exercise-8.30} + +Assume that $F \colon \powerset{A} \rightarrow \powerset{A}$ and that $F$ has + the monotonicity property: + $$X \subseteq Y \subseteq A \Rightarrow F(X) \subseteq F(Y).$$ +Define + $$B = \bigcap\{X \subseteq A \mid F(X) \subseteq X\} \quad\text{and}\quad + C = \bigcup\{X \subseteq A \mid X \subseteq F(X)\}.$$ +\begin{enumerate}[(a)] + \item Show that $F(B) = B$ and $F(C) = C$. + \item Show that if $F(X) = X$, then $B \subseteq X \subseteq C$. +\end{enumerate} + +\begin{proof} + + TODO + +\end{proof} + \end{document}