bookshelf/Bookshelf/Enderton/Set/Chapter_6.lean

1354 lines
44 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Bookshelf.Enderton.Set.Chapter_4
import Common.Logic.Basic
import Common.Nat.Basic
import Common.Set.Basic
import Common.Set.Equinumerous
import Common.Set.Function
import Common.Set.Intervals
import Mathlib.Data.Finset.Card
import Mathlib.Data.Set.Finite
/-! # Enderton.Set.Chapter_6
Cardinal Numbers and the Axiom of Choice
NOTE: We choose to use injectivity/surjectivity concepts found in
`Mathlib.Data.Set.Function` over those in `Mathlib.Init.Function` since the
former provides noncomputable utilities around obtaining inverse functions
(namely `Function.invFunOn`).
-/
namespace Enderton.Set.Chapter_6
/-- ### Theorem 6B
No set is equinumerous to its powerset.
-/
theorem theorem_6b (A : Set α)
: A ≉ 𝒫 A := by
/-
> Let `A` be an arbitrary set and `f: A → 𝒫 A`.
-/
rw [Set.not_equinumerous_def]
intro f hf
unfold Set.BijOn at hf
/-
> Define `φ = {a ∈ A | a ∉ f(a)}`.
-/
let φ := { a ∈ A | a ∉ f a }
/-
> Clearly `φ ∈ 𝒫 A`. Furthermore, for all `a ∈ A`, `φ ≠ f(a)` since `a ∈ φ` if
> and only if `a ∉ f(a)`. Thus `f` cannot be onto `𝒫 A`. Since `f` was
> arbitrarily chosen, there exists no one-to-one correspondence between `A` and
> `𝒫 A`. Since `A` was arbitrarily chosen, there is no set equinumerous to its
> powerset.
-/
suffices ∀ a ∈ A, f a ≠ φ by
have hφ := hf.right.right (show φ ∈ 𝒫 A by simp)
have ⟨a, ha⟩ := hφ
exact absurd ha.right (this a ha.left)
intro a ha hfa
by_cases h : a ∈ f a
· have h' := h
rw [hfa] at h
simp only [Set.mem_setOf_eq] at h
exact absurd h' h.right
· rw [Set.Subset.antisymm_iff] at hfa
have := hfa.right ⟨ha, h⟩
exact absurd this h
/-! ### Pigeonhole Principle -/
/--
A subset of a finite set of natural numbers has a max member.
-/
lemma subset_finite_max_nat {S' S : Set }
(hS : Set.Finite S) (hS' : Set.Nonempty S') (h : S' ⊆ S)
: ∃ m, m ∈ S' ∧ ∀ n, n ∈ S' → n ≤ m := by
have ⟨m, hm₁, hm₂⟩ :=
Set.Finite.exists_maximal_wrt id S' (Set.Finite.subset hS h) hS'
simp only [id_eq] at hm₂
refine ⟨m, hm₁, ?_⟩
intro n hn
match @trichotomous LT.lt _ m n with
| Or.inr (Or.inl r) => exact Nat.le_of_eq r.symm
| Or.inl r =>
have := hm₂ n hn (Nat.le_of_lt r)
exact Nat.le_of_eq this.symm
| Or.inr (Or.inr r) => exact Nat.le_of_lt r
/--
Auxiliary function to be proven by induction.
-/
lemma pigeonhole_principle_aux (n : )
: ∀ M, M ⊂ Set.Iio n →
∀ f : ,
Set.MapsTo f M (Set.Iio n) ∧ Set.InjOn f M →
¬ Set.SurjOn f M (Set.Iio n) := by
/-
> Let
>
> `S = {n ∈ ω | ∀ M ⊂ n, every one-to-one function f: M → n is not onto}`. (1)
>
> We show that (i) `0 ∈ S` and (ii) if `n ∈ S`, then so is `n⁺`. Afterward we
> prove (iii) the theorem statement.
-/
induction n with
/-
> #### (i)
> By definition, `0 = ∅`. Then `0` has no proper subsets. Hence `0 ∈ S`
> vacuously.
-/
| zero =>
intro _ hM
unfold Set.Iio at hM
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hM
rw [Set.ssubset_empty_iff_false] at hM
exact False.elim hM
/-
> #### (ii)
> Suppose `n ∈ S` and `M ⊂ n⁺`. Furthermore, let `f: M → n⁺` be a one-to-one
> function.
-/
| succ n ih =>
intro M hM f ⟨hf_maps, hf_inj⟩ hf_surj
/-
> If `M = ∅`, it vacuously holds that `f` is not onto `n⁺`.
-/
by_cases hM' : M = ∅
· rw [hM', Set.SurjOn_emptyset_Iio_iff_eq_zero] at hf_surj
simp at hf_surj
/-
> Otherwise `M ≠ 0`. Because `M` is finite, the *Trichotomy Law for `ω`* implies
> the existence of a largest member `p ∈ M`. There are two cases to consider:
-/
by_cases h : ¬ ∃ t, t ∈ M ∧ f t = n
/-
> ##### Case 1
> `n ∉ ran f`.
> Then `f` is not onto `n⁺`.
-/
· have ⟨t, ht⟩ := hf_surj (show n ∈ _ by simp)
exact absurd ⟨t, ht⟩ h
/-
> ##### Case 2
> `n ∈ ran f`.
> Then there exists some `t ∈ M` such that `⟨t, n⟩ ∈ f`.
-/
have ⟨t, ht₁, ht₂⟩ := not_not.mp h
/-
> Define `f': M → n⁺` given by
>
> `f'(p) = f(t) = n`
> `f'(t) = f(p)`
> `f'(x) = f(x)` for all other `x`.
>
> That is, `f'` is a variant of `f` in which the largest element of its domain
> (i.e. `p`) corresponds to value `n`.
-/
-- `M ≠ ∅` so `∃ p, ∀ x ∈ M, p ≥ x`, i.e. a maximum member.
have ⟨p, hp₁, hp₂⟩ : ∃ p ∈ M, ∀ x, x ∈ M → p ≥ x := by
refine subset_finite_max_nat (show Set.Finite M from ?_) ?_ ?_
· show Set.Finite M
have := Set.finite_lt_nat (n + 1)
exact Set.Finite.subset this (subset_of_ssubset hM)
· show Set.Nonempty M
exact Set.nmem_singleton_empty.mp hM'
· show M ⊆ M
exact Eq.subset rfl
/-
> Next define `g = f' - {⟨p, n⟩}`. Then `g` is a function mapping `M - {p}` to
> `n`.
-/
let g := Set.Function.swap f p t
/-
> Since `f` is one-to-one, `f'` and `g` are also one-to-one.
-/
have hg_maps := Set.Function.swap_MapsTo_self hp₁ ht₁ hf_maps
have hg_inj := Set.Function.swap_InjOn_self hp₁ ht₁ hf_inj
/-
> Then *(1)* indicates `g` must not be onto `n`.
-/
let M' := M \ {p}
have hM' : M' ⊂ Set.Iio n := by
by_cases hc : p = n
· suffices Set.Iio (n + 1) \ {n} = Set.Iio n by
have h₁ := Set.diff_ssubset_diff_left hM hp₁
conv at h₁ => right; rw [hc]
rwa [← this]
ext x
apply Iff.intro
· intro hx₁
refine Or.elim (Nat.lt_or_eq_of_lt hx₁.left) (by simp) ?_
intro hx₂
rw [hx₂] at hx₁
simp at hx₁
· intro hx₁
exact ⟨Nat.lt_trans hx₁ (by simp), Nat.ne_of_lt hx₁⟩
have hp_lt_n : p < n := by
have := subset_of_ssubset hM
have hp' : p < n + 1 := this hp₁
exact Or.elim (Nat.lt_or_eq_of_lt hp') id (absurd · hc)
rw [Set.ssubset_def]
apply And.intro
· show ∀ x, x ∈ M' → x < n
intro x hx
simp only [Set.mem_diff, Set.mem_singleton_iff] at hx
calc x
_ ≤ p := hp₂ x hx.left
_ < n := hp_lt_n
· show ¬ ∀ x, x < n → x ∈ M'
by_contra np
have := np p hp_lt_n
simp at this
-- Consider `g = f' - {⟨p, n⟩}`. This restriction will allow us to use
-- the induction hypothesis to prove `g` isn't surjective.
have ng_surj : ¬ Set.SurjOn g M' (Set.Iio n) := by
refine ih _ hM' g ⟨?_, ?_⟩
· -- `Set.MapsTo g M' (Set.Iio n)`
intro x hx
have hx₁ : x ∈ M := Set.mem_of_mem_diff hx
apply Or.elim (Nat.lt_or_eq_of_lt $ hg_maps hx₁) id
intro hx₂
unfold Set.Function.swap at hx₂
by_cases hc₁ : x = p
· exact absurd hc₁ hx.right
· rw [if_neg hc₁] at hx₂
by_cases hc₂ : x = t
· rw [if_pos hc₂, ← ht₂] at hx₂
have := hf_inj hp₁ ht₁ hx₂
rw [← hc₂] at this
exact absurd this.symm hc₁
· rw [if_neg hc₂, ← ht₂] at hx₂
have := hf_inj hx₁ ht₁ hx₂
exact absurd this hc₂
· -- `Set.InjOn g M'`
intro x₁ hx₁ x₂ hx₂ hg
have hx₁' : x₁ ∈ M := (Set.diff_subset M {p}) hx₁
have hx₂' : x₂ ∈ M := (Set.diff_subset M {p}) hx₂
exact hg_inj hx₁' hx₂' hg
/-
> That is, there exists some `a ∈ n` such that `a ∉ ran g