diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index 1e56092..86c6204 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -7577,7 +7577,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. \end{proof} -\subsection{\sorry{Theorem 4N}}% +\subsection{\verified{Theorem 4N}}% \hyperlabel{sub:theorem-4n} \begin{theorem}[4N] @@ -7589,7 +7589,117 @@ Show that $<_L$ is a linear ordering on $A \times B$. \begin{proof} - TODO + \statementpadding + + \lean*{Std/Data/Nat/Lemmas}{Nat.add\_lt\_add\_iff\_right} + + \lean{Init/Data/Nat/Basic}{Nat.mul\_lt\_mul\_of\_pos\_right} + + We prove that (i) $m \in n$ iff $m + p \in n + p$ and, + (ii) if $p \neq 0$, then $m \in n$ iff $m \cdot p \in n \cdot p$. + + \paragraph{(i)}% + \hyperlabel{par:theorem-4n-i} + + Let $m$ and $n$ be \nameref{ref:natural-number}s. + + \subparagraph{($\Rightarrow$)}% + \hyperlabel{spar:theorem-4n-i-right} + + Suppose $m \in n$. + Let $$S = \{p \in \omega \mid m + p \in n + p\}.$$ + It trivially follows that $0 \in S$. + Next, suppose $p \in S$. + That is, suppose $m + p \in n + p$. + By \nameref{sub:lemma-4l-a}, this holds if and only if + $(m + p)^+ \in (n + p)^+$. + \nameref{sub:theorem-4i} then implies that $m + p^+ \in n + p^+$ meaning + $p^+ \in S$. + + Thus $S$ is an \nameref{ref:inductive-set}. + Hence \nameref{sub:theorem-4b} implies $S = \omega$. + Therefore, for all $p \in \omega$, $m \in n$ implies $m + p \in n + p$. + + \subparagraph{($\Leftarrow$)}% + + Let $p$ be a natural number and suppose $m + p \in n + p$. + By the \nameref{sub:trichotomy-law-natural-numbers}, there are three + ways $m$ and $n$ may relate to one another. + + \vspace{8pt} + \textbf{Case 1}: Suppose $m \in n$. + Then our proof is complete. + + \vspace{8pt} + \textbf{Case 2}: Suppose $m = n$. + Then $m + p \in n + p = m + p$. + \nameref{sub:lemma-4l-b} shows this is impossible. + + \vspace{8pt} + \textbf{Case 3}: Suppose $n \in m$. + Then \nameref{spar:theorem-4n-i-right} indicates $n + p \in m + p$. + But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since, + by hypothesis, $m + p \in n + p$. + + \vspace{8pt} + \textbf{Conclusion}: The only possibility is $m \in n$. + + \paragraph{(ii)}% + \hyperlabel{par:theorem-4n-ii} + + Let $m$ and $n$ be \nameref{ref:natural-number}s. + + \subparagraph{($\Rightarrow$)}% + \hyperlabel{spar:theorem-4n-ii-right} + + Suppose $m \in n$. + Let $$S = \{p \in \omega \mid m \cdot p^+ \in n \cdot p^+\}.$$ + $0 \in S$ by \nameref{sub:right-multiplicative-identity}. + Next, suppose $p \in S$. + That is, $m \cdot p^+ \in n \cdot p^+$. + Then + \begin{align*} + m \cdot p^{++} + & = m \cdot p^+ + m & \textref{sub:theorem-4j} \\ + & \in n \cdot p^+ + m & \textref{par:theorem-4n-i} \\ + & = m + n \cdot p^+ & \textref{sub:theorem-4k-2} \\ + & \in n + n \cdot p^+ & \textref{par:theorem-4n-i} \\ + & = n \cdot p^+ + n & \textref{sub:theorem-4k-2} \\ + & = n \cdot p^{++}. & \textref{sub:theorem-4j} + \end{align*} + Therefore $p^+ \in S$. + + Thus $S$ is an \nameref{ref:inductive-set}. + Hence \nameref{sub:theorem-4b} implies $S = \omega$. + By \nameref{sub:theorem-4c}, every natural number except 0 is the + successor of some natural number. + Therefore, for all $p \in \omega$ such that $p \neq 0$, $m \in n$ implies + $m \cdot p \in n \cdot p$. + + \subparagraph{($\Leftarrow$)}% + + Let $p \neq 0$ be a natural number and suppose $m \cdot p \in n \cdot p$. + By the \nameref{sub:trichotomy-law-natural-numbers}, there are three + ways $m$ and $n$ may relate to one another. + + \vspace{8pt} + \textbf{Case 1}: Suppose $m \in n$. + Then our proof is complete. + + \vspace{8pt} + \textbf{Case 2}: Suppose $m = n$. + Then $m \cdot p \in n \cdot p = m \cdot p$. + \nameref{sub:lemma-4l-b} shows this is impossible. + + \vspace{8pt} + \textbf{Case 3}: Suppose $n \in m$. + Then \nameref{spar:theorem-4n-ii-right} indicates + $n \cdot p \in m \cdot p$. + But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since, + by hypothesis, $m \cdot p \in n \cdot p$. + + \vspace{8pt} + \textbf{Conclusion}: The only possibility is $m \in n$. \end{proof}