Update proofs to pending if there is no custom proof set.
parent
b91ee81261
commit
ec53cdd710
|
@ -1114,7 +1114,7 @@ List all the members of $V_4$.
|
||||||
\section{Algebra of Sets}%
|
\section{Algebra of Sets}%
|
||||||
\hyperlabel{sec:algebra-sets}
|
\hyperlabel{sec:algebra-sets}
|
||||||
|
|
||||||
\subsection{\verified{Commutative Laws}}%
|
\subsection{\pending{Commutative Laws}}%
|
||||||
\hyperlabel{sub:commutative-laws}
|
\hyperlabel{sub:commutative-laws}
|
||||||
|
|
||||||
For any sets $A$ and $B$,
|
For any sets $A$ and $B$,
|
||||||
|
@ -1160,7 +1160,7 @@ For any sets $A$ and $B$,
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Associative Laws}}%
|
\subsection{\pending{Associative Laws}}%
|
||||||
\hyperlabel{sub:associative-laws}
|
\hyperlabel{sub:associative-laws}
|
||||||
|
|
||||||
For any sets $A$, $B$ and $C$,
|
For any sets $A$, $B$ and $C$,
|
||||||
|
@ -1217,7 +1217,7 @@ For any sets $A$, $B$ and $C$,
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Distributive Laws}}%
|
\subsection{\pending{Distributive Laws}}%
|
||||||
\hyperlabel{sub:distributive-laws}
|
\hyperlabel{sub:distributive-laws}
|
||||||
|
|
||||||
For any sets $A$, $B$, and $C$,
|
For any sets $A$, $B$, and $C$,
|
||||||
|
@ -1273,7 +1273,7 @@ For any sets $A$, $B$, and $C$,
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{De Morgan's Laws}}%
|
\subsection{\pending{De Morgan's Laws}}%
|
||||||
\hyperlabel{sub:de-morgans-laws}
|
\hyperlabel{sub:de-morgans-laws}
|
||||||
|
|
||||||
For any sets $A$, $B$, and $C$,
|
For any sets $A$, $B$, and $C$,
|
||||||
|
@ -1331,7 +1331,7 @@ For any sets $A$, $B$, and $C$,
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{%
|
\subsection{\pending{%
|
||||||
Identities Involving \texorpdfstring{$\emptyset$}{the Empty Set}}}%
|
Identities Involving \texorpdfstring{$\emptyset$}{the Empty Set}}}%
|
||||||
\hyperlabel{sub:identitives-involving-empty-set}
|
\hyperlabel{sub:identitives-involving-empty-set}
|
||||||
|
|
||||||
|
@ -1401,7 +1401,7 @@ For any set $A$,
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Monotonicity}}%
|
\subsection{\pending{Monotonicity}}%
|
||||||
\hyperlabel{sub:monotonicity}
|
\hyperlabel{sub:monotonicity}
|
||||||
|
|
||||||
For any sets $A$, $B$, and $C$,
|
For any sets $A$, $B$, and $C$,
|
||||||
|
@ -1474,7 +1474,7 @@ For any sets $A$, $B$, and $C$,
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Anti-monotonicity}}%
|
\subsection{\pending{Anti-monotonicity}}%
|
||||||
\hyperlabel{sub:anti-monotonicity}
|
\hyperlabel{sub:anti-monotonicity}
|
||||||
|
|
||||||
For any sets $A$, $B$, and $C$,
|
For any sets $A$, $B$, and $C$,
|
||||||
|
@ -1644,7 +1644,7 @@ For any set $C$ and $\mathscr{A} \neq \emptyset$,
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{%
|
\subsection{\pending{%
|
||||||
\texorpdfstring{$\cap$/$-$}{Intersection/Difference} Associativity}}%
|
\texorpdfstring{$\cap$/$-$}{Intersection/Difference} Associativity}}%
|
||||||
\hyperlabel{sub:intersection-difference-associativity}
|
\hyperlabel{sub:intersection-difference-associativity}
|
||||||
|
|
||||||
|
@ -2187,7 +2187,7 @@ Show by example that for some sets $A$, $B$, and $C$, the set $A - (B - C)$ is
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Exercise 2.15a}}%
|
\subsection{\pending{Exercise 2.15a}}%
|
||||||
\hyperlabel{sub:exercise-2.15a}
|
\hyperlabel{sub:exercise-2.15a}
|
||||||
|
|
||||||
Show that $A \cap (B + C) = (A \cap B) + (A \cap C)$.
|
Show that $A \cap (B + C) = (A \cap B) + (A \cap C)$.
|
||||||
|
@ -2224,7 +2224,7 @@ Show that $A \cap (B + C) = (A \cap B) + (A \cap C)$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Exercise 2.15b}}%
|
\subsection{\pending{Exercise 2.15b}}%
|
||||||
\hyperlabel{sub:exercise-2.15b}
|
\hyperlabel{sub:exercise-2.15b}
|
||||||
|
|
||||||
Show that $A + (B + C) = (A + B) + C$.
|
Show that $A + (B + C) = (A + B) + C$.
|
||||||
|
@ -2914,7 +2914,7 @@ If not, then under what conditions does equality hold?
