More LaTeX proof embedding. Finish up "Set Difference Size".
parent
f215a3180a
commit
b596478a36
|
@ -9204,7 +9204,7 @@
|
||||||
Clearly, if $S' = S$, then $S'$ is finite.
|
Clearly, if $S' = S$, then $S'$ is finite.
|
||||||
Therefore suppose $S'$ is a proper subset of $S$.
|
Therefore suppose $S'$ is a proper subset of $S$.
|
||||||
|
|
||||||
By definition of finite set, $S$ is \nameref{ref:equinumerous} to some
|
By definition of a finite set, $S$ is \nameref{ref:equinumerous} to some
|
||||||
natural number $n$.
|
natural number $n$.
|
||||||
Let $f$ be a one-to-one correspondence between $S$ and $n$.
|
Let $f$ be a one-to-one correspondence between $S$ and $n$.
|
||||||
Then $f \restriction S'$ is a one-to-one correspondence between $S'$ and
|
Then $f \restriction S'$ is a one-to-one correspondence between $S'$ and
|
||||||
|
@ -9299,20 +9299,18 @@
|
||||||
By \nameref{sub:theorem-6a}, $n \equin \ran{f}$.
|
By \nameref{sub:theorem-6a}, $n \equin \ran{f}$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\pending{Set Difference Size}}%
|
\subsection{\verified{Set Difference Size}}%
|
||||||
\hyperlabel{sub:set-difference-size}
|
\hyperlabel{sub:set-difference-size}
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
Let $A \equin m$ for some natural number $m$ and $B \subseteq A$.
|
Let $A \equin m$ for some natural number $m$ and $B \subseteq A$.
|
||||||
Then there exists some $n \in \omega$ such that $B \equin n$ and
|
Then there exists some $n \in \omega$ such that $n \leq m$, $B \equin n$ and
|
||||||
$A - B \equin m - n$.
|
$A - B \equin m - n$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
\code{Bookshelf/Enderton/Set/Chapter\_6}
|
\code{Bookshelf/Enderton/Set/Chapter\_6}
|
||||||
{Enderton.Set.Chapter\_6.sdiff\_size}
|
{Enderton.Set.Chapter\_6.sdiff\_size}
|
||||||
|
|
||||||
TODO: Update IH and add additional lemmas to fully prove this out.
|
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
Let
|
Let
|
||||||
|
@ -9320,7 +9318,7 @@
|
||||||
\hyperlabel{sub:set-difference-size-ih}
|
\hyperlabel{sub:set-difference-size-ih}
|
||||||
S = \{m \in \omega \mid
|
S = \{m \in \omega \mid
|
||||||
\forall A \equin m, \forall B \subseteq A, \exists n
|
\forall A \equin m, \forall B \subseteq A, \exists n
|
||||||
\in \omega (B \equin n \land A - B \equin m - n)\}.
|
\in \omega (n \leq m \land B \equin n \land A - B \equin m - n)\}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
||||||
Afterward we prove (iii) the lemma statement.
|
Afterward we prove (iii) the lemma statement.
|
||||||
|
@ -9329,9 +9327,9 @@
|
||||||
\hyperlabel{par:set-difference-size-i}
|
\hyperlabel{par:set-difference-size-i}
|
||||||
|
|
||||||
Let $A \equin 0$ and $B \subseteq A$.
|
Let $A \equin 0$ and $B \subseteq A$.
|
||||||
Then it follows $A = B = \emptyset$.
|
Then it follows $A = B = \emptyset = 0$.
|
||||||
Therefore $B \equin 0$ and $$A - B = \emptyset \equin 0 = 0 - 0$$ as
|
Since $0 \leq 0$, $B \equin 0$, and $A - B = \emptyset \equin 0 = 0 - 0$,
|
||||||
expected.
|
it follows $0 \in S$.
|
||||||
|
|
||||||
\paragraph{(ii)}%
|
\paragraph{(ii)}%
|
||||||
\hyperlabel{par:set-difference-size-ii}
|
\hyperlabel{par:set-difference-size-ii}
|
||||||
|
@ -9345,7 +9343,7 @@
|
||||||
Then $B - \{a\} \subseteq A - \{a\}$ and $f$ is a one-to-one
|
Then $B - \{a\} \subseteq A - \{a\}$ and $f$ is a one-to-one
|
||||||
correspondence between $A - \{a\}$ and $m$.
|
correspondence between $A - \{a\}$ and $m$.
|
||||||
By \ihref{sub:set-difference-size-ih}, there exists some $n \in \omega$
|
By \ihref{sub:set-difference-size-ih}, there exists some $n \in \omega$
|
||||||
such that $B - \{a\} \equin n$ and
|
such that $n \leq m$, $B - \{a\} \equin n$ and
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\hyperlabel{par:set-difference-size-ii-eq1}
|
\hyperlabel{par:set-difference-size-ii-eq1}
|
||||||
(A - \{a\}) - (B - \{a\}) \equin m - n.
|
(A - \{a\}) - (B - \{a\}) \equin m - n.
|
||||||
|
@ -9377,7 +9375,7 @@
|
||||||
& = \{x \mid x \in A - B \land x \neq a\} \nonumber \\
|
& = \{x \mid x \in A - B \land x \neq a\} \nonumber \\
|
||||||
& = \{x \mid x \in A - B \land x \not\in \{a\}\} \nonumber \\
|
& = \{x \mid x \in A - B \land x \not\in \{a\}\} \nonumber \\
|
||||||
& = (A - B) - \{a\}.
|
& = (A - B) - \{a\}.
|
||||||
\label{par:set-difference-size-ii-eq2}
|
\hyperlabel{par:set-difference-size-ii-eq2}
|
||||||
\end{align}
|
\end{align}
|
||||||
Since $a \in A$ and $a \in B$, $(A - B) - \{a\} = A - B$.
|
Since $a \in A$ and $a \in B$, $(A - B) - \{a\} = A - B$.
|
||||||
Thus
|
Thus
|
||||||
|
@ -9396,7 +9394,7 @@
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
(A - \{a\}) - (B - \{a\})
|
(A - \{a\}) - (B - \{a\})
|
||||||
& = (A - \{a\}) - B \\
|
& = (A - \{a\}) - B \\
|
||||||
& \equin m - n & \eqref{par:set-difference-size-ii-eq1}.
|
& \equin m - n. & \eqref{par:set-difference-size-ii-eq1}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
The above implies that there exists a one-to-one correspondence $g$
|
The above implies that there exists a one-to-one correspondence $g$
|
||||||
between $(A - \{a\}) - B$ and $m - n$.
|
between $(A - \{a\}) - B$ and $m - n$.
|
||||||
|
@ -9408,7 +9406,8 @@
|
||||||
\subparagraph{Subconclusion}%
|
\subparagraph{Subconclusion}%
|
||||||
|
|
||||||
The above two cases are exhaustive and both conclude the existence of
|
The above two cases are exhaustive and both conclude the existence of
|
||||||
some $n \in \omega$ such that $B \equin n$ and $A - B \equin m^+ - n$.
