Move aviary into Smullyan directory.
parent
dd4340c4bd
commit
e869d6f2d3
|
@ -1,5 +1,5 @@
|
|||
import Bookshelf.Apostol
|
||||
import Bookshelf.Avigad
|
||||
import Bookshelf.Enderton.Logic
|
||||
import Bookshelf.Enderton.Set
|
||||
import Bookshelf.Enderton
|
||||
import Bookshelf.Fraleigh
|
||||
import Bookshelf.Smullyan
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
import Bookshelf.Enderton.Logic
|
||||
import Bookshelf.Enderton.Set
|
|
@ -1,6 +1,6 @@
|
|||
import Mathlib.Data.Set.Basic
|
||||
|
||||
/-! # Enderton.Chapter_1
|
||||
/-! # Enderton.Set.Chapter_1
|
||||
|
||||
Introduction
|
||||
-/
|
||||
|
|
|
@ -2,7 +2,7 @@ import Bookshelf.Enderton.Set.Chapter_1
|
|||
import Common.Set.Basic
|
||||
import Mathlib.Data.Set.Lattice
|
||||
|
||||
/-! # Enderton.Chapter_2
|
||||
/-! # Enderton.Set.Chapter_2
|
||||
|
||||
Axioms and Operations
|
||||
-/
|
||||
|
|
|
@ -2,7 +2,7 @@ import Bookshelf.Enderton.Set.Chapter_2
|
|||
import Bookshelf.Enderton.Set.OrderedPair
|
||||
import Bookshelf.Enderton.Set.Relation
|
||||
|
||||
/-! # Enderton.Chapter_3
|
||||
/-! # Enderton.Set.Chapter_3
|
||||
|
||||
Relations and Functions
|
||||
-/
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import Common.Set.Basic
|
||||
|
||||
/-! # Ordered Pairs
|
||||
/-! # Enderton.Set.OrderedPair
|
||||
|
||||
A representation of an ordered pair in basic set theory. Like `Set`, it is
|
||||
assumed an ordered pair is homogeneous.
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import Bookshelf.Enderton.Set.OrderedPair
|
||||
|
||||
/-! # Relations
|
||||
/-! # Enderton.Set.Relation
|
||||
|
||||
A representation of a relation, i.e. a set of ordered pairs. Like `Set`, it is
|
||||
assumed a relation is homogeneous.
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
import Bookshelf.Smullyan.Aviary
|
|
@ -1,4 +1,4 @@
|
|||
/-! # Common.Combinator.Aviary
|
||||
/-! # Smullyan.Aviary
|
||||
|
||||
A collection of combinator birds representable in Lean. Certain duplicators,
|
||||
e.g. mockingbirds, are not directly expressible since they would require
|
||||
|
@ -7,10 +7,6 @@ encoding a signature in which an argument has types `α` *and* `α → α`.
|
|||
Duplicators that are included, e.g. the warbler, are not exactly correct
|
||||
considering they still have the same limitation described above during actual
|
||||
use. Their inclusion here serves more as pseudo-documentation than anything.
|
||||
|
||||
[^1]: Smullyan, Raymond M. To Mock a Mockingbird: And Other Logic Puzzles
|
||||
Including an Amazing Adventure in Combinatory Logic. Oxford: Oxford
|
||||
university press, 2000.
|
||||
-/
|
||||
|
||||
/-- #### Bald Eagle
|
|
@ -1,4 +1,3 @@
|
|||
import Common.Combinator
|
||||
import Common.Finset
|
||||
import Common.List
|
||||
import Common.Logic
|
||||
|
|
|
@ -1 +0,0 @@
|
|||
import Common.Combinator.Aviary
|
Loading…
Reference in New Issue