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Corollary 3C}}%
|
\subsection{\pending{Corollary 3C}}%
|
||||||
\hyperlabel{sub:corollary-3c}
|
\hyperlabel{sub:corollary-3c}
|
||||||
|
|
||||||
\begin{theorem}[3C]
|
\begin{theorem}[3C]
|
||||||
|
@ -3730,7 +3730,8 @@ If not, then under what conditions does equality hold?
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
\lean{Bookshelf/Enderton/Set/Relation}{Set.Relation.modEquiv\_partition}
|
\lean{Bookshelf/Enderton/Set/Relation}
|
||||||
|
{Set.Relation.modEquiv\_partition}
|
||||||
|
|
||||||
Let $\Pi = \{[x]_R \mid x \in A\}$.
|
Let $\Pi = \{[x]_R \mid x \in A\}$.
|
||||||
We show that (i) there are no empty sets in $\Pi$, (ii) no two different sets
|
We show that (i) there are no empty sets in $\Pi$, (ii) no two different sets
|
||||||
|
@ -4345,7 +4346,7 @@ Show that an ordered $4$-tuple is also an ordered $m$-tuple for every positive
|
||||||
|
|
||||||
\end{answer}
|
\end{answer}
|
||||||
|
|
||||||
\subsection{\verified{Exercise 3.11}}%
|
\subsection{\pending{Exercise 3.11}}%
|
||||||
\hyperlabel{sub:exercise-3.11}
|
\hyperlabel{sub:exercise-3.11}
|
||||||
|
|
||||||
Prove the following version (for functions) of the extensionality principle:
|
Prove the following version (for functions) of the extensionality principle:
|
||||||
|
@ -6527,7 +6528,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
\section{Arithmetic}%
|
\section{Arithmetic}%
|
||||||
\hyperlabel{sec:arithmetic}
|
\hyperlabel{sec:arithmetic}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 4I}}
|
\subsection{\pending{Theorem 4I}}
|
||||||
\hyperlabel{sub:theorem-4i}
|
\hyperlabel{sub:theorem-4i}
|
||||||
|
|
||||||
\begin{theorem}[4I]
|
\begin{theorem}[4I]
|
||||||
|
@ -6563,7 +6564,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 4J}}
|
\subsection{\pending{Theorem 4J}}
|
||||||
\hyperlabel{sub:theorem-4j}
|
\hyperlabel{sub:theorem-4j}
|
||||||
|
|
||||||
\begin{theorem}[4J]
|
\begin{theorem}[4J]
|
||||||
|
@ -6597,7 +6598,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Left Additive Identity}}%
|
\subsection{\pending{Left Additive Identity}}%
|
||||||
\hyperlabel{sub:left-additive-identity}
|
\hyperlabel{sub:left-additive-identity}
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
|
@ -6639,7 +6640,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Lemma 3}}%
|
\subsection{\pending{Lemma 3}}%
|
||||||
\hyperlabel{sub:lemma-3}
|
\hyperlabel{sub:lemma-3}
|
||||||
\hyperlabel{sub:succ-add-eq-add-succ}
|
\hyperlabel{sub:succ-add-eq-add-succ}
|
||||||
|
|
||||||
|
@ -6683,7 +6684,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 4K-1}}%
|
\subsection{\pending{Theorem 4K-1}}%
|
||||||
\label{sub:theorem-4k-1}
|
\label{sub:theorem-4k-1}
|
||||||
|
|
||||||
\begin{theorem}[4K-1]
|
\begin{theorem}[4K-1]
|
||||||
|
@ -6739,7 +6740,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 4K-2}}%
|
\subsection{\pending{Theorem 4K-2}}%
|
||||||
\label{sub:theorem-4k-2}
|
\label{sub:theorem-4k-2}
|
||||||
|
|
||||||
\begin{theorem}[4K-2]
|
\begin{theorem}[4K-2]
|
||||||
|
@ -6791,7 +6792,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Zero Multiplicand}}%
|
\subsection{\pending{Zero Multiplicand}}%
|
||||||
\hyperlabel{sub:zero-multiplicand}
|
\hyperlabel{sub:zero-multiplicand}
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
|
@ -6841,7 +6842,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Successor Distribution}}%
|
\subsection{\pending{Successor Distribution}}%
|
||||||
