Move aviary into Smullyan directory.
parent
dd4340c4bd
commit
e869d6f2d3
|
@ -1,5 +1,5 @@
|
||||||
import Bookshelf.Apostol
|
import Bookshelf.Apostol
|
||||||
import Bookshelf.Avigad
|
import Bookshelf.Avigad
|
||||||
import Bookshelf.Enderton.Logic
|
import Bookshelf.Enderton
|
||||||
import Bookshelf.Enderton.Set
|
|
||||||
import Bookshelf.Fraleigh
|
import Bookshelf.Fraleigh
|
||||||
|
import Bookshelf.Smullyan
|
||||||
|
|
|
@ -0,0 +1,2 @@
|
||||||
|
import Bookshelf.Enderton.Logic
|
||||||
|
import Bookshelf.Enderton.Set
|
|
@ -1,6 +1,6 @@
|
||||||
import Mathlib.Data.Set.Basic
|
import Mathlib.Data.Set.Basic
|
||||||
|
|
||||||
/-! # Enderton.Chapter_1
|
/-! # Enderton.Set.Chapter_1
|
||||||
|
|
||||||
Introduction
|
Introduction
|
||||||
-/
|
-/
|
||||||
|
|
|
@ -2,7 +2,7 @@ import Bookshelf.Enderton.Set.Chapter_1
|
||||||
import Common.Set.Basic
|
import Common.Set.Basic
|
||||||
import Mathlib.Data.Set.Lattice
|
import Mathlib.Data.Set.Lattice
|
||||||
|
|
||||||
/-! # Enderton.Chapter_2
|
/-! # Enderton.Set.Chapter_2
|
||||||
|
|
||||||
Axioms and Operations
|
Axioms and Operations
|
||||||
-/
|
-/
|
||||||
|
|
|
@ -2,7 +2,7 @@ import Bookshelf.Enderton.Set.Chapter_2
|
||||||
import Bookshelf.Enderton.Set.OrderedPair
|
import Bookshelf.Enderton.Set.OrderedPair
|
||||||
import Bookshelf.Enderton.Set.Relation
|
import Bookshelf.Enderton.Set.Relation
|
||||||
|
|
||||||
/-! # Enderton.Chapter_3
|
/-! # Enderton.Set.Chapter_3
|
||||||
|
|
||||||
Relations and Functions
|
Relations and Functions
|
||||||
-/
|
-/
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
import Common.Set.Basic
|
import Common.Set.Basic
|
||||||
|
|
||||||
/-! # Ordered Pairs
|
/-! # Enderton.Set.OrderedPair
|
||||||
|
|
||||||
A representation of an ordered pair in basic set theory. Like `Set`, it is
|
A representation of an ordered pair in basic set theory. Like `Set`, it is
|
||||||
assumed an ordered pair is homogeneous.
|
assumed an ordered pair is homogeneous.
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
import Bookshelf.Enderton.Set.OrderedPair
|
import Bookshelf.Enderton.Set.OrderedPair
|
||||||
|
|
||||||
/-! # Relations
|
/-! # Enderton.Set.Relation
|
||||||
|
|
||||||
A representation of a relation, i.e. a set of ordered pairs. Like `Set`, it is
|
A representation of a relation, i.e. a set of ordered pairs. Like `Set`, it is
|
||||||
assumed a relation is homogeneous.
|
assumed a relation is homogeneous.
|
||||||
|
|
|
@ -0,0 +1 @@
|
||||||
|
import Bookshelf.Smullyan.Aviary
|
|
@ -1,4 +1,4 @@
|
||||||
/-! # Common.Combinator.Aviary
|
/-! # Smullyan.Aviary
|
||||||
|
|
||||||
A collection of combinator birds representable in Lean. Certain duplicators,
|
A collection of combinator birds representable in Lean. Certain duplicators,
|
||||||
e.g. mockingbirds, are not directly expressible since they would require
|
e.g. mockingbirds, are not directly expressible since they would require
|
||||||
|
@ -7,10 +7,6 @@ encoding a signature in which an argument has types `α` *and* `α → α`.
|
||||||
Duplicators that are included, e.g. the warbler, are not exactly correct
|
Duplicators that are included, e.g. the warbler, are not exactly correct
|
||||||
considering they still have the same limitation described above during actual
|
considering they still have the same limitation described above during actual
|
||||||
use. Their inclusion here serves more as pseudo-documentation than anything.
|
use. Their inclusion here serves more as pseudo-documentation than anything.
|
||||||
|
|
||||||
[^1]: Smullyan, Raymond M. To Mock a Mockingbird: And Other Logic Puzzles
|
|
||||||
Including an Amazing Adventure in Combinatory Logic. Oxford: Oxford
|
|
||||||
university press, 2000.
|
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/-- #### Bald Eagle
|
/-- #### Bald Eagle
|
|
@ -1,4 +1,3 @@
|
||||||
import Common.Combinator
|
|
||||||
import Common.Finset
|
import Common.Finset
|
||||||
import Common.List
|
import Common.List
|
||||||
import Common.Logic
|
import Common.Logic
|
||||||
|
|
|
@ -1 +0,0 @@
|
||||||
import Common.Combinator.Aviary
|
|
Loading…
Reference in New Issue