Move `OrderedPair` and `Relation` to Enderton.
These modules probably won't be very useful in general; there exist better representations in Lean when dealing with ordered pairs or relations already.finite-set-exercises
parent
c65e28888d
commit
dd4340c4bd
|
@ -1,3 +1,5 @@
|
|||
import Bookshelf.Enderton.Set.Chapter_1
|
||||
import Bookshelf.Enderton.Set.Chapter_2
|
||||
import Bookshelf.Enderton.Set.Chapter_3
|
||||
import Bookshelf.Enderton.Set.Chapter_3
|
||||
import Bookshelf.Enderton.Set.OrderedPair
|
||||
import Bookshelf.Enderton.Set.Relation
|
|
@ -73,6 +73,12 @@ There is a set having no members:
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section{\partial{Equivalence Relation}}%
|
||||
\label{ref:equivalence-relation}
|
||||
|
||||
Relation $R$ is an \textbf{equivalence relation} if and only if $R$ is a binary
|
||||
relation that is reflexive, symmetric, and transitive.
|
||||
|
||||
\section{\defined{Extensionality Axiom}}%
|
||||
\label{ref:extensionality-axiom}
|
||||
|
||||
|
@ -236,6 +242,12 @@ Given \nameref{ref:relation} $R$, the \textbf{range} of $R$, denoted $\ran{R}$,
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\partial{Reflexive Relation}}%
|
||||
\label{ref:reflexive-relation}
|
||||
|
||||
A binary relation $R$ is \textbf{reflexive} on $A$ if and only if $xRx$ for all
|
||||
$x \in A$.
|
||||
|
||||
\section{\defined{Relation}}%
|
||||
\label{ref:relation}
|
||||
|
||||
|
@ -272,6 +284,12 @@ For each formula $\phi$ not containing $B$, the following is an axiom:
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section{\partial{Symmetric Relation}}%
|
||||
\label{ref:symmetric-relation}
|
||||
|
||||
A binary relation $R$ is \textbf{symmetric} on $A$ if and only if whenever
|
||||
$xRy$ then $yRx$.
|
||||
|
||||
\section{\defined{Symmetric Difference}}%
|
||||
\label{ref:symmetric-difference}
|
||||
|
||||
|
@ -284,6 +302,12 @@ The \textbf{symmetric difference} $A + B$ of sets $A$ and $B$ is the set
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\partial{Transitive Relation}}%
|
||||
\label{ref:transitive-relation}
|
||||
|
||||
A binary relation $R$ is \textbf{transitive} on $A$ if and only if whenever
|
||||
$xRy$ and $yRz$, then $xRz$.
|
||||
|
||||
\section{\defined{Union Axiom}}%
|
||||
\label{ref:union-axiom}
|
||||
|
||||
|
@ -3148,6 +3172,25 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\section{Equivalence Relations}%
|
||||
\label{sec:equivalence-relations}
|
||||
|
||||
\subsection{\unverified{Theorem 3M}}%
|
||||
\label{sub:theorem-3m}
|
||||
|
||||
\begin{theorem}[3M]
|
||||
|
||||
If $R$ is a symmetric and transitive relation, then $R$ is an equivalence
|
||||
relation on $\fld{R}$.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 3}%
|
||||
\label{sec:exercises-3}
|
||||
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
import Mathlib.Data.Set.Basic
|
||||
import Mathlib.Data.Set.Lattice
|
||||
|
||||
import Bookshelf.Enderton.Set.Chapter_1
|
||||
import Common.Logic.Basic
|
||||
import Common.Set.Basic
|
||||
import Mathlib.Data.Set.Lattice
|
||||
|
||||
/-! # Enderton.Chapter_2
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import Bookshelf.Enderton.Set.Chapter_2
|
||||
import Common.Set.OrderedPair
|
||||
import Common.Set.Relation
|
||||
import Bookshelf.Enderton.Set.OrderedPair
|
||||
import Bookshelf.Enderton.Set.Relation
|
||||
|
||||
/-! # Enderton.Chapter_3
|
||||
|
||||
|
|
|
@ -1,6 +1,4 @@
|
|||
import Common.Set.OrderedPair
|
||||
import Mathlib.Data.Set.Basic
|
||||
import Mathlib.Data.Set.Prod
|
||||
import Bookshelf.Enderton.Set.OrderedPair
|
||||
|
||||
/-! # Relations
|
||||
|
|
@ -1,5 +1,3 @@
|
|||
import Common.Set.Basic
|
||||
import Common.Set.Interval
|
||||
import Common.Set.OrderedPair
|
||||
import Common.Set.Partition
|
||||
import Common.Set.Relation
|
||||
import Common.Set.Partition
|
Loading…
Reference in New Issue