Enderton (set). Revert Theorem 6A.
parent
8f833f9353
commit
b9b542f0ee
|
@ -3023,7 +3023,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
||||||
F \circ G = \{\tuple{u, v} \mid \exists t(uGt \land tFv)\}.
|
F \circ G = \{\tuple{u, v} \mid \exists t(uGt \land tFv)\}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
By \nameref{sub:theorem-3h}, $F \circ G$ is a function.
|
By \nameref{sub:theorem-3h}, $F \circ G$ is a function.
|
||||||
All that remains is proving $F \circ G$ is single-valued, i.e. for each
|
All that remains is proving $F \circ G$ is single-rooted, i.e. for each
|
||||||
$y \in \ran{F \circ G}$, there is only one $x$ such that
|
$y \in \ran{F \circ G}$, there is only one $x$ such that
|
||||||
$\tuple{x, y} \in F \circ G$.
|
$\tuple{x, y} \in F \circ G$.
|
||||||
|
|
||||||
|
@ -8442,7 +8442,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
||||||
\section{Equinumerosity}%
|
\section{Equinumerosity}%
|
||||||
\hyperlabel{sec:equinumerosity}
|
\hyperlabel{sec:equinumerosity}
|
||||||
|
|
||||||
\subsection{\verified{Theorem 6A}}%
|
\subsection{\pending{Theorem 6A}}%
|
||||||
\hyperlabel{sub:theorem-6a}
|
\hyperlabel{sub:theorem-6a}
|
||||||
|
|
||||||
\begin{theorem}[6A]
|
\begin{theorem}[6A]
|
||||||
|
@ -8477,19 +8477,12 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
||||||
\paragraph{(b)}%
|
\paragraph{(b)}%
|
||||||
|
|
||||||
Suppose $\equinumerous{A}{B}$.
|
Suppose $\equinumerous{A}{B}$.
|
||||||
Then there exists a one-to-one function $f \colon A \rightarrow B$.
|
Then there exists a one-to-one function $f$ from $A$ onto $B$.
|
||||||
By \nameref{sub:one-to-one-inverse}, $f^{-1} \colon B \rightarrow A$
|
TODO
|
||||||
is also one-to-one.
|
|
||||||
Thus $\equinumerous{B}{A}$.
|
|
||||||
|
|
||||||
\paragraph{(c)}%
|
\paragraph{(c)}%
|
||||||
|
|
||||||
Suppose $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$.
|
TODO
|
||||||
Then there exist one-to-one functions $f \colon A \rightarrow B$ and
|
|
||||||
$g \colon B \rightarrow C$.
|
|
||||||
Then, by \nameref{sub:one-to-one-composition},
|
|
||||||
$g \circ f \colon A \rightarrow C$ is one-to-one.
|
|
||||||
Thus $\equinumerous{A}{C}$.
|
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue