Generalize concept of partitions and step functions.

finite-set-exercises
Joshua Potter 2023-05-12 13:17:34 -06:00
parent 56751a6f3b
commit f5dfb9ff6b
10 changed files with 188 additions and 177 deletions

View File

@ -2,6 +2,8 @@ import Mathlib.Data.Real.Basic
import Mathlib.Tactic.LibrarySearch import Mathlib.Tactic.LibrarySearch
import Common.Real.Floor import Common.Real.Floor
import Common.Set.Basic
import Common.Set.Intervals.StepFunction
/-! # Apostol.Chapter_1_11 -/ /-! # Apostol.Chapter_1_11 -/
@ -129,6 +131,10 @@ theorem exercise_7b (ha : a > 0) (hb : b > 0) (hp : Nat.coprime a b)
((a - 1) * (b - 1)) / 2 := by ((a - 1) * (b - 1)) / 2 := by
sorry sorry
section
open Set.Intervals
/-- ### Exercise 8 /-- ### Exercise 8
Let `S` be a set of points on the real line. The *characteristic function* of Let `S` be a set of points on the real line. The *characteristic function* of
@ -147,4 +153,6 @@ combination of characteristic functions of intervals.
-/ -/
theorem exercise_8 : True := sorry theorem exercise_8 : True := sorry
end
end Apostol.Chapter_1_11 end Apostol.Chapter_1_11

View File

@ -244,8 +244,8 @@ theorem len_pairwise_len_cons_sub_one {xs : List α} (h : xs.length > 0)
If a `pairwise`'d `List` isn't empty, then the input `List` must have at least If a `pairwise`'d `List` isn't empty, then the input `List` must have at least
two entries. two entries.
-/ -/
theorem mem_pairwise_imp_length_self_ge_2 {xs : List α} (h : xs.pairwise f ≠ []) theorem mem_pairwise_imp_length_self_ge_two {xs : List α}
: xs.length ≥ 2 := by (h : xs.pairwise f ≠ []) : xs.length ≥ 2 := by
unfold pairwise tail? at h unfold pairwise tail? at h
cases hx : xs with cases hx : xs with
| nil => rw [hx] at h; simp at h | nil => rw [hx] at h; simp at h

View File

@ -1,4 +1,3 @@
import Common.Real.Geometry.Area import Common.Real.Geometry.Area
import Common.Real.Geometry.Basic import Common.Real.Geometry.Basic
import Common.Real.Geometry.Rectangle import Common.Real.Geometry.Rectangle
import Common.Real.Geometry.StepFunction

View File

@ -1,5 +1,5 @@
import Common.Real.Geometry.Rectangle import Common.Real.Geometry.Rectangle
import Common.Real.Geometry.StepFunction import Common.Set.Intervals.StepFunction
/-! # Common.Real.Geometry.Area /-! # Common.Real.Geometry.Area
@ -107,23 +107,24 @@ Every step region is measurable. This follows from the choice of scale axiom,
and the fact all step regions are equivalent to the union of a collection of and the fact all step regions are equivalent to the union of a collection of
rectangles. rectangles.
-/ -/
theorem step_function_measurable (S : StepFunction) : S.toSet ∈ 𝓜 := by theorem step_function_measurable (S : Set.Intervals.StepFunction )
: S.toSet ∈ 𝓜 := by
sorry sorry
def exhaustionProperty (k : ) (Q : Set ℝ²) := def forallSubsetsBetween (k : ) (Q : Set ℝ²) :=
∀ S T : StepFunction, ∀ S T : Set.Intervals.StepFunction ,
(hS : S.toSet ⊆ Q) → (hS : S.toSet ⊆ Q) →
(hT : Q ⊆ T.toSet) → (hT : Q ⊆ T.toSet) →
area (step_function_measurable S) ≤ k ∧ k ≤ area (step_function_measurable T) area (step_function_measurable S) ≤ k ∧ k ≤ area (step_function_measurable T)
axiom exhaustion_exists_unique_imp_measurable (Q : Set ℝ²) axiom exhaustion_exists_unique_imp_measurable (Q : Set ℝ²)
: (∃! k : , exhaustionProperty k Q) : (∃! k : , forallSubsetsBetween k Q)
→ Q ∈ 𝓜 → Q ∈ 𝓜
axiom exhaustion_exists_unique_imp_area_eq (Q : Set ℝ²) axiom exhaustion_exists_unique_imp_area_eq (Q : Set ℝ²)
: ∃ k : , : ∃ k : ,
(h : exhaustionProperty k Q ∧ (h : forallSubsetsBetween k Q ∧
(∀ x : , exhaustionProperty x Q → x = k)) (∀ x : , forallSubsetsBetween x Q → x = k))
→ area (exhaustion_exists_unique_imp_measurable Q ⟨k, h⟩) = k → area (exhaustion_exists_unique_imp_measurable Q ⟨k, h⟩) = k
end Real.Geometry.Area end Real.Geometry.Area

View File

@ -1,161 +0,0 @@
import Mathlib.Data.Real.Basic
import Mathlib.Data.List.Sort
import Common.List.Basic
import Common.Real.Basic
/-! # Common.Real.Geometry.StepFunction
A characterization of constructs surrounding step functions.
-/
namespace Real
open List
/-! ## Partition -/
/--
A `Partition` is some finite subset of `[a, b]` containing points `a` and `b`.
It is assumed that the points of the `Partition` are distinct and sorted. The
use of a `List` ensures finite-ness.
-/
structure Partition where
xs : List
sorted : Sorted LT.lt xs
has_min_length : xs.length ≥ 2
namespace Partition
/--
The length of any list associated with a `Partition` is `> 0`.
-/
private lemma length_gt_zero (p : Partition) : p.xs.length > 0 :=
calc p.xs.length
_ ≥ 2 := p.has_min_length
_ > 0 := by simp
/--
The length of any list associated with a `Partition` is `≠ 0`.
-/
instance (p : Partition) : NeZero (length p.xs) where
out := LT.lt.ne' (length_gt_zero p)
/--
The left-most subdivision point of the `Partition`.
-/
def left (p : Partition) : :=
p.xs.head (neq_nil_iff_length_gt_zero.mpr (length_gt_zero p))
/--
The right-most subdivision point of the `Partition`.
-/
def right (p : Partition) : :=
p.xs.getLast (neq_nil_iff_length_gt_zero.mpr (length_gt_zero p))
/--
Define `∈` syntax for a `Partition`. We say a real is a member of a partition
provided it lies somewhere in closed interval `[a, b]`.
-/
instance : Membership Partition where
mem (x : ) (p : Partition) := p.left ≤ x ∧ x ≤ p.right
/--
Every subdivision point is `≥` the left-most point of the partition.
-/
theorem subdivision_point_geq_left {p : Partition} (h : x ∈ p.xs)
: p.left ≤ x := by
unfold left
rw [head_eq_get_zero (exists_mem_iff_neq_nil.mp ⟨x, h⟩)]
have ⟨i, hi⟩ := mem_iff_exists_get.mp h
conv => rhs; rw [← hi]
by_cases hz : i = (0 : Fin (length p.xs))
· rw [hz]
simp
· refine le_of_lt (Sorted.rel_get_of_lt p.sorted ?_)
rwa [← ne_eq, ← Fin.pos_iff_ne_zero i] at hz
/--
Every subdivision point is `≤` the right-most point of the partition.
-/
theorem subdivision_point_leq_right {p : Partition} (h : x ∈ p.xs)
: x ≤ p.right := by
unfold right
have hx := exists_mem_iff_neq_nil.mp ⟨x, h⟩
rw [getLast_eq_get_length_sub_one hx]
have ⟨i, hi⟩ := mem_iff_exists_get.mp h
conv => lhs; rw [← hi]
have ⟨_, ⟨_, hs⟩⟩ := self_neq_nil_imp_exists_mem.mp hx
by_cases hz : i = ⟨p.xs.length - 1, by rw [hs]; simp⟩
· rw [hz]
· refine le_of_lt (Sorted.rel_get_of_lt p.sorted ?_)
rw [← ne_eq, Fin.ne_iff_vne] at hz
rw [Fin.lt_iff_val_lt_val]
exact lt_of_le_of_ne (le_tsub_of_add_le_right i.2) hz
/--
Every subdivision point of a `Partition` is itself a member of the `Partition`.
-/
theorem subdivision_point_mem_partition {p : Partition} (h : x ∈ p.xs)
: x ∈ p := ⟨subdivision_point_geq_left h, subdivision_point_leq_right h⟩
end Partition
/-! ## Step Functions -/
/--
Any member of a subinterval of a partition `P` must also be a member of `P`.
-/
lemma mem_open_subinterval_imp_mem_partition {p : Partition}
(hI : I ∈ p.xs.pairwise (fun x₁ x₂ => Set.Ioo x₁ x₂))
(hy : y ∈ I) : y ∈ p := by
cases h : p.xs with
| nil =>
-- By definition, a partition must always have at least two points in the
-- interval. Discharge the empty case.
rw [h] at hI
cases hI
| cons x ys =>
have ⟨i, x₁, ⟨x₂, ⟨hx₁, ⟨hx₂, hI'⟩⟩⟩⟩ :=
List.mem_pairwise_imp_exists_adjacent hI
have hx₁ : x₁ ∈ p.xs := by
rw [hx₁]
let j : Fin (List.length p.xs) := ⟨i.1, Nat.lt_of_lt_pred i.2⟩
exact List.mem_iff_exists_get.mpr ⟨j, rfl⟩
have hx₂ : x₂ ∈ p.xs := by
rw [hx₂]
let j : Fin (List.length p.xs) := ⟨i.1 + 1, lt_tsub_iff_right.mp i.2⟩
exact List.mem_iff_exists_get.mpr ⟨j, rfl⟩
rw [hI'] at hy
apply And.intro
· calc p.left
_ ≤ x₁ := (Partition.subdivision_point_mem_partition hx₁).left
_ ≤ y := le_of_lt hy.left
· calc y
_ ≤ x₂ := le_of_lt hy.right
_ ≤ p.right := (Partition.subdivision_point_mem_partition hx₂).right
/--
A function `f` is a `StepFunction` if there exists a `Partition` `p` such that
`f` is constant on every open subinterval of `p`.
-/
structure StepFunction where
p : Partition
f : ∀ x ∈ p,
const_open_subintervals :
∀ (hI : I ∈ p.xs.pairwise (fun x₁ x₂ => Set.Ioo x₁ x₂)),
∃ c : , ∀ (hy : y ∈ I),
f y (mem_open_subinterval_imp_mem_partition hI hy) = c
namespace StepFunction
/--
The set definition of a `StepFunction` is the region between the constant values
of the function's subintervals and the real axis.
-/
def toSet (f : StepFunction) : Set ℝ² := sorry
end StepFunction
end Real