\hyperlabel{sub:successor-distribution}
|
\hyperlabel{sub:successor-distribution}
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
|
@ -6897,7 +6898,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 4K-3}}
|
\subsection{\pending{Theorem 4K-3}}
|
||||||
\hyperlabel{sub:theorem-4k-3}
|
\hyperlabel{sub:theorem-4k-3}
|
||||||
|
|
||||||
\begin{theorem}[4K-3]
|
\begin{theorem}[4K-3]
|
||||||
|
@ -6958,7 +6959,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Successor Identity}}%
|
\subsection{\pending{Successor Identity}}%
|
||||||
\hyperlabel{sub:successor-identity}
|
\hyperlabel{sub:successor-identity}
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
|
@ -7011,7 +7012,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Right Multiplicative Identity}}%
|
\subsection{\pending{Right Multiplicative Identity}}%
|
||||||
\hyperlabel{sub:right-multiplicative-identity}
|
\hyperlabel{sub:right-multiplicative-identity}
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
|
@ -7062,7 +7063,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 4K-5}}
|
\subsection{\pending{Theorem 4K-5}}
|
||||||
\hyperlabel{sub:theorem-4k-5}
|
\hyperlabel{sub:theorem-4k-5}
|
||||||
|
|
||||||
\begin{theorem}[4K-5]
|
\begin{theorem}[4K-5]
|
||||||
|
@ -7122,7 +7123,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 4K-4}}%
|
\subsection{\pending{Theorem 4K-4}}%
|
||||||
\hyperlabel{sub:theorem-4k-4}
|
\hyperlabel{sub:theorem-4k-4}
|
||||||
|
|
||||||
\begin{theorem}[4K-4]
|
\begin{theorem}[4K-4]
|
||||||
|
@ -7180,7 +7181,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
\section{Ordering on \texorpdfstring{$\omega$}{Natural Numbers}}%
|
\section{Ordering on \texorpdfstring{$\omega$}{Natural Numbers}}%
|
||||||
\hyperlabel{sec:ordering-natural-numbers}
|
\hyperlabel{sec:ordering-natural-numbers}
|
||||||
|
|
||||||
\subsection{\verified{Ordering on Successor}}%
|
\subsection{\pending{Ordering on Successor}}%
|
||||||
\hyperlabel{sub:ordering-successor}
|
\hyperlabel{sub:ordering-successor}
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
|
@ -7226,7 +7227,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Lemma 4L(a)}}%
|
\subsection{\pending{Lemma 4L(a)}}%
|
||||||
\hyperlabel{sub:lemma-4l-a}
|
\hyperlabel{sub:lemma-4l-a}
|
||||||
|
|
||||||
\begin{lemma}[4L(a)]
|
\begin{lemma}[4L(a)]
|
||||||
|
@ -7294,7 +7295,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Lemma 4L(b)}}%
|
\subsection{\pending{Lemma 4L(b)}}%
|
||||||
\hyperlabel{sub:lemma-4l-b}
|
\hyperlabel{sub:lemma-4l-b}
|
||||||
|
|
||||||
\begin{lemma}[4L(b)]
|
\begin{lemma}[4L(b)]
|
||||||
|
@ -7577,7 +7578,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 4N}}%
|
\subsection{\pending{Theorem 4N}}%
|
||||||
\hyperlabel{sub:theorem-4n}
|
\hyperlabel{sub:theorem-4n}
|
||||||
|
|
||||||
\begin{theorem}[4N]
|
\begin{theorem}[4N]
|
||||||
|
@ -7695,7 +7696,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Corollary 4P}}%
|
\subsection{\pending{Corollary 4P}}%
|
||||||
\hyperlabel{sub:corollary-4p}
|
\hyperlabel{sub:corollary-4p}
|
||||||
|
|
||||||
\begin{corollary}[4P]
|
\begin{corollary}[4P]
|
||||||
|
@ -8320,7 +8321,7 @@ Complete the proof of \nameref{sub:theorem-4k-5}.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\verified{Exercise 4.17}}%
|
\subsection{\pending{Exercise 4.17}}%
|
||||||
\hyperlabel{sub:exercise-4.17}
|
\hyperlabel{sub:exercise-4.17}
|
||||||
|
|
||||||
Prove that $m^{n+p} = m^n \cdot m^p$.
|
Prove that $m^{n+p} = m^n \cdot m^p$.
|
||||||
|
|
Loading…
Reference in New Issue