Enderton (set). Revert Theorem 6A.

finite-set-exercises
Joshua Potter 2023-08-17 05:34:41 -06:00
parent 8f833f9353
commit b9b542f0ee
1 changed files with 5 additions and 12 deletions

View File

@ -3023,7 +3023,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
F \circ G = \{\tuple{u, v} \mid \exists t(uGt \land tFv)\}.
\end{equation}
By \nameref{sub:theorem-3h}, $F \circ G$ is a function.
All that remains is proving $F \circ G$ is single-valued, i.e. for each
All that remains is proving $F \circ G$ is single-rooted, i.e. for each
$y \in \ran{F \circ G}$, there is only one $x$ such that
$\tuple{x, y} \in F \circ G$.
@ -8442,7 +8442,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
\section{Equinumerosity}%
\hyperlabel{sec:equinumerosity}
\subsection{\verified{Theorem 6A}}%
\subsection{\pending{Theorem 6A}}%
\hyperlabel{sub:theorem-6a}
\begin{theorem}[6A]
@ -8477,19 +8477,12 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
\paragraph{(b)}%
Suppose $\equinumerous{A}{B}$.
Then there exists a one-to-one function $f \colon A \rightarrow B$.
By \nameref{sub:one-to-one-inverse}, $f^{-1} \colon B \rightarrow A$
is also one-to-one.
Thus $\equinumerous{B}{A}$.
Then there exists a one-to-one function $f$ from $A$ onto $B$.
TODO
\paragraph{(c)}%
Suppose $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$.
Then there exist one-to-one functions $f \colon A \rightarrow B$ and
$g \colon B \rightarrow C$.
Then, by \nameref{sub:one-to-one-composition},
$g \circ f \colon A \rightarrow C$ is one-to-one.
Thus $\equinumerous{A}{C}$.
TODO
\end{proof}