View File

@ -1 +1,2 @@
import Common.Set.Basic import Common.Set.Basic
import Common.Set.Intervals

View File

@ -35,7 +35,7 @@ The characteristic function of a set `S`.
It returns `1` if the specified input belongs to `S` and `0` otherwise. It returns `1` if the specified input belongs to `S` and `0` otherwise.
-/ -/
def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)]: Nat := def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)] : Nat :=
if x ∈ S then 1 else 0 if x ∈ S then 1 else 0
end Set end Set

View File

@ -0,0 +1,2 @@
import Common.Set.Intervals.Partition
import Common.Set.Intervals.StepFunction

View File

@ -0,0 +1,125 @@
import Mathlib.Data.Finset.Basic
import Mathlib.Data.List.Sort
import Mathlib.Data.Set.Intervals.Basic
import Common.List.Basic
/-! # Common.Set.Intervals.Partition
Additional theorems and definitions useful in the context of sets.
-/
namespace Set.Intervals
open List
/--
A `Partition` is a finite subset of `[a, b]` containing points `a` and `b`.
-/
structure Partition (α : Type _) [Preorder α] [@DecidableRel α LT.lt] where
/- The left-most endpoint of the partition. -/
a : α
/- The right-most endpoint of the partition. -/
b : α
/- The subdivision points. -/
xs : List α
/- Ensure the subdivision points are in sorted order. -/
sorted_xs : Sorted LT.lt xs
/- Ensure each subdivision point is in our defined interval. -/
within_xs : ∀ x ∈ xs, x ∈ Ioo a b
namespace Partition
/--
An object `x` is a member of a `Partition` `p` if `x` is an endpoint of `p` or a
subdivision point of `p`.
Notice that being a member of `p` is different from being a member of some
(sub)interval determined by `p`.
-/
instance [Preorder α] [@DecidableRel α LT.lt] : Membership α (Partition α) where
mem (x : α) (p : Partition α) := x = p.a x ∈ p.xs x = p.b
/--
Return the endpoints and subdivision points of a `Partition` as a sorted `List`.
-/
def toList [Preorder α] [@DecidableRel α LT.lt] (p : Partition α) : List α :=
(p.a :: p.xs) ++ [p.b]
/--
`x` is a member of `Partition` `p` **iff** `x` is a member of `p.List`.
-/
theorem mem_self_iff_mem_toList [Preorder α] [@DecidableRel α LT.lt]
(p : Partition α) : x ∈ p ↔ x ∈ p.toList := by
apply Iff.intro
· sorry
· sorry
/--
Every member of a `Partition` is greater than or equal to its left-most point.
-/
theorem left_le_mem_self [Preorder α] [@DecidableRel α LT.lt]
(p : Partition α) : ∀ x ∈ p, p.a ≤ x := by
sorry
/--
Every member of a `Partition` is less than or equal to its right-most point.
-/
theorem right_ge_mem_self [Preorder α] [@DecidableRel α LT.lt]
(p : Partition α) : ∀ x ∈ p, x ≤ p.b := by
sorry
/-
Return the closed subintervals determined by the `Partition`.
-/
def closedSubintervals [Preorder α] [@DecidableRel α LT.lt]
(p : Partition α) : List (Set α) :=