|
some $n \in \omega$ such that $n \leq m^+$, $B \equin n$ and
|
||||||
|
$A - B \equin m^+ - n$.
|
||||||
Hence $m^+ \in S$.
|
Hence $m^+ \in S$.
|
||||||
|
|
||||||
\paragraph{(iii)}%
|
\paragraph{(iii)}%
|
||||||
|
@ -9418,8 +9417,8 @@
|
||||||
\nameref{ref:inductive-set}.
|
\nameref{ref:inductive-set}.
|
||||||
Thus \nameref{sub:theorem-4b} implies $S = \omega$.
|
Thus \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||||
Hence, for all $A \equin m$ for some $m \in \omega$, if $B \subseteq A$,
|
Hence, for all $A \equin m$ for some $m \in \omega$, if $B \subseteq A$,
|
||||||
then there exists some $n \in \omega$ such that $B \equin n$ and
|
then there exists some $n \in \omega$ such that $n \leq m$,
|
||||||
$A - B \equin m - n$.
|
$B \equin n$, and $A - B \equin m - n$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
|
@ -299,9 +299,25 @@ m ∈ n ↔ m ⬝ p ∈ n ⬝ p.
|
||||||
|
|
||||||
theorem theorem_4n_i (m n p : ℕ)
|
theorem theorem_4n_i (m n p : ℕ)
|
||||||
: m < n ↔ m + p < n + p := by
|
: m < n ↔ m + p < n + p := by
|
||||||
|
/-
|
||||||
|
> Let `m` and `n` be natural numbers.
|
||||||
|
>
|
||||||
|
> ##### (⇒)
|
||||||
|
> Suppose `m ∈ n`. Let
|
||||||
|
>
|
||||||
|
> `S = {p ∈ ω | m + p ∈ n + p}`
|
||||||
|
-/
|
||||||
have hf : ∀ m n : ℕ, m < n → m + p < n + p := by
|
have hf : ∀ m n : ℕ, m < n → m + p < n + p := by
|
||||||
induction p with
|
induction p with
|
||||||
|
/-
|
||||||
|
> It trivially follows that `0 ∈ S`.
|
||||||
|
-/
|
||||||
| zero => simp
|
| zero => simp
|
||||||
|
/-
|
||||||
|
> Next, suppose `p ∈ S`. That is, suppose `m + p ∈ n + p`. By *Lemma 4L(a)*,
|
||||||
|
> this holds if and only if `(m + p)⁺ ∈ (n + p)⁺`. *Theorem 4I* then implies
|
||||||
|
> that `m + p⁺ ∈ n + p⁺` meaning `p⁺ ∈ S`.
|
||||||
|
-/
|
||||||
| succ p ih =>
|
| succ p ih =>
|
||||||
intro m n hp
|
intro m n hp
|
||||||
have := ih m n hp
|
have := ih m n hp
|
||||||
|
@ -310,29 +326,76 @@ theorem theorem_4n_i (m n p : ℕ)
|
||||||
have h₂ : (n + p).succ = n + p.succ := rfl
|
have h₂ : (n + p).succ = n + p.succ := rfl
|
||||||
rwa [← h₁, ← h₂]
|
rwa [← h₁, ← h₂]
|
||||||
apply Iff.intro
|
apply Iff.intro
|
||||||
|
/-
|
||||||
|
> Thus `S` is an inductive set. Hence *Theorem 4B* implies `S = ω`. Therefore,
|
||||||
|
> for all `p ∈ ω`, `m ∈n` implies `m + p ∈ n + p`.
|
||||||
|
-/
|
||||||
· exact hf m n
|
· exact hf m n
|
||||||
|
/-
|
||||||
|
> ##### (⇐)
|
||||||
|
> Let `p` be a natural number and suppose `m + p ∈ n + p`. By the
|
||||||
|
> *Trichotomy Law for `ω`*, there are two cases to consider regarding how `m`
|
||||||
|
> and `n` relate to one another:
|
||||||
|
-/
|
||||||
· intro h
|
· intro h
|
||||||
match @trichotomous ℕ LT.lt _ m n with
|
match @trichotomous ℕ LT.lt _ m n with
|
||||||
| Or.inl h₁ =>
|
|
||||||
exact h₁
|
|
||||||
| Or.inr (Or.inl h₁) =>
|
| Or.inr (Or.inl h₁) =>
|
||||||
|
/-
|
||||||
|
> ###### Case 1
|
||||||
|
> Suppose `m = n`. Then `m + p ∈ n + p = m + p`. *Lemma 4L(b)* shows this is
|
||||||
|
> impossible.
|
||||||
|
-/
|
||||||
rw [← h₁] at h
|
rw [← h₁] at h
|
||||||
exact absurd h (lemma_4l_b (m + p))
|
exact absurd h (lemma_4l_b (m + p))
|
||||||
| Or.inr (Or.inr h₁) =>
|
| Or.inr (Or.inr h₁) =>
|
||||||
|
/-
|
||||||
|
> ###### Case 2
|
||||||
|
> Suppose `n ∈ m`. Then *(⇒)* indicates `n + p ∈ m + p`. But this contradicts
|
||||||
|
> the *Trichotomy Law for `ω`* since, by hypothesis, `m + p ∈ n + p`.
|
||||||
|
-/
|
||||||
have := hf n m h₁
|
have := hf n m h₁
|
||||||
exact absurd this (Nat.lt_asymm h)
|
exact absurd this (Nat.lt_asymm h)
|
||||||
|
| Or.inl h₁ =>
|
||||||
|
/-
|
||||||
|
> ###### Conclusion
|
||||||
|
> By trichotomy, it follows `m ∈ n`.
|
||||||
|
-/
|
||||||
|
exact h₁
|
||||||
|
|
||||||
#check Nat.add_lt_add_iff_right
|
#check Nat.add_lt_add_iff_right
|
||||||
|
|
||||||
theorem theorem_4n_ii (m n p : ℕ)
|
theorem theorem_4n_ii (m n p : ℕ)
|
||||||
: m < n ↔ m * p.succ < n * p.succ := by
|
: m < n ↔ m * p.succ < n * p.succ := by
|
||||||
|
/-
|
||||||
|
> Let `m` and `n` be natural numbers.
|
||||||
|
>
|
||||||
|
> ##### (⇒)
|
||||||
|
> Suppose `m ∈ n`. Let
|
||||||
|
>
|
||||||
|
> `S = {p ∈ ω | m ⬝ p⁺ ∈ n ⬝ p⁺}`.
|
||||||
|
-/
|
||||||
have hf : ∀ m n : ℕ, m < n → m * p.succ < n * p.succ := by
|
have hf : ∀ m n : ℕ, m < n → m * p.succ < n * p.succ := by
|
||||||
intro m n hp₁
|
intro m n hp₁
|
||||||
induction p with
|
induction p with
|
||||||
| zero =>
|
| zero =>
|
||||||
|
/-
|
||||||
|
> `0 ∈ S` by *Right Multiplicative Identity*.
