Enderton. Theorem 4N.
parent
793cfbc8fd
commit
f23d925544
|
@ -7577,7 +7577,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Theorem 4N}}%
|
\subsection{\verified{Theorem 4N}}%
|
||||||
\hyperlabel{sub:theorem-4n}
|
\hyperlabel{sub:theorem-4n}
|
||||||
|
|
||||||
\begin{theorem}[4N]
|
\begin{theorem}[4N]
|
||||||
|
@ -7589,7 +7589,117 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
\statementpadding
|
||||||
|
|
||||||
|
\lean*{Std/Data/Nat/Lemmas}{Nat.add\_lt\_add\_iff\_right}
|
||||||
|
|
||||||
|
\lean{Init/Data/Nat/Basic}{Nat.mul\_lt\_mul\_of\_pos\_right}
|
||||||
|
|
||||||
|
We prove that (i) $m \in n$ iff $m + p \in n + p$ and,
|
||||||
|
(ii) if $p \neq 0$, then $m \in n$ iff $m \cdot p \in n \cdot p$.
|
||||||
|
|
||||||
|
\paragraph{(i)}%
|
||||||
|
\hyperlabel{par:theorem-4n-i}
|
||||||
|
|
||||||
|
Let $m$ and $n$ be \nameref{ref:natural-number}s.
|
||||||
|
|
||||||
|
\subparagraph{($\Rightarrow$)}%
|
||||||
|
\hyperlabel{spar:theorem-4n-i-right}
|
||||||
|
|
||||||
|
Suppose $m \in n$.
|
||||||
|
Let $$S = \{p \in \omega \mid m + p \in n + p\}.$$
|
||||||
|
It trivially follows that $0 \in S$.
|
||||||
|
Next, suppose $p \in S$.
|
||||||
|
That is, suppose $m + p \in n + p$.
|
||||||
|
By \nameref{sub:lemma-4l-a}, this holds if and only if
|
||||||
|
$(m + p)^+ \in (n + p)^+$.
|
||||||
|
\nameref{sub:theorem-4i} then implies that $m + p^+ \in n + p^+$ meaning
|
||||||
|
$p^+ \in S$.
|
||||||
|
|
||||||
|
Thus $S$ is an \nameref{ref:inductive-set}.
|
||||||
|
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||||
|
Therefore, for all $p \in \omega$, $m \in n$ implies $m + p \in n + p$.
|
||||||
|
|
||||||
|
\subparagraph{($\Leftarrow$)}%
|
||||||
|
|
||||||
|
Let $p$ be a natural number and suppose $m + p \in n + p$.
|
||||||
|
By the \nameref{sub:trichotomy-law-natural-numbers}, there are three
|
||||||
|
ways $m$ and $n$ may relate to one another.
|
||||||
|
|
||||||
|
\vspace{8pt}
|
||||||
|
\textbf{Case 1}: Suppose $m \in n$.
|
||||||
|
Then our proof is complete.
|
||||||
|
|
||||||
|
\vspace{8pt}
|
||||||
|
\textbf{Case 2}: Suppose $m = n$.
|
||||||
|
Then $m + p \in n + p = m + p$.
|
||||||
|
\nameref{sub:lemma-4l-b} shows this is impossible.
|
||||||
|
|
||||||
|
\vspace{8pt}
|
||||||
|
\textbf{Case 3}: Suppose $n \in m$.
|
||||||
|
Then \nameref{spar:theorem-4n-i-right} indicates $n + p \in m + p$.
|
||||||
|
But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since,
|
||||||
|
by hypothesis, $m + p \in n + p$.
|
||||||
|
|
||||||
|
\vspace{8pt}
|
||||||
|
\textbf{Conclusion}: The only possibility is $m \in n$.
|
||||||
|
|
||||||
|
\paragraph{(ii)}%
|
||||||
|
\hyperlabel{par:theorem-4n-ii}
|
||||||
|
|
||||||
|
Let $m$ and $n$ be \nameref{ref:natural-number}s.
|
||||||
|
|
||||||
|
\subparagraph{($\Rightarrow$)}%
|
||||||
|
\hyperlabel{spar:theorem-4n-ii-right}
|
||||||
|
|
||||||
|
Suppose $m \in n$.
|
||||||
|
Let $$S = \{p \in \omega \mid m \cdot p^+ \in n \cdot p^+\}.$$
|
||||||
|
$0 \in S$ by \nameref{sub:right-multiplicative-identity}.
|
||||||
|
Next, suppose $p \in S$.
|
||||||
|
That is, $m \cdot p^+ \in n \cdot p^+$.
|
||||||
|
Then
|
||||||
|
\begin{align*}
|
||||||
|
m \cdot p^{++}
|
||||||
|
& = m \cdot p^+ + m & \textref{sub:theorem-4j} \\
|
||||||
|
& \in n \cdot p^+ + m & \textref{par:theorem-4n-i} \\
|
||||||
|
& = m + n \cdot p^+ & \textref{sub:theorem-4k-2} \\
|
||||||
|
& \in n + n \cdot p^+ & \textref{par:theorem-4n-i} \\
|
||||||
|
& = n \cdot p^+ + n & \textref{sub:theorem-4k-2} \\
|
||||||
|
& = n \cdot p^{++}. & \textref{sub:theorem-4j}
|
||||||
|
\end{align*}
|
||||||
|
Therefore $p^+ \in S$.
|
||||||
|
|
||||||
|
Thus $S$ is an \nameref{ref:inductive-set}.
|
||||||
|
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||||
|
By \nameref{sub:theorem-4c}, every natural number except 0 is the
|
||||||
|
successor of some natural number.
|
||||||
|
Therefore, for all $p \in \omega$ such that $p \neq 0$, $m \in n$ implies
|
||||||
|
$m \cdot p \in n \cdot p$.
|
||||||
|
|
||||||
|
\subparagraph{($\Leftarrow$)}%
|
||||||
|
|
||||||
|
Let $p \neq 0$ be a natural number and suppose $m \cdot p \in n \cdot p$.
|
||||||
|
By the \nameref{sub:trichotomy-law-natural-numbers}, there are three
|
||||||
|
ways $m$ and $n$ may relate to one another.
|
||||||
|
|
||||||
|
\vspace{8pt}
|
||||||
|
\textbf{Case 1}: Suppose $m \in n$.
|
||||||
|
Then our proof is complete.
|
||||||
|
|
||||||
|
\vspace{8pt}
|
||||||
|
\textbf{Case 2}: Suppose $m = n$.
|
||||||
|
Then $m \cdot p \in n \cdot p = m \cdot p$.
|
||||||
|
\nameref{sub:lemma-4l-b} shows this is impossible.
|
||||||
|
|
||||||
|
\vspace{8pt}
|
||||||
|
\textbf{Case 3}: Suppose $n \in m$.
|
||||||
|
Then \nameref{spar:theorem-4n-ii-right} indicates
|
||||||
|
$n \cdot p \in m \cdot p$.
|
||||||
|
But this contradicts \nameref{sub:trichotomy-law-natural-numbers} since,
|
||||||
|
by hypothesis, $m \cdot p \in n \cdot p$.
|
||||||
|
|
||||||
|
\vspace{8pt}
|
||||||
|
\textbf{Conclusion}: The only possibility is $m \in n$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue