I3.9 Apostol. LUB and GLB theorems.

finite-set-exercises
Joshua Potter 2023-04-10 11:33:22 -06:00
parent cac78666db
commit cd3c98ee95
5 changed files with 280 additions and 136 deletions

View File

@ -1 +1 @@
import Apostol.Chapter_I_3_10 import Apostol.Chapter_I_3

View File

@ -0,0 +1,221 @@
import Mathlib.Data.Real.Basic
import Mathlib.Data.Set.Pointwise.Basic
import Mathlib.Tactic.LibrarySearch
#check Archimedean
#check Real.exists_isLUB
namespace Real
/--
A property holds for the negation of elements in set `S` if and only if it also
holds for the elements of the negation of `S`.
-/
lemma set_neg_prop_iff_neg_set_prop (S : Set ) (p : → Prop)
: (∀ y, y ∈ S → p (-y)) ↔ (∀ y, y ∈ -S → p y) := by
apply Iff.intro
· intro h y hy
rw [← neg_neg y, Set.neg_mem_neg] at hy
have := h (-y) hy
simp at this
exact this
· intro h y hy
rw [← Set.neg_mem_neg] at hy
exact h (-y) hy
/--
The upper bounds of the negation of a set is the negation of the lower bounds of
the set.
-/
lemma upper_bounds_neg_eq_neg_lower_bounds (S : Set )
: upperBounds (-S) = -lowerBounds S := by
suffices (∀ x, x ∈ upperBounds (-S) ↔ x ∈ -(lowerBounds S)) from
Set.ext this
intro x
apply Iff.intro
· intro hx
unfold lowerBounds
show -x ∈ { x | ∀ ⦃a : ℝ⦄, a ∈ S → x ≤ a }
show ∀ ⦃a : ℝ⦄, a ∈ S → (-x) ≤ a
intro a ha; rw [neg_le]; revert ha a
rw [set_neg_prop_iff_neg_set_prop S (fun a => a ≤ x)]
exact hx
· intro hx
unfold upperBounds
show ∀ ⦃a : ℝ⦄, a ∈ -S → a ≤ x
rw [← set_neg_prop_iff_neg_set_prop S (fun a => a ≤ x)]
intro y hy; rw [neg_le]; revert hy y
exact hx
/--
The negation of the upper bounds of a set is the lower bounds of the negation of
the set.
-/
lemma neg_upper_bounds_eq_lower_bounds_neg (S : Set )
: -upperBounds S = lowerBounds (-S) := by
suffices (∀ x, x ∈ -upperBounds S ↔ x ∈ lowerBounds (-S)) from
Set.ext this
intro x
apply Iff.intro
· intro hx
unfold lowerBounds
show ∀ ⦃a : ℝ⦄, a ∈ -S → x ≤ a
rw [← set_neg_prop_iff_neg_set_prop S (fun a => x ≤ a)]
intro y hy; rw [le_neg]; revert hy y
exact hx
· intro hx
unfold upperBounds
show -x ∈ { x | ∀ ⦃a : ℝ⦄, a ∈ S → a ≤ x }
show ∀ ⦃a : ℝ⦄, a ∈ S → a ≤ (-x)
intro a ha; rw [le_neg]; revert ha a
rw [set_neg_prop_iff_neg_set_prop S (fun a => x ≤ a)]
exact hx
/--
An element `x` is the least element of the negation of a set if and only if `-x`
if the greatest element of the set.
-/
lemma is_least_neg_set_eq_is_greatest_set_neq (S : Set )
: IsLeast (-S) x = IsGreatest S (-x) := by
unfold IsLeast IsGreatest
rw [← neg_upper_bounds_eq_lower_bounds_neg S]
rfl
/--
At least with respect to ``, `x` is the least upper bound of set `-S` if and
only if `-x` is the greatest lower bound of `S`.
-/
theorem is_lub_neg_set_iff_is_glb_set_neg (S : Set )
: IsLUB (-S) x = IsGLB S (-x) :=
calc IsLUB (-S) x
_ = IsLeast (upperBounds (-S)) x := rfl
_ = IsLeast (-lowerBounds S) x := by rw [upper_bounds_neg_eq_neg_lower_bounds S]
_ = IsGreatest (lowerBounds S) (-x) := by rw [is_least_neg_set_eq_is_greatest_set_neq]
_ = IsGLB S (-x) := rfl
/--
Theorem I.27
Every nonempty set `S` that is bounded below has a greatest lower bound; that
is, there is a real number `L` such that `L = inf S`.
-/
theorem exists_isGLB (S : Set ) (hne : S.Nonempty) (hbdd : BddBelow S)
: ∃ x, IsGLB S x := by
-- First we show the negation of a nonempty set bounded below is a nonempty
-- set bounded above. In that case, we can then apply the completeness axiom
-- to argue the existence of a supremum.
have hne' : (-S).Nonempty := Set.nonempty_neg.mpr hne
have hbdd' : ∃ x, ∀ (y : ), y ∈ -S → y ≤ x := by
rw [bddBelow_def] at hbdd
let ⟨lb, lbp⟩ := hbdd
refine ⟨-lb, ?_⟩
rw [← set_neg_prop_iff_neg_set_prop S (fun y => y ≤ -lb)]
intro y hy
exact neg_le_neg (lbp y hy)
rw [←bddAbove_def] at hbdd'
-- Once we have found a supremum for `-S`, we argue the negation of this value
-- is the same as the infimum of `S`.
let ⟨ub, ubp⟩ := exists_isLUB (-S) hne' hbdd'
exact ⟨-ub, (is_lub_neg_set_iff_is_glb_set_neg S).mp ubp⟩
/--
Every real should be less than or equal to the absolute value of its ceiling.
-/
lemma leq_nat_abs_ceil_self (x : ) : x ≤ Int.natAbs ⌈x⌉ := by
by_cases h : x ≥ 0
· let k : := ⌈x⌉
unfold Int.natAbs
have k' : k = ⌈x⌉ := rfl
rw [←k']
have _ : k ≥ 0 := by -- Hint for match below
rw [k', ge_iff_le]
exact Int.ceil_nonneg (ge_iff_le.mp h)
match k with
| Int.ofNat m => calc x
_ ≤ ⌈x⌉ := Int.le_ceil x
_ = Int.ofNat m := by rw [←k']
· have h' : ((Int.natAbs ⌈x⌉) : ) ≥ 0 := by simp
calc x
_ ≤ 0 := le_of_lt (lt_of_not_le h)
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
/--
Theorem I.29
For every real `x` there exists a positive integer `n` such that `n > x`.
-/
theorem exists_pnat_geq_self (x : ) : ∃ n : +, ↑n > x := by
let x' : + := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩
have h : x < x' := calc x
_ ≤ Int.natAbs ⌈x⌉ := leq_nat_abs_ceil_self x
_ < ↑↑(Int.natAbs ⌈x⌉ + 1) := by simp
_ = x' := rfl
exact ⟨x', h⟩
/--
Theorem I.30
If `x > 0` and if `y` is an arbitrary real number, there exists a positive
integer `n` such that `nx > y`.
This is known as the *Archimedean Property of the Reals*.
-/
theorem exists_pnat_mul_self_geq_of_pos {x y : }
: x > 0 → ∃ n : +, n * x > y := by
intro hx
let ⟨n, p⟩ := exists_pnat_geq_self (y / x)
have p' := mul_lt_mul_of_pos_right p hx
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
exact ⟨n, p'⟩
/--
Theorem I.31
If three real numbers `a`, `x`, and `y` satisfy the inequalities
`a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`.
-/
theorem forall_pnat_leq_self_leq_frac_imp_eq {x y a : }
: (∀ n : +, a ≤ x ∧ x ≤ a + (y / n)) → x = a := by
intro h
match @trichotomous LT.lt _ x a with
| -- x = a
Or.inr (Or.inl r) => exact r
| -- x < a
Or.inl r =>
have z : a < a := lt_of_le_of_lt (h 1).left r
simp at z
| -- x > a
Or.inr (Or.inr r) =>
let ⟨c, hc⟩ := exists_pos_add_of_lt' r
let ⟨n, hn⟩ := @exists_pnat_mul_self_geq_of_pos c y hc.left
have hn := mul_lt_mul_of_pos_left hn $
have hp : 0 < (↑↑n : ) := by simp
show 0 < ((↑↑n)⁻¹ : ) from inv_pos.mpr hp
rw [inv_mul_eq_div, ←mul_assoc, mul_comm (n⁻¹ : ), ←one_div, mul_one_div] at hn
simp at hn
have hn := add_lt_add_left hn a
have := calc a + y / ↑↑n
_ < a + c := hn
_ = x := hc.right
_ ≤ a + y / ↑↑n := (h n).right
simp at this
/--
Theorem I.32a
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
has a supremum, then for some `x` in `S` we have `x > sup S - h`.
-/
theorem arb_close_to_sup (S : Set ) (s h : ) (hp : h > 0)
: IsLUB S s → ∃ x : S, x > s - h := sorry
/--
Theorem I.32b
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
has an infimum, then for some `x` in `S` we have `x < inf S + h`.
-/
theorem arb_close_to_inf (S : Set ) (s h : ) (hp : h > 0)
: IsGLB S s → ∃ x : S, x < s + h := sorry
end Real

View File

@ -0,0 +1,58 @@
\documentclass{article}
\input{../../common/preamble}
\begin{document}
\begin{xtheorem}{I.27}
Every nonempty set $S$ that is bounded below has a greatest lower bound;
that is, there is a real number $L$ such that $L = \inf{S}$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_isGLB}
\end{proof}
\begin{xtheorem}{I.29}
For every real $x$ there exists a positive integer $n$ such that $n > x$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_geq_self}
\end{proof}
\begin{xtheorem}{I.30}[Archimedean Property of the Reals]
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_mul_self_geq_of_pos}
\end{proof}
\begin{xtheorem}{I.31}
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
$$a \leq x \leq a + \frac{y}{n}$$
for every integer $n \geq 1$, then $x = a$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.forall_pnat_leq_self_leq_frac_imp_eq}
\end{proof}
\end{document}

View File

@ -1,90 +0,0 @@
import Mathlib.Data.PNat.Basic
import Mathlib.Data.Real.Basic
#check Archimedean
namespace Real
/--
Every real should be less than or equal to the absolute value of its ceiling.
-/
lemma leq_nat_abs_ceil_self (x : ) : x ≤ Int.natAbs ⌈x⌉ := by
by_cases h : x ≥ 0
· let k : := ⌈x⌉
unfold Int.natAbs
have k' : k = ⌈x⌉ := rfl
rw [←k']
have _ : k ≥ 0 := by -- Hint for match below
rw [k', ge_iff_le]
exact Int.ceil_nonneg (ge_iff_le.mp h)
match k with
| Int.ofNat m => calc x
_ ≤ ⌈x⌉ := Int.le_ceil x
_ = Int.ofNat m := by rw [←k']
· have h' : ((Int.natAbs ⌈x⌉) : ) ≥ 0 := by simp
calc x
_ ≤ 0 := le_of_lt (lt_of_not_le h)
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
/--
Theorem I.29
For every real `x` there exists a positive integer `n` such that `n > x`.
-/
theorem exists_pnat_geq_self (x : ) : ∃ n : +, ↑n > x := by
let x' : + := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩
have h : x < x' := calc x
_ ≤ Int.natAbs ⌈x⌉ := leq_nat_abs_ceil_self x
_ < ↑↑(Int.natAbs ⌈x⌉ + 1) := by simp
_ = x' := rfl
exact ⟨x', h⟩
/--
Theorem I.30
If `x > 0` and if `y` is an arbitrary real number, there exists a positive
integer `n` such that `nx > y`.
This is known as the *Archimedean Property of the Reals*.
-/
theorem exists_pnat_mul_self_geq_of_pos {x y : }
: x > 0 → ∃ n : +, n * x > y := by
intro hx
let ⟨n, p⟩ := exists_pnat_geq_self (y / x)
have p' := mul_lt_mul_of_pos_right p hx
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
exact ⟨n, p'⟩
/--
Theorem I.31
If three real numbers `a`, `x`, and `y` satisfy the inequalities
`a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`.
-/
theorem forall_pnat_leq_self_leq_frac_iff_eq {x y a : }
: (∀ n : +, a ≤ x ∧ x ≤ a + (y / n)) → x = a := by
intro h
match @trichotomous LT.lt _ x a with
| -- x = a
Or.inr (Or.inl r) => exact r
| -- x < a
Or.inl r =>
have z : a < a := lt_of_le_of_lt (h 1).left r
simp at z
| -- x > a
Or.inr (Or.inr r) =>
let ⟨c, hc⟩ := exists_pos_add_of_lt' r
let ⟨n, hn⟩ := @exists_pnat_mul_self_geq_of_pos c y hc.left
have hn := mul_lt_mul_of_pos_left hn $
have hp : 0 < (↑↑n : ) := by simp
show 0 < ((↑↑n)⁻¹ : ) from inv_pos.mpr hp
rw [inv_mul_eq_div, ←mul_assoc, mul_comm (n⁻¹ : ), ←one_div, mul_one_div] at hn
simp at hn
have hn := add_lt_add_left hn a
have := calc a + y / ↑↑n
_ < a + c := hn
_ = x := hc.right
_ ≤ a + y / ↑↑n := (h n).right
simp at this
end Real

View File

@ -1,45 +0,0 @@
\documentclass{article}
\input{../../common/preamble}
\begin{document}
\begin{xtheorem}{1.29}
For every real $x$ there exists a positive integer $n$ such that $n > x$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.exists_pnat_geq_self}
\end{proof}
\begin{xtheorem}{1.30}[Archimedean Property of the Reals]
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.exists_pnat_mul_self_geq_of_pos}
\end{proof}
\begin{xtheorem}{1.31}
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
$$a \leq x \leq a + \frac{y}{n}$$
for every integer $n \geq 1$, then $x = a$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.forall_pnat_leq_self_leq_frac_iff_eq}
\end{proof}
\end{document}