Archimedean property and consistent theorem environment.
parent
b8d754ea5e
commit
b7a0ce1551
|
@ -3,6 +3,11 @@
|
||||||
\usepackage{hyperref}
|
\usepackage{hyperref}
|
||||||
|
|
||||||
\newtheorem{theorem}{Theorem}
|
\newtheorem{theorem}{Theorem}
|
||||||
|
\newtheorem{custominner}{Theorem}
|
||||||
|
\newenvironment{custom}[1]{%
|
||||||
|
\renewcommand\thecustominner{#1}%
|
||||||
|
\custominner
|
||||||
|
}{\endcustominner}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
|
|
|
@ -3,6 +3,11 @@
|
||||||
\usepackage{hyperref}
|
\usepackage{hyperref}
|
||||||
|
|
||||||
\newtheorem{theorem}{Theorem}
|
\newtheorem{theorem}{Theorem}
|
||||||
|
\newtheorem{custominner}{Theorem}
|
||||||
|
\newenvironment{custom}[1]{%
|
||||||
|
\renewcommand\thecustominner{#1}%
|
||||||
|
\custominner
|
||||||
|
}{\endcustominner}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
|
|
|
@ -3,6 +3,11 @@
|
||||||
\usepackage{hyperref}
|
\usepackage{hyperref}
|
||||||
|
|
||||||
\newtheorem{theorem}{Theorem}
|
\newtheorem{theorem}{Theorem}
|
||||||
|
\newtheorem{custominner}{Theorem}
|
||||||
|
\newenvironment{custom}[1]{%
|
||||||
|
\renewcommand\thecustominner{#1}%
|
||||||
|
\custominner
|
||||||
|
}{\endcustominner}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
def hello := "world"
|
import Apostol.Chapter_I_3_10
|
||||||
|
|
|
@ -0,0 +1,60 @@
|
||||||
|
import Mathlib.Data.PNat.Basic
|
||||||
|
import Mathlib.Data.Real.Basic
|
||||||
|
import Mathlib.Order.Basic
|
||||||
|
import Mathlib.Tactic.LibrarySearch
|
||||||
|
|
||||||
|
#check Archimedean
|
||||||
|
|
||||||
|
namespace Real
|
||||||
|
|
||||||
|
/--
|
||||||
|
Every real should be less than or equal to the absolute value of its ceiling.
|
||||||
|
-/
|
||||||
|
lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by
|
||||||
|
by_cases h : x ≥ 0
|
||||||
|
· let k : ℤ := ⌈x⌉
|
||||||
|
unfold Int.natAbs
|
||||||
|
have k' : k = ⌈x⌉ := rfl
|
||||||
|
rw [←k']
|
||||||
|
have _ : k ≥ 0 := by -- Hint for match below
|
||||||
|
rw [k', ge_iff_le]
|
||||||
|
exact Int.ceil_nonneg (ge_iff_le.mp h)
|
||||||
|
match k with
|
||||||
|
| Int.ofNat m => calc x
|
||||||
|
_ ≤ ⌈x⌉ := Int.le_ceil x
|
||||||
|
_ = Int.ofNat m := by rw [←k']
|
||||||
|
· have h' : ((Int.natAbs ⌈x⌉) : ℝ) ≥ 0 := by simp
|
||||||
|
calc x
|
||||||
|
_ ≤ 0 := le_of_lt (lt_of_not_le h)
|
||||||
|
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
|
||||||
|
|
||||||
|
/--
|
||||||
|
Theorem 1.29
|
||||||
|
|
||||||
|
For every real `x` there exists a positive integer `n` such that `n > x`.
|
||||||
|
-/
|
||||||
|
theorem exists_pnat_geq_self (x : ℝ) : ∃ n : ℕ+, ↑n > x := by
|
||||||
|
let x' : ℕ+ := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩
|
||||||
|
have h : x < x' := calc x
|
||||||
|
_ ≤ Int.natAbs ⌈x⌉ := leq_nat_abs_ceil_self x
|
||||||
|
_ < ↑↑(Int.natAbs ⌈x⌉ + 1) := by simp
|
||||||
|
_ = x' := rfl
|
||||||
|
exact ⟨x', h⟩
|
||||||
|
|
||||||
|
/--
|
||||||
|
Theorem 1.30
|
||||||
|
|
||||||
|
If `x > 0` and if `y` is an arbitrary real number, there exists a positive
|
||||||
|
integer `n` such that `nx > y`.
|
||||||
|
|
||||||
|
This is known as the *Archimedean Property of the Reals*.
|
||||||
|
-/
|
||||||
|
theorem pos_imp_exists_pnat_mul_self_geq {x y : ℝ}
|
||||||
|
: x > 0 → ∃ n : ℕ+, n * x > y := by
|
||||||
|
intro hx
|
||||||
|
let ⟨n, p⟩ := exists_pnat_geq_self (y / x)
|
||||||
|
have p' := mul_lt_mul_of_pos_right p hx
|
||||||
|
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
|
||||||
|
exact ⟨n, p'⟩
|
||||||
|
|
||||||
|
end Real
|
|
@ -0,0 +1,38 @@
|
||||||
|
\documentclass{article}
|
||||||
|
\usepackage{amsfonts, amsthm}
|
||||||
|
\usepackage{hyperref}
|
||||||
|
|
||||||
|
\newtheorem{theorem}{Theorem}
|
||||||
|
\newtheorem{custominner}{Theorem}
|
||||||
|
\newenvironment{custom}[1]{%
|
||||||
|
\renewcommand\thecustominner{#1}%
|
||||||
|
\custominner
|
||||||
|
}{\endcustominner}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\begin{custom}{1.29}
|
||||||
|
|
||||||
|
For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
||||||
|
|
||||||
|
\end{custom}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
\href{Chapter_I_3_10.lean}{Apostol.Chapter\_I\_3\_10.Real.exists\_pnat\_geq\_self}
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{custom}{1.30}[Archimedean Property of the Reals]
|
||||||
|
|
||||||
|
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
|
||||||
|
|
||||||
|
\end{custom}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
\href{Chapter_I_3_10.lean}{Apostol.Chapter\_I\_3\_10.Real.pos\_imp\_exists\_pnat\_mul\_self\_geq}
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\end{document}
|
|
@ -0,0 +1,4 @@
|
||||||
|
# One-Variable Calculus, with an Introduction to Linear Algebra
|
||||||
|
|
||||||
|
Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to
|
||||||
|
Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.
|
Loading…
Reference in New Issue