|
||||||
|
-/
|
||||||
simp only [Nat.mul_one]
|
simp only [Nat.mul_one]
|
||||||
exact hp₁
|
exact hp₁
|
||||||
| succ p ih =>
|
| succ p ih =>
|
||||||
|
/-
|
||||||
|
> Next, suppose `p ∈ S`. That is, `m ⬝ p⁺ ∈ n ⬝ p⁺`. Then
|
||||||
|
>
|
||||||
|
> `m ⬝ p⁺⁺ = m ⬝ p⁺ + m` *Theorem 4J*
|
||||||
|
> ` ∈ n ⬝ p⁺ + m` *(i)*
|
||||||
|
> ` = m + n ⬝ p⁺` *Theorem 4K-2*
|
||||||
|
> ` ∈ n + n ⬝ p⁺` *(i)*
|
||||||
|
> ` = n ⬝p⁺ + n` *Theorem 4K-2*
|
||||||
|
> ` n ⬝ p⁺⁺` *Theorem 4J*
|
||||||
|
>
|
||||||
|
> Therefore `p⁺ ∈ S`.
|
||||||
|
-/
|
||||||
have hp₂ : m * p.succ < n * p.succ := by
|
have hp₂ : m * p.succ < n * p.succ := by
|
||||||
by_cases hp₃ : p = 0
|
by_cases hp₃ : p = 0
|
||||||
· rw [hp₃] at *
|
· rw [hp₃] at *
|
||||||
|
@ -347,17 +410,43 @@ theorem theorem_4n_ii (m n p : ℕ)
|
||||||
_ = n * p.succ + n := by rw [theorem_4k_2]
|
_ = n * p.succ + n := by rw [theorem_4k_2]
|
||||||
_ = n * p.succ.succ := rfl
|
_ = n * p.succ.succ := rfl
|
||||||
apply Iff.intro
|
apply Iff.intro
|
||||||
|
/-
|
||||||
|
> Thus `S` is an inductive set. Hence *Theorem 4B* implies `S = ω`. By
|
||||||
|
> *Theorem 4C*, every natural number except `0` is the successor of some natural
|
||||||
|
> number. Therefore, for all `p ∈ ω` such that `p ≠ 0`, `m ∈ n` implies
|
||||||
|
`m ⬝ p ∈ n ⬝ p`.
|
||||||
|
-/
|
||||||
· exact hf m n
|
· exact hf m n
|
||||||
· intro hp
|
/-
|
||||||
|
> ##### (⇐)
|
||||||
|
> Let `p ≠ 0` be a natural number and suppose `m ⬝ p ∈ n ⬝ p`. By the
|
||||||
|
> *Trichotomy Law for `ω`*, there are two cases to consider regarding how `m`
|
||||||
|
> and `n` relate to one another.
|
||||||
|
-/
|
||||||
|
intro hp
|
||||||
match @trichotomous ℕ LT.lt _ m n with
|
match @trichotomous ℕ LT.lt _ m n with
|
||||||
| Or.inl h₁ =>
|
|
||||||
exact h₁
|
|
||||||
| Or.inr (Or.inl h₁) =>
|
| Or.inr (Or.inl h₁) =>
|
||||||
|
/-
|
||||||
|
> ###### Case 1
|
||||||
|
> Suppose `m = n`. Then `m ⬝ p ∈ n ⬝ p = m ⬝ p`. *Lemma 4L(b)* shows this is
|
||||||
|
> impossible.
|
||||||
|
-/
|
||||||
rw [← h₁] at hp
|
rw [← h₁] at hp
|
||||||
exact absurd hp (lemma_4l_b (m * p.succ))
|
exact absurd hp (lemma_4l_b (m * p.succ))
|
||||||
| Or.inr (Or.inr h₁) =>
|
| Or.inr (Or.inr h₁) =>
|
||||||
|
/-
|
||||||
|
> ###### Case 2
|
||||||
|
> Suppose `n ∈ m`. Then *(⇒)* indicates `n ⬝ p ∈ m ⬝ p`. But this contradicts
|
||||||
|
> *Trichotomy Law for `ω`* since, by hypothesis, `m ⬝ p ∈ n ⬝ p`.
|
||||||
|
-/
|
||||||
have := hf n m h₁
|
have := hf n m h₁
|
||||||
exact absurd this (Nat.lt_asymm hp)
|
exact absurd this (Nat.lt_asymm hp)
|
||||||
|
| Or.inl h₁ =>
|
||||||
|
/-
|
||||||
|
> ###### Conclusion
|
||||||
|
> By trichotomy, it follows `m ∈ n`.
|
||||||
|
-/
|
||||||
|
exact h₁
|
||||||
|
|
||||||
#check Nat.mul_lt_mul_of_pos_right
|
#check Nat.mul_lt_mul_of_pos_right
|
||||||
|
|
||||||
|
@ -372,15 +461,30 @@ m ⬝ p = n ⬝ p ∧ p ≠ 0 ⇒ m = n.
|
||||||
|
|
||||||
theorem corollary_4p_i (m n p : ℕ) (h : m + p = n + p)
|
theorem corollary_4p_i (m n p : ℕ) (h : m + p = n + p)
|
||||||
: m = n := by
|
: m = n := by
|
||||||
|
/-
|
||||||
|
> Suppose `m + p = n + p`. By the *Trichotomy Law for `ω`*, there are two cases
|
||||||
|
> to consider regarding how `m` and `n` relate to one another.
|
||||||
|
-/
|
||||||
match @trichotomous ℕ LT.lt _ m n with
|
match @trichotomous ℕ LT.lt _ m n with
|
||||||
| Or.inl h₁ =>
|
| Or.inl h₁ =>
|
||||||
|
/-
|
||||||
|
> If `m ∈n`, then *Theorem 4N* implies `m + p ∈ n + p`.
|
||||||
|
-/
|
||||||
rw [theorem_4n_i m n p, h] at h₁
|
rw [theorem_4n_i m n p, h] at h₁
|
||||||
exact absurd h₁ (lemma_4l_b (n + p))
|
exact absurd h₁ (lemma_4l_b (n + p))
|
||||||
| Or.inr (Or.inl h₁) =>
|
|
||||||
exact h₁
|
|
||||||
| Or.inr (Or.inr h₁) =>
|
| Or.inr (Or.inr h₁) =>
|
||||||
|
/-
|
||||||
|
> If `n ∈ m`, then *Theorem 4N* implies `n + p ∈ m + p`.
|
||||||
|
-/
|
||||||
rw [theorem_4n_i n m p, h] at h₁
|
rw [theorem_4n_i n m p, h] at h₁
|
||||||
exact absurd h₁ (lemma_4l_b (n + p))
|
exact absurd h₁ (lemma_4l_b (n + p))
|
||||||
|
/-
|
||||||
|
> Both of these contradict the *Trichotomy Law for `ω`* of `m + p` and `n + p`.
|
||||||
|
> Thus `m = n` is the only remaining possibility.