p.toList.pairwise (fun x₁ x₂ => Icc x₁ x₂)
/-
Return the open subintervals determined by the `Partition`.
-/
def openSubintervals [Preorder α] [@DecidableRel α LT.lt]
(p : Partition α) : List (Set α) :=
p.toList.pairwise (fun x₁ x₂ => Ioo x₁ x₂)
/--
A member of an open subinterval of a `Partition` `p` is a member of the entire
open interval determined by `p`.
-/
theorem mem_open_subinterval_mem_open_interval
[Preorder α] [@DecidableRel α LT.lt] {p : Partition α}
(hI : I ∈ p.openSubintervals) (hy : y ∈ I) : y ∈ Ioo p.a p.b := by
have ⟨i, ⟨x₁, ⟨x₂, ⟨hx₁, ⟨hx₂, hI'⟩⟩⟩⟩⟩ :=
List.mem_pairwise_imp_exists_adjacent hI
have hx₁' : p.a ≤ x₁ := by
refine p.left_le_mem_self x₁ ?_
rw [p.mem_self_iff_mem_toList]
have : ↑i < p.toList.length := calc ↑i
_ < p.toList.length - 1 := i.2
_ < p.toList.length := by
unfold List.length Partition.toList
simp
exact List.mem_iff_exists_get.mpr ⟨⟨↑i, this⟩, Eq.symm hx₁⟩
have hx₂' : x₂ ≤ p.b := by
refine p.right_ge_mem_self x₂ ?_
rw [p.mem_self_iff_mem_toList]
have : ↑i + 1 < p.toList.length := add_lt_add_right i.2 1
exact List.mem_iff_exists_get.mpr ⟨⟨↑i + 1, this⟩, Eq.symm hx₂⟩
have hx_sub := Set.Ioo_subset_Ioo hx₁' hx₂'
rw [hI'] at hy
exact Set.mem_of_subset_of_mem hx_sub hy
/--
A member of an open subinterval of a `Partition` `p` is a member of the entire
closed interval determined by `p`.
-/
theorem mem_open_subinterval_mem_closed_interval
[Preorder α] [@DecidableRel α LT.lt] {p : Partition α}
(hI : I ∈ p.openSubintervals) (hy : y ∈ I) : y ∈ Icc p.a p.b := by
have := mem_open_subinterval_mem_open_interval hI hy
exact Set.mem_of_subset_of_mem Set.Ioo_subset_Icc_self this
end Partition
end Set.Intervals

View File

@ -0,0 +1,36 @@
import Common.List.Basic
import Common.Set.Intervals.Partition
/-! # Common.Set.Intervals.StepFunction
Characterization of step functions.
-/
namespace Set.Intervals
/--
A function `f`, whose domain is a closed interval `[a, b]`, is a `StepFunction`
if there exists a `Partition` `P = {x₀, x₁, …, xₙ}` of `[a, b]` such that `f` is
constant on each open subinterval of `P`.
-/
structure StepFunction (α : Type _) [Preorder α] [@DecidableRel α LT.lt] where
/- A partition of some closed interval `[a, b]`. -/
partition : Partition α
/-- A function whose domain is a closed interval `[a, b]`. -/
function : ∀ x ∈ Icc partition.a partition.b, α
/-- Ensure the function is constant on each open subinterval of `p`. -/
const_open_subintervals :
∀ (hI : I ∈ partition.openSubintervals), ∃ c : α, ∀ (hy : y ∈ I),
function y (Partition.mem_open_subinterval_mem_closed_interval hI hy) = c
namespace StepFunction
/--
The locus of points between the `x`-axis and the function.
-/
def toSet [Preorder α] [@DecidableRel α LT.lt]
(s : StepFunction α) : Set (α × α) := sorry
end StepFunction
end Set.Intervals