Enderton. Theorem 4N.

finite-set-exercises
Joshua Potter 2023-08-08 08:13:39 -06:00
parent 793cfbc8fd
commit f23d925544
1 changed files with 112 additions and 2 deletions

View File

@ -7577,7 +7577,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
\end{proof}
\subsection{\sorry{Theorem 4N}}%
\subsection{\verified{Theorem 4N}}%
\hyperlabel{sub:theorem-4n}
\begin{theorem}[4N]
@ -7589,7 +7589,117 @@ Show that $<_L$ is a linear ordering on $A \times B$.
\begin{proof}
TODO
\statementpadding
\lean*{Std/Data/Nat/Lemmas}{Nat.add\_lt\_add\_iff\_right}
\lean{Init/Data/Nat/Basic}{Nat.mul\_lt\_mul\_of\_pos\_right}
We prove that (i) $m \in n$ iff $m + p \in n + p$ and,
(ii) if $p \neq 0$, then $m \in n$ iff $m \cdot p \in n \cdot p$.
\paragraph{(i)}%
\hyperlabel{par:theorem-4n-i}
Let $m$ and $n$ be \nameref{ref:natural-number}s.
\subparagraph{($\Rightarrow$)}%
\hyperlabel{spar:theorem-4n-i-right}
Suppose $m \in n$.
Let $$S = \{p \in \omega \mid m + p \in n + p\}.$$
It trivially follows that $0 \in S$.
Next, suppose $p \in S$.
That is, suppose $m + p \in n + p$.
By \nameref{sub:lemma-4l-a}, this holds if and only if
$(m + p)^+ \in (n + p)^+$.
\nameref{sub:theorem-4i} then implies that $m + p^+ \in n + p^+$ meaning
$p^+ \in S$.
Thus $S$ is an \nameref{ref:inductive-set}.
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
Therefore, for all $p \in \omega$, $m \in n$ implies $m + p \in n + p$.
\subparagraph{($\Leftarrow$)}%
Let $p$ be a natural number and suppose $m + p \in n + p$.
By the \nameref{sub:trichotomy-law-natural-numbers}, there are three
ways $m$ and $n$ may relate to one another.
\vspace{8pt}
\textbf{Case 1}: Suppose $m \in n$.
Then our proof is complete.
\vspace{8pt}
\textbf{Case 2}: Suppose $m = n$.
Then $m + p \in n + p = m + p$.
\nameref{sub:lemma-4l-b} shows this is impossible.
\vspace{8pt}
\textbf{Case 3}: Suppose $n \in m$.
Then \nameref{spar:theorem-4n-i-right} indicates $n + p \in m + p$.
But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since,
by hypothesis, $m + p \in n + p$.
\vspace{8pt}
\textbf{Conclusion}: The only possibility is $m \in n$.
\paragraph{(ii)}%
\hyperlabel{par:theorem-4n-ii}
Let $m$ and $n$ be \nameref{ref:natural-number}s.
\subparagraph{($\Rightarrow$)}%
\hyperlabel{spar:theorem-4n-ii-right}
Suppose $m \in n$.
Let $$S = \{p \in \omega \mid m \cdot p^+ \in n \cdot p^+\}.$$
$0 \in S$ by \nameref{sub:right-multiplicative-identity}.
Next, suppose $p \in S$.
That is, $m \cdot p^+ \in n \cdot p^+$.
Then
\begin{align*}
m \cdot p^{++}
& = m \cdot p^+ + m & \textref{sub:theorem-4j} \\
& \in n \cdot p^+ + m & \textref{par:theorem-4n-i} \\
& = m + n \cdot p^+ & \textref{sub:theorem-4k-2} \\
& \in n + n \cdot p^+ & \textref{par:theorem-4n-i} \\
& = n \cdot p^+ + n & \textref{sub:theorem-4k-2} \\
& = n \cdot p^{++}. & \textref{sub:theorem-4j}
\end{align*}
Therefore $p^+ \in S$.
Thus $S$ is an \nameref{ref:inductive-set}.
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
By \nameref{sub:theorem-4c}, every natural number except 0 is the
successor of some natural number.
Therefore, for all $p \in \omega$ such that $p \neq 0$, $m \in n$ implies
$m \cdot p \in n \cdot p$.
\subparagraph{($\Leftarrow$)}%
Let $p \neq 0$ be a natural number and suppose $m \cdot p \in n \cdot p$.
By the \nameref{sub:trichotomy-law-natural-numbers}, there are three
ways $m$ and $n$ may relate to one another.
\vspace{8pt}
\textbf{Case 1}: Suppose $m \in n$.
Then our proof is complete.
\vspace{8pt}
\textbf{Case 2}: Suppose $m = n$.
Then $m \cdot p \in n \cdot p = m \cdot p$.
\nameref{sub:lemma-4l-b} shows this is impossible.
\vspace{8pt}
\textbf{Case 3}: Suppose $n \in m$.
Then \nameref{spar:theorem-4n-ii-right} indicates
$n \cdot p \in m \cdot p$.
But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since,
by hypothesis, $m \cdot p \in n \cdot p$.
\vspace{8pt}
\textbf{Conclusion}: The only possibility is $m \in n$.
\end{proof}