Enderton. Function question prompts.
parent
76d294a47f
commit
f885f6e334
|
@ -3644,4 +3644,289 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
\section{Exercise 8}%
|
||||||
|
\label{sec:exercise-8}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.11}}%
|
||||||
|
\label{sub:exercise-8.11}
|
||||||
|
|
||||||
|
Prove the following version (for functions) of the extensionality principle:
|
||||||
|
Assume that $F$ and $G$ are functions, $\dom{F} = \dom{G}$, and
|
||||||
|
$F(x) = G(x)$ for all $x$ in the common domain.
|
||||||
|
Then $F = G$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.12}}%
|
||||||
|
\label{sub:exercise-8.12}
|
||||||
|
|
||||||
|
Assume that $f$ and $g$ are functions and show that
|
||||||
|
$$f \subseteq g \iff \dom{f} \subseteq \dom{g} \land
|
||||||
|
(\forall x \in \dom{f}) f(x) = g(x).$$
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.13}}%
|
||||||
|
\label{sub:exercise-8.13}
|
||||||
|
|
||||||
|
Assume that $f$ and $g$ are functions with $f \subseteq g$ and
|
||||||
|
$\dom{g} \subseteq \dom{f}$.
|
||||||
|
Show that $f = g$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.14}}%
|
||||||
|
\label{sub:exercise-8.14}
|
||||||
|
|
||||||
|
Assume that $f$ and $g$ are functions.
|
||||||
|
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item Show that $f \cap g$ is a function.
|
||||||
|
\item Show that $f \cup g$ is a function iff $f(x) = g(x)$ for every $x$ in
|
||||||
|
$(\dom{f}) \cap (\dom{g})$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.15}}%
|
||||||
|
\label{sub:exercise-8.15}
|
||||||
|
|
||||||
|
Let $\mathscr{A}$ be a set of functions such that for any $f$ and $g$ in
|
||||||
|
$\mathscr{A}$, either $f \subseteq g$ or $g \subseteq f$.
|
||||||
|
Show that $\bigcup \mathscr{A}$ is a function.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.16}}%
|
||||||
|
\label{sub:exercise-8.16}
|
||||||
|
|
||||||
|
Show that there is no set to which every function belongs.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.17}}%
|
||||||
|
\label{sub:exercise-8.17}
|
||||||
|
|
||||||
|
Show that the composition of two single-rooted sets is again single-rooted.
|
||||||
|
Conclude that the composition of two one-to-one functions is again one-to-one.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.18}}%
|
||||||
|
\label{sub:exercise-8.18}
|
||||||
|
|
||||||
|
Let $R$ be the set
|
||||||
|
$$\{ \left< 0, 1 \right>, \left< 0, 2 \right>, \left< 0, 3 \right>,
|
||||||
|
\left< 1, 2 \right>, \left< 1, 3 \right>, \left< 2, 3 \right>\}.$$
|
||||||
|
Evaluate the following: $R \circ R$, $R \restriction \{1\}$,
|
||||||
|
$R^{-1} \restriction \{1\}$, $\img{R}{\{1\}}$, and $\img{R^{-1}}{\{1\}}$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.19}}%
|
||||||
|
\label{sub:exercise-8.19}
|
||||||
|
|
||||||
|
Let $$A = \{
|
||||||
|
\left< \emptyset, \{\emptyset, \{\emptyset\}\} \right>,
|
||||||
|
\left< \{\emptyset\}, \emptyset \right>
|
||||||
|
\}.$$
|
||||||
|
Evaluate each of the following: $A(\emptyset)$, $\img{A}{\emptyset}$,
|
||||||
|
$\img{A}{\{\emptyset\}}$, $\img{A}{\{\emptyset, \{\emptyset\}\}}$,
|
||||||
|
$A^{-1}$, $A \circ A$, $A \restriction \emptyset$,
|
||||||
|
$A \restriction \{\emptyset\}$, $A \restriction \{\emptyset, \{\emptyset\}\}$,
|
||||||
|
$\bigcup\bigcup A$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.20}}%
|
||||||
|
\label{sub:exercise-8.20}
|
||||||
|
|
||||||
|
Show that $F \restriction A = F \cap (A \times \ran{F})$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.21}}%
|
||||||
|
\label{sub:exercise-8.21}
|
||||||
|
|
||||||
|
Show that $(R \circ S) \circ T = R \circ (S \circ T)$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.22}}%
|
||||||
|
\label{sub:exercise-8.22}
|
||||||
|
|
||||||
|
Show that the following are correct for any sets.