|
||||||
|
-/
|
||||||
|
| Or.inr (Or.inl h₁) =>
|
||||||
|
exact h₁
|
||||||
|
|
||||||
|
|
||||||
#check Nat.add_right_cancel
|
#check Nat.add_right_cancel
|
||||||
|
|
||||||
|
@ -391,25 +495,53 @@ Let `A` be a nonempty subset of `ω`. Then there is some `m ∈ A` such that
|
||||||
-/
|
-/
|
||||||
theorem well_ordering_nat {A : Set ℕ} (hA : Set.Nonempty A)
|
theorem well_ordering_nat {A : Set ℕ} (hA : Set.Nonempty A)
|
||||||
: ∃ m ∈ A, ∀ n, n ∈ A → m ≤ n := by
|
: ∃ m ∈ A, ∀ n, n ∈ A → m ≤ n := by
|
||||||
-- Assume `A` does not have a least element.
|
/-
|
||||||
|
> Let `A` be a nonempty subset of `ω`. For the sake of contradiciton, suppose
|
||||||
|
> `A` does not have a least element.
|
||||||
|
-/
|
||||||
by_contra nh
|
by_contra nh
|
||||||
simp only [not_exists, not_and, not_forall, not_le, exists_prop] at nh
|
simp only [not_exists, not_and, not_forall, not_le, exists_prop] at nh
|
||||||
|
/-
|
||||||
-- If we show the complement of `A` is `ω`, then `A = ∅`, a contradiction.
|
> It then suffices to prove that the complement of `A` equals `ω`. If we do so,
|
||||||
|
> then `A = ∅`, a contradiction.
|
||||||
|
-/
|
||||||
suffices A.compl = Set.univ by
|
suffices A.compl = Set.univ by
|
||||||
have h := Set.univ_diff_compl_eq_self A
|
have h := Set.univ_diff_compl_eq_self A
|
||||||
rw [this] at h
|
rw [this] at h
|
||||||
simp only [sdiff_self, Set.bot_eq_empty] at h
|
simp only [sdiff_self, Set.bot_eq_empty] at h
|
||||||
exact absurd h.symm (Set.Nonempty.ne_empty hA)
|
exact absurd h.symm (Set.Nonempty.ne_empty hA)
|
||||||
|
/-
|
||||||
-- Use strong induction to prove every element of `ω` is in the complement.
|
> Define
|
||||||
|
>
|
||||||
|
> `S = {n ∈ ω | (∀ m ∈ n)m ∉ A}`.
|
||||||
|
>
|
||||||
|
> We prove `S` is an inductive set by showing that (i) `0 ∈ S` and (ii) if
|
||||||
|
> `n ∈ S`, then `n⁺ ∈ S`. Afterward we show that `ω - A = ω`, completing the
|
||||||
|
> proof.
|
||||||
|
-/
|
||||||
have : ∀ n : ℕ, (∀ m, m < n → m ∈ A.compl) := by
|
have : ∀ n : ℕ, (∀ m, m < n → m ∈ A.compl) := by
|
||||||
intro n
|
intro n
|
||||||
induction n with
|
induction n with
|
||||||
| zero =>
|
| zero =>
|
||||||
|
/-
|
||||||
|
> #### (i)
|
||||||
|
> It vacuously holds that `0 ∈ S`.
|
||||||
|
-/
|
||||||
intro m hm
|
intro m hm
|
||||||
exact False.elim (Nat.not_lt_zero m hm)
|
exact False.elim (Nat.not_lt_zero m hm)
|
||||||
| succ n ih =>
|
| succ n ih =>
|
||||||
|
/-
|
||||||
|
> #### (ii)
|
||||||
|
> Suppose `n ∈ S`. We want to prove that
|
||||||
|
>
|
||||||
|
> `∀ m, m ∈ n⁺ ⇒ m ∉ A`.
|
||||||
|
>
|
||||||
|
> To this end, let `m ∈ ω` such that `m ∈ n⁺`. By definition of the successor,
|
||||||
|
> `m ∈ n` or `m = n`. If the former, `n ∈ S` implies `m ∉ A`. If the latter, it
|
||||||
|
> isn't possible for `n ∈ A` since the *Trichotomy Law for `ω`* would otherwise
|
||||||
|
> imply `n` is the least element of `A`, which is assumed to not exist. Hence
|
||||||
|
> `n⁺ ∈ S`.
|
||||||
|
-/
|
||||||
intro m hm
|
intro m hm
|
||||||
have hm' : m < n ∨ m = n := by
|
have hm' : m < n ∨ m = n := by
|
||||||
rw [Nat.lt_succ] at hm
|
rw [Nat.lt_succ] at hm
|
||||||
|
@ -429,7 +561,12 @@ theorem well_ordering_nat {A : Set ℕ} (hA : Set.Nonempty A)
|
||||||
exact absurd hp.left (ih p hp.right)
|
exact absurd hp.left (ih p hp.right)
|
||||||
· rw [h]
|
· rw [h]
|
||||||
exact hn
|
exact hn
|
||||||
|
/-
|
||||||
|
> #### Conclusion
|
||||||
|
> By *(i)* and *(ii)*, `S` is an inductive set. Since `S ⊆ ω`, *Theorem 4B*
|
||||||
|
> implies `S = ω`. Bu this immediately implies `ω = ω - A` meaning `A` is the
|
||||||
|
> empty set.
|
||||||
|
-/
|
||||||
ext x
|
ext x
|
||||||
simp only [Set.mem_univ, iff_true]
|
simp only [Set.mem_univ, iff_true]
|
||||||
by_contra nh'
|
by_contra nh'
|
||||||
|
@ -451,11 +588,17 @@ theorem strong_induction_principle_nat (A : Set ℕ)
|
||||||
rw [this] at h'
|
rw [this] at h'
|
||||||
simp only [Set.diff_empty] at h'
|
simp only [Set.diff_empty] at h'
|
||||||
exact h'.symm
|
exact h'.symm
|
||||||
|
/-
|
||||||
|
> For the sake of contradiction, suppose `ω - A` is a nonempty set. By
|
||||||
|
> *Well Ordering of `ω`*, there exists a least element `m ∈ ω - A`.
|
||||||
|
-/
|
||||||
by_contra nh
|
by_contra nh
|
||||||
have ⟨m, hm⟩ := well_ordering_nat (Set.nmem_singleton_empty.mp nh)
|
have ⟨m, hm⟩ := well_ordering_nat (Set.nmem_singleton_empty.mp nh)
|
||||||
refine absurd (h m ?_) hm.left
|
refine absurd (h m ?_) hm.left
|
||||||
|
/-
|
||||||
|
> Then every number less than `m` is in `A`. But then *(4.23)* implies `m ∈ A`,
|
||||||
|
> a contradiction. Thus `ω - A` is an empty set meaning `A = ω`.
|
||||||
|
-/
|
||||||
-- Show that every number less than `m` is in `A`.
|
-- Show that every number less than `m` is in `A`.
