bookshelf/mathematical-introduction-l.../Enderton/Chapter0.tex

28 lines
547 B
TeX

\documentclass{article}
\usepackage{amsfonts, amsthm}
\usepackage{hyperref}
\newtheorem{theorem}{Theorem}
\newtheorem{custominner}{Theorem}
\newenvironment{custom}[1]{%
\renewcommand\thecustominner{#1}%
\custominner
}{\endcustominner}
\begin{document}
\begin{theorem}[Lemma 0A]
Assume that $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
\end{theorem}
\begin{proof}
\href{Chapter0.lean}{Enderton.Chapter0.lemma\_0a}
\end{proof}
\end{document}