|
||||||
|
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item $A \subseteq B \Rightarrow \img{F}{A} \subseteq \img{F}{B}$.
|
||||||
|
\item $\img{(F \circ G)}{A} = \img{F}{\img{G}{A}}$.
|
||||||
|
\item $Q \restriction (A \cup B) =
|
||||||
|
(Q \restriction A) \cup (Q \restriction B)$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.23}}%
|
||||||
|
\label{sub:exercise-8.23}
|
||||||
|
|
||||||
|
Let $I_A$ be the identity function on the set $A$.
|
||||||
|
Show that for any sets $B$ and $C$,
|
||||||
|
$$B \circ I_A = B \restriction A \quad\text{and}\quad
|
||||||
|
\img{I_A}{C} = A \cap C.$$
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.24}}%
|
||||||
|
\label{sub:exercise-8.24}
|
||||||
|
|
||||||
|
Show that for a function $F$,
|
||||||
|
$\img{F^{-1}}{A} = \{x \in \dom{F} \mid F(x) \in A\}$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.25}}%
|
||||||
|
\label{sub:exercise-8.25}
|
||||||
|
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item Assume that $G$ is a one-to-one function.
|
||||||
|
Show that $G \circ G^{-1}$ is $I_{\ran{G}}$, the identity function on
|
||||||
|
$\ran{G}$.
|
||||||
|
\item Show that the result of part (a) holds for any function $G$, not
|
||||||
|
necessarily one-to-one.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.26}}%
|
||||||
|
\label{sub:exercise-8.26}
|
||||||
|
|
||||||
|
Prove the second halves of parts (a) and (b) of Theorem 3K.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.27}}%
|
||||||
|
\label{sub:exercise-8.27}
|
||||||
|
|
||||||
|
Show that $\dom{(F \circ G)} = \img{G^{-1}}{\dom{F}}$ for any sets $F$ and $G$.
|
||||||
|
($F$ and $G$ need not be functions.)
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.28}}%
|
||||||
|
\label{sub:exercise-8.28}
|
||||||
|
|
||||||
|
Assume that $f$ is a one-to-one function from $A$ into $B$, and that $G$ is the
|
||||||
|
function with $\dom{G} = \powerset{A}$ defined by the equation
|
||||||
|
$G(X) = \img{f}{x}$.
|
||||||
|
Show that $G$ maps $\powerset{A}$ one-to-one into $\powerset{B}$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.29}}%
|
||||||
|
\label{sub:exercise-8.29}
|
||||||
|
|
||||||
|
Assume that $f \colon A \rightarrow B$ and define a function
|
||||||
|
$G \colon B \rightarrow \powerset{A}$ by
|
||||||
|
$$G(b) = \{x \in A \mid f(x) = b\}.$$
|
||||||
|
Show that if $f$ maps $A$ \textit{onto} $B$, then $G$ is one-to-one.
|
||||||
|
Does the converse hold?
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\unverified{Exercise 8.30}}%
|
||||||
|
\label{sub:exercise-8.30}
|
||||||
|
|
||||||
|
Assume that $F \colon \powerset{A} \rightarrow \powerset{A}$ and that $F$ has
|
||||||
|
the monotonicity property:
|
||||||
|
$$X \subseteq Y \subseteq A \Rightarrow F(X) \subseteq F(Y).$$
|
||||||
|
Define
|
||||||
|
$$B = \bigcap\{X \subseteq A \mid F(X) \subseteq X\} \quad\text{and}\quad
|
||||||
|
C = \bigcup\{X \subseteq A \mid X \subseteq F(X)\}.$$
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item Show that $F(B) = B$ and $F(C) = C$.
|
||||||
|
\item Show that if $F(X) = X$, then $B \subseteq X \subseteq C$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
Loading…
Reference in New Issue