|
||||||
intro x hx
|
intro x hx
|
||||||
by_contra nx
|
by_contra nx
|
||||||
|
|
|
@ -763,15 +763,33 @@ Any subset of a finite set is finite.
|
||||||
-/
|
-/
|
||||||
theorem corollary_6g {S S' : Set α} (hS : Set.Finite S) (hS' : S' ⊆ S)
|
theorem corollary_6g {S S' : Set α} (hS : Set.Finite S) (hS' : S' ⊆ S)
|
||||||
: Set.Finite S' := by
|
: Set.Finite S' := by
|
||||||
rw [subset_iff_ssubset_or_eq] at hS'
|
/-
|
||||||
|
> Let `S` be a finite set and `S' ⊆ S`.
|
||||||
|
-/
|
||||||
|
rw [subset_iff_ssubset_or_eq, or_comm] at hS'
|
||||||
apply Or.elim hS'
|
apply Or.elim hS'
|
||||||
|
/-
|
||||||
|
> Clearly, if `S' = S`, then `S'` is finite.
|
||||||
|
-/
|
||||||
· intro h
|
· intro h
|
||||||
|
rwa [h]
|
||||||
|
/-
|
||||||
|
> Therefore suppose `S'` is a proper subset of `S`.
|
||||||
|
-/
|
||||||
|
intro h
|
||||||
|
/-
|
||||||
|
> By definition of a finite set, `S` is equinumerous to some natural number `n`.
|
||||||
|
> Let `f` be a one-to-one correspondence between `S` and `n`.
|
||||||
|
-/
|
||||||
rw [Set.finite_iff_equinumerous_nat] at hS
|
rw [Set.finite_iff_equinumerous_nat] at hS
|
||||||
have ⟨n, F, hF⟩ := hS
|
have ⟨n, f, hf⟩ := hS
|
||||||
|
/-
|
||||||
|
> Then `f ↾ S'` is a one-to-one correspondence between `S'` and some proper
|
||||||
|
> subset of `n`.
|
||||||
|
-/
|
||||||
-- Mirrors logic found in `corollary_6c`.
|
-- Mirrors logic found in `corollary_6c`.
|
||||||
let T := S \ S'
|
let T := S \ S'
|
||||||
let R := (Set.Iio n) \ (F '' T)
|
let R := (Set.Iio n) \ (f '' T)
|
||||||
have hR : R ⊂ Set.Iio n := by
|
have hR : R ⊂ Set.Iio n := by
|
||||||
rw [Set.ssubset_def]
|
rw [Set.ssubset_def]
|
||||||
apply And.intro
|
apply And.intro
|
||||||
|
@ -781,36 +799,33 @@ theorem corollary_6g {S S' : Set α} (hS : Set.Finite S) (hS' : S' ⊆ S)
|
||||||
· show ¬ ∀ x, x ∈ Set.Iio n → x ∈ R
|
· show ¬ ∀ x, x ∈ Set.Iio n → x ∈ R
|
||||||
intro nr
|
intro nr
|
||||||
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
|
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
|
||||||
have ht₂ : F t ∈ Set.Iio n := hF.left ht₁.left
|
have ht₂ : f t ∈ Set.Iio n := hf.left ht₁.left
|
||||||
have ht₃ : F t ∈ R := nr (F t) ht₂
|
have ht₃ : f t ∈ R := nr (f t) ht₂
|
||||||
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
|
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
|
||||||
|
|
||||||
suffices Set.BijOn F S' R by
|
have : Set.BijOn f S' R := by
|
||||||
have ⟨m, hm⟩ := lemma_6f hR
|
|
||||||
have := Set.equinumerous_trans ⟨F, this⟩ hm.right
|
|
||||||
exact Set.finite_iff_equinumerous_nat.mpr ⟨m, this⟩
|
|
||||||
refine ⟨?_, ?_, ?_⟩
|
refine ⟨?_, ?_, ?_⟩
|
||||||
· -- `Set.MapsTo f S' R`
|
· -- `Set.MapsTo f S' R`
|
||||||
intro x hx
|
intro x hx
|
||||||
dsimp only
|
dsimp only
|
||||||
simp only [Set.mem_diff, Set.mem_Iio, Set.mem_image, not_exists, not_and]
|
simp only [Set.mem_diff, Set.mem_Iio, Set.mem_image, not_exists, not_and]
|
||||||
apply And.intro
|
apply And.intro
|
||||||
· exact hF.left (subset_of_ssubset h hx)
|
· exact hf.left (subset_of_ssubset h hx)
|
||||||
· intro y hy
|
· intro y hy
|
||||||
by_contra nf
|
by_contra nf
|
||||||
have := hF.right.left (subset_of_ssubset h hx) hy.left nf.symm
|
have := hf.right.left (subset_of_ssubset h hx) hy.left nf.symm
|
||||||
rw [this] at hx
|
rw [this] at hx
|
||||||
exact absurd hx hy.right
|
exact absurd hx hy.right
|
||||||
· -- `Set.InjOn f S'`
|
· -- `Set.InjOn f S'`
|
||||||
intro x₁ hx₁ x₂ hx₂ hf
|
intro x₁ hx₁ x₂ hx₂ hf'
|
||||||
have h₁ : x₁ ∈ S := subset_of_ssubset h hx₁
|
have h₁ : x₁ ∈ S := subset_of_ssubset h hx₁
|
||||||
have h₂ : x₂ ∈ S := subset_of_ssubset h hx₂
|
have h₂ : x₂ ∈ S := subset_of_ssubset h hx₂
|
||||||
exact hF.right.left h₁ h₂ hf
|
exact hf.right.left h₁ h₂ hf'
|
||||||
· -- `Set.SurjOn f S' R`
|
· -- `Set.SurjOn f S' R`
|
||||||
show ∀ x, x ∈ R → x ∈ F '' S'
|
show ∀ x, x ∈ R → x ∈ f '' S'
|
||||||
intro x hx
|
intro x hx
|
||||||
|
|
||||||
have h₁ := hF.right.right
|
have h₁ := hf.right.right
|
||||||
unfold Set.SurjOn at h₁
|
unfold Set.SurjOn at h₁
|
||||||
rw [Set.subset_def] at h₁
|
rw [Set.subset_def] at h₁
|
||||||
have ⟨y, hy⟩ := h₁ x hx.left
|
have ⟨y, hy⟩ := h₁ x hx.left
|
||||||
|
@ -820,9 +835,16 @@ theorem corollary_6g {S S' : Set α} (hS : Set.Finite S) (hS' : S' ⊆ S)
|
||||||
simp only [Set.mem_image, Set.mem_diff, not_exists, not_and] at hx
|
simp only [Set.mem_image, Set.mem_diff, not_exists, not_and] at hx
|
||||||
by_contra ny
|
by_contra ny
|
||||||
exact (hx.right y ⟨hy.left, ny⟩) rfl
|
exact (hx.right y ⟨hy.left, ny⟩) rfl
|
||||||
|
/-
|
||||||
|
> By *Lemma 6f*, `ran (f ↾ S')` is equinumerous to some `m < n`.
|
||||||
|
-/
|
||||||
|
have ⟨m, hm⟩ := lemma_6f hR
|
||||||
|
/-
|
||||||
|
> Then *Theorem 6A* indicates `S' ≈ m`. Hence `S'` is a finite set.
|
||||||
|
-/
|
||||||
|
have := Set.equinumerous_trans ⟨f, this⟩ hm.right
|
||||||
|
exact Set.finite_iff_equinumerous_nat.mpr ⟨m, this⟩
|
||||||
|
|
||||||
· intro h
|
|
||||||
rwa [h]
|
|
||||||
|
|
||||||
/-- ### Subset Size
|
/-- ### Subset Size
|
||||||
|
|
||||||
|
@ -832,10 +854,18 @@ such that `B ≈ m`, `A ≈ n`, and `m ≤ n`.
|
||||||
lemma subset_size [DecidableEq α] [Nonempty α] {A B : Set α}
|
lemma subset_size [DecidableEq α] [Nonempty α] {A B : Set α}
|
||||||
(hBA : B ⊆ A) (hA : Set.Finite A)
|
(hBA : B ⊆ A) (hA : Set.Finite A)
|
||||||
: ∃ m n : ℕ, B ≈ Set.Iio m ∧ A ≈ Set.Iio n ∧ m ≤ n := by
|
: ∃ m n : ℕ, B ≈ Set.Iio m ∧ A ≈ Set.Iio n ∧ m ≤ n := by
|
||||||
|
/-
|
||||||
|
> Let `A` be a finite set and `B` be a subset of `A`. By *Corollary 6G*, `B`
|
||||||
|
> must be finite. By definition of a finite set, there exists natural numbers
|
||||||
|
> `m, n ∈ ω` such that `B ≈ m` and `A ≈ n`.
|
||||||
|
-/
|
||||||
have ⟨n, hn⟩ := Set.finite_iff_equinumerous_nat.mp hA
|
have ⟨n, hn⟩ := Set.finite_iff_equinumerous_nat.mp hA
|
||||||
have ⟨m, hm⟩ := Set.finite_iff_equinumerous_nat.mp (corollary_6g hA hBA)
|
have ⟨m, hm⟩ := Set.finite_iff_equinumerous_nat.mp (corollary_6g hA hBA)
|
||||||
refine ⟨m, n, hm, hn, ?_⟩
|
refine ⟨m, n, hm, hn, ?_⟩
|
||||||
|
/-
|
||||||
|
> By the *Trichotomy Law for `ω`*, it suffices to prove that `m > n` is not
|
||||||
|
> possible for then either `m < n` or `m = n`.
|
||||||
|
-/
|
||||||
suffices ¬ m > n by
|
suffices ¬ m > n by
|
||||||
match @trichotomous ℕ LT.lt _ m n with
|
match @trichotomous ℕ LT.lt _ m n with
|
||||||
| Or.inr (Or.inl hr) => -- m = n
|
| Or.inr (Or.inl hr) => -- m = n
|
||||||
|
@ -844,11 +874,22 @@ lemma subset_size [DecidableEq α] [Nonempty α] {A B : Set α}
|
||||||
exact absurd hr this
|
exact absurd hr this
|
||||||
| Or.inl hr => -- m < n
|
| Or.inl hr => -- m < n
|
||||||
exact Nat.le_of_lt hr
|
exact Nat.le_of_lt hr
|
||||||
|
/-
|
||||||
|
> For the sake of contradiction, assume `m > n`. By definition of equinumerous,
|
||||||
|
> there exists a one-to-one correspondence between `B` and `m`. *Theorem 6A*
|
||||||
|
> indicates there then exists a one-to-one correspondence `f` between `m` and
|
||||||
|
> `B`. Likewise, there exists a one-to-one correspondence `g` between `A` and
|
||||||
|
> `n`.
|
||||||
|
-/
|
||||||
by_contra nr
|
by_contra nr
|
||||||
have ⟨f, hf⟩ := Set.equinumerous_symm hm
|
have ⟨f, hf⟩ := Set.equinumerous_symm hm
|
||||||
have ⟨g, hg⟩ := hn
|
have ⟨g, hg⟩ := hn
|
||||||
|
/-
|
||||||
|
> Define `h : A → B` as `h(x) = f(g(x))` for all `x ∈ A`. Since `n ⊂ m` by
|
||||||
|
> *Corollary 4M*, `h` is well-defined. By *One-to-One Composition*, `h` must be
|
||||||
|
> one-to-one. thus `h` is a one-to-one correspondence between `A` and `ran h`,
|
||||||
|
> i.e. `A ≈ ran h`.
|
||||||
|
-/
|
||||||
let h x := f (g x)
|
let h x := f (g x)
|
||||||
have hh : Set.BijOn h A (h '' A) := by
|
have hh : Set.BijOn h A (h '' A) := by
|
||||||
refine ⟨?_, ?_, Eq.subset rfl⟩
|
refine ⟨?_, ?_, Eq.subset rfl⟩
|
||||||
|
@ -860,7 +901,11 @@ lemma subset_size [DecidableEq α] [Nonempty α] {A B : Set α}
|
||||||
refine Set.InjOn.comp hf.right.left hg.right.left ?_
|
refine Set.InjOn.comp hf.right.left hg.right.left ?_
|
||||||
intro x hx
|
intro x hx
|
||||||
exact Nat.lt_trans (hg.left hx) nr
|
exact Nat.lt_trans (hg.left hx) nr
|
||||||
|
/-
|
||||||
|
> But `n < m` meaning `ran h ⊂ B` which in turn is a proper subset of `A` by
|
||||||
|
> hypothesis. *Corollary 6C* states no finite set is equinumerous to a proper
|
||||||
|
> subset of itself, a contradiction.
|
||||||
|
-/
|
||||||
have : h '' A ⊂ A := by
|
have : h '' A ⊂ A := by
|
||||||
rw [Set.ssubset_def]
|
rw [Set.ssubset_def]
|
||||||
apply And.intro
|
apply And.intro
|
||||||
|
@ -918,8 +963,21 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
: ∀ A : Set α, A ≈ Set.Iio m →
|
: ∀ A : Set α, A ≈ Set.Iio m →
|
||||||
∀ B, B ⊆ A →
|
∀ B, B ⊆ A →
|
||||||
∃ n : ℕ, n ≤ m ∧ B ≈ Set.Iio n ∧ A \ B ≈ (Set.Iio m) \ (Set.Iio n) := by
|
∃ n : ℕ, n ≤ m ∧ B ≈ Set.Iio n ∧ A \ B ≈ (Set.Iio m) \ (Set.Iio n) := by
|
||||||
|
/-
|
||||||
|
> `Let
|
||||||
|
>
|
||||||
|
> `S = {m ∈ ω | ∀ A ≈ m, ∀ B ⊆ A, ∃ n ∈ ω(n ≤ m ∧ B ≈ n ∧ A - B ≈ m - n) }`.
|
||||||
|
>
|
||||||
|
> We prove that (i) `0 ∈ S` and (ii) if `n ∈ S` then `n⁺ ∈ S`. Afterward we
|
||||||
|
> prove (iii) the lemma statement.
|
||||||
|
-/
|
||||||
induction m with
|
induction m with
|
||||||
| zero =>
|
| zero =>
|
||||||
|
/-
|
||||||
|
> #### (i)
|
||||||
|
> Let `A ≈ 0` and `B ⊆ A`. Then it follows `A = B = ∅ = 0`. Since `0 ≤ 0`,
|
||||||
|
> `B ≈ 0`, and `A - B = ∅ ≈ 0 = 0 - 0`, it follows `0 ∈ S`.
|
||||||
|
-/
|
||||||
intro A hA B hB
|
intro A hA B hB
|
||||||
refine ⟨0, ?_⟩
|
refine ⟨0, ?_⟩
|
||||||
simp only [
|
simp only [
|
||||||
|
@ -935,17 +993,25 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
exact hA
|
exact hA
|
||||||
rw [this]
|
rw [this]
|
||||||
refine ⟨trivial, hB', Set.equinumerous_emptyset_emptyset⟩
|
refine ⟨trivial, hB', Set.equinumerous_emptyset_emptyset⟩
|
||||||
|
|
||||||
| succ m ih =>
|
| succ m ih =>
|
||||||
|
/-
|
||||||
|
> #### (ii)
|
||||||
|
> Suppose `m ∈ S` and consider `m⁺`. Let `A ≈ m⁺` and let `B ⊆ A`. By definition
|
||||||
|
> of equinumerous, there exists a one-to-one corerspondnece `f` between `A` and
|
||||||
|
> `m⁺`.
|
||||||
|
-/
|
||||||
intro A ⟨f, hf⟩ B hB
|
intro A ⟨f, hf⟩ B hB
|
||||||
|
/-
|
||||||
-- Since `f` is one-to-one and onto, there exists a unique value `a ∈ A`
|
> Since `f` is one-to-one and onto, there exists a unique value `a ∈ A` such
|
||||||
-- such that `f(a) = m`.
|
> that `f(a) = m`.
|
||||||
|
-/
|
||||||
have hfa := hf.right.right
|
have hfa := hf.right.right
|
||||||
unfold Set.SurjOn at hfa
|
unfold Set.SurjOn at hfa
|
||||||
have ⟨a, ha₁, ha₂⟩ := (Set.subset_def ▸ hfa) m (by simp)
|
have ⟨a, ha₁, ha₂⟩ := (Set.subset_def ▸ hfa) m (by simp)
|
||||||
|
/-
|
||||||
-- `f` is a one-to-one correspondence between `A - {a}` and `m`.
|
> Then `B - {a} ⊆A - {a}` and `f` is a one-to-one correspondence between
|
||||||
|
> `A - {a}` and `m`.
|
||||||
|
-/
|
||||||
have hBA : B \ {a} ⊆ A \ {a} := Set.diff_subset_diff_left hB
|
have hBA : B \ {a} ⊆ A \ {a} := Set.diff_subset_diff_left hB
|
||||||
have hfBA : Set.BijOn f (A \ {a}) (Set.Iio m) := by
|
have hfBA : Set.BijOn f (A \ {a}) (Set.Iio m) := by
|
||||||
refine ⟨?_, ?_, ?_⟩
|
refine ⟨?_, ?_, ?_⟩
|
||||||
|
@ -974,12 +1040,21 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
by_contra nb
|
by_contra nb
|
||||||
rw [← nb, hb.right] at ha₂
|
rw [← nb, hb.right] at ha₂
|
||||||
exact absurd ha₂ (Nat.ne_of_lt hx)
|
exact absurd ha₂ (Nat.ne_of_lt hx)
|
||||||
|
/-
|
||||||
|
> By *(IH)*, there exists some `n ∈ ω` such that `n ≤ m`, `B - {a} ≈ n` and
|
||||||
|
>
|
||||||
|
> `(A - {a}) - (B - {a}) ≈ m - n`. (6.4)
|
||||||
|
>
|
||||||
|
> There are two cases to consider:
|
||||||
|
-/
|
||||||
-- `(A - {a}) - (B - {a}) ≈ m - n`
|
-- `(A - {a}) - (B - {a}) ≈ m - n`
|
||||||
have ⟨n, hn₁, hn₂, hn₃⟩ := ih (A \ {a}) ⟨f, hfBA⟩ (B \ {a}) hBA
|
have ⟨n, hn₁, hn₂, hn₃⟩ := ih (A \ {a}) ⟨f, hfBA⟩ (B \ {a}) hBA
|
||||||
by_cases hc : a ∈ B
|
by_cases hc : a ∈ B
|
||||||
|
|
||||||
· refine ⟨n.succ, ?_, ?_, ?_⟩
|
· refine ⟨n.succ, ?_, ?_, ?_⟩
|
||||||
|
/-
|
||||||
|
> ##### Case 1
|
||||||
|
> Assume `a ∈ B`. Then `B ≈ n⁺`.
|
||||||
|
-/
|
||||||
· exact Nat.succ_le_succ hn₁
|
· exact Nat.succ_le_succ hn₁
|
||||||
· -- `B ≈ Set.Iio n.succ`
|
· -- `B ≈ Set.Iio n.succ`
|
||||||
have ⟨g, hg⟩ := hn₂
|
have ⟨g, hg⟩ := hn₂
|
||||||
|
@ -1024,12 +1099,28 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
rwa [if_neg hb₂]
|
rwa [if_neg hb₂]
|
||||||
· intro hx₁
|
· intro hx₁
|
||||||
exact absurd hx₁ hc₁
|
exact absurd hx₁ hc₁
|
||||||
|
/-
|
||||||
|
> Furthermore, by definition of the set difference,
|
||||||
|
>
|
||||||
|
> `...`
|
||||||
|
-/
|
||||||
· have hA₁ : (A \ {a}) \ (B \ {a}) = (A \ B) \ {a} :=
|
· have hA₁ : (A \ {a}) \ (B \ {a}) = (A \ B) \ {a} :=
|
||||||
Set.diff_mem_diff_mem_eq_diff_diff_mem
|
Set.diff_mem_diff_mem_eq_diff_diff_mem
|
||||||
|
/-
|
||||||
|
> Since `a ∈ A` and `a ∈ B`, `(A - B) - {a} = A - B`.
|
||||||
|
-/
|
||||||
have hA₂ : (A \ B) \ {a} = A \ B := by
|
have hA₂ : (A \ B) \ {a} = A \ B := by
|
||||||
refine Set.not_mem_diff_eq_self ?_
|
refine Set.not_mem_diff_eq_self ?_
|
||||||
by_contra na
|
by_contra na
|
||||||
exact absurd hc na.right
|
exact absurd hc na.right
|
||||||
|
/-
|
||||||
|
> Thus
|
||||||
|
>
|
||||||
|
> `(A - {a} - (B - {a})) = (A - B) - {a}`
|
||||||
|
> ` = A - B`
|
||||||
|
> ` ≈ m - n` *(6.4)*
|
||||||
|
> ` ≈ m⁺ - n⁺` *(Theorem 6A)*
|
||||||
|
-/
|
||||||
rw [hA₁, hA₂] at hn₃
|
rw [hA₁, hA₂] at hn₃
|
||||||
suffices (Set.Iio m) \ (Set.Iio n) ≈ (Set.Iio m.succ) \ (Set.Iio n.succ)
|
suffices (Set.Iio m) \ (Set.Iio n) ≈ (Set.Iio m.succ) \ (Set.Iio n.succ)
|
||||||
from Set.equinumerous_trans hn₃ this
|
from Set.equinumerous_trans hn₃ this
|
||||||
|
@ -1063,13 +1154,24 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
exact Nat.lt_succ.mp hx₂
|
exact Nat.lt_succ.mp hx₂
|
||||||
· rw [hp] at hx₁
|
· rw [hp] at hx₁
|
||||||
exact Nat.succ_lt_succ_iff.mp hx₁
|
exact Nat.succ_lt_succ_iff.mp hx₁
|
||||||
|
/-
|
||||||
|
> ##### Case 2
|
||||||
|
> Assume `a ∉ B`. Then `B - {a} = B` (i.e. `B ≈ n`) and
|
||||||
|
>
|
||||||
|
> `(A - {a}) - (B - {a}) = (A - {a}) - B`
|
||||||
|
> ` ≈ m - n`. *(6.4)
|
||||||
|
-/
|
||||||
· have hB : B \ {a} = B := Set.not_mem_diff_eq_self hc
|
· have hB : B \ {a} = B := Set.not_mem_diff_eq_self hc
|
||||||
refine ⟨n, ?_, ?_, ?_⟩
|
refine ⟨n, ?_, ?_, ?_⟩
|
||||||
· calc n
|
· calc n
|
||||||
_ ≤ m := hn₁
|
_ ≤ m := hn₁
|
||||||
_ ≤ m + 1 := by simp
|
_ ≤ m + 1 := by simp
|
||||||
· rwa [← hB]
|
· rwa [← hB]
|
||||||
|
/-
|
||||||
|
> The above implies that there exists a one-to-one correspondence `g` between
|
||||||
|
> `(A - {a}) - B` and `m - n`. Therefore `g ∪ {⟨a, m⟩}` is a one-to-one
|
||||||
|
> correspondence between `A - B` and `(m - n) ∪ {m}`.
|
||||||
|
-/
|
||||||
· rw [hB] at hn₃
|
· rw [hB] at hn₃
|
||||||
have ⟨g, hg⟩ := hn₃
|
have ⟨g, hg⟩ := hn₃
|
||||||
have hAB : A \ B ≈ (Set.Iio m) \ (Set.Iio n) ∪ {m} := by
|
have hAB : A \ B ≈ (Set.Iio m) \ (Set.Iio n) ∪ {m} := by
|
||||||
|
@ -1104,7 +1206,7 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
exact absurd h.symm (Nat.ne_of_lt this.right)
|
exact absurd h.symm (Nat.ne_of_lt this.right)
|
||||||
· rw [if_neg hc₁, if_pos hc₂] at h
|
· rw [if_neg hc₁, if_pos hc₂] at h
|
||||||
have := hg.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩
|
have := hg.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩
|
||||||
simp at this
|
simp only [Set.Iio_diff_Iio, gt_iff_lt, not_lt, ge_iff_le, Set.mem_Ico] at this
|
||||||
exact absurd h (Nat.ne_of_lt this.right)
|
exact absurd h (Nat.ne_of_lt this.right)
|
||||||
· rw [if_neg hc₁, if_neg hc₂] at h
|
· rw [if_neg hc₁, if_neg hc₂] at h
|
||||||
exact hg.right.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩ ⟨⟨hx₂.left, hc₂⟩, hx₂.right⟩ h
|
exact hg.right.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩ ⟨⟨hx₂.left, hc₂⟩, hx₂.right⟩ h
|
||||||
|
@ -1120,10 +1222,13 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
refine ⟨y, ?_, ?_⟩
|
refine ⟨y, ?_, ?_⟩
|
||||||
· exact ⟨hy₁.left.left, hy₁.right⟩
|
· exact ⟨hy₁.left.left, hy₁.right⟩
|
||||||
· rwa [if_neg hy₁.left.right]
|
· rwa [if_neg hy₁.left.right]
|
||||||
|
/-
|
||||||
|
> By *Theorem 6A*
|
||||||
|
>
|
||||||
|
> `A - B ≈ (m - n) ∪ {m} ≈ m⁺ - n`.
|
||||||
|
-/
|
||||||
suffices (Set.Iio m) \ (Set.Iio n) ∪ {m} ≈ (Set.Iio m.succ) \ (Set.Iio n)
|
suffices (Set.Iio m) \ (Set.Iio n) ∪ {m} ≈ (Set.Iio m.succ) \ (Set.Iio n)
|
||||||
from Set.equinumerous_trans hAB this
|
from Set.equinumerous_trans hAB this
|
||||||
|
|
||||||
refine ⟨fun x => x, ?_, ?_, ?_⟩
|
refine ⟨fun x => x, ?_, ?_, ?_⟩
|
||||||
· intro x hx
|
· intro x hx
|
||||||
simp at hx ⊢
|
simp at hx ⊢
|
||||||
|
@ -1161,6 +1266,16 @@ lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||||||
· intro hx
|
· intro hx
|
||||||
left
|
left
|
||||||
exact hx
|
exact hx
|
||||||
|
/-
|
||||||
|
> ##### Subconclusion
|
||||||
|
> The above two cases are exhaustive and both conclude the existence of some
|
||||||
|
> `n ∈ ω` such that `n ≤ m⁺`, `B ≈ n`, and `A - B ≈ m⁺ - n`. Hence `m⁺ ∈ S`.
|
||||||
|
>
|
||||||
|
> #### (iii)
|
||||||
|
> By *(i)* and *(ii)*, `S ⊆ ω` is an inductive set. Thus *Theorem 4B* implies
|
||||||
|
> `S = ω`. Hence, for all `A ≈ m` for some `m ∈ ω`, if `B ⊆ A`, then there
|
||||||
|
> exists some `n ∈ ω` such that `n ≤ m`, `B ≈ n`, and `A - B ≈ m - n`.
|
||||||
|
-/
|
||||||
|
|
||||||
lemma sdiff_size [DecidableEq α] [Nonempty α] {A B : Set α}
|
lemma sdiff_size [DecidableEq α] [Nonempty α] {A B : Set α}
|
||||||
(hB : B ⊆ A) (hA : A ≈ Set.Iio m)
|
(hB : B ⊆ A) (hA : A ≈ Set.Iio m)
|
||||||
|
|
Loading…
Reference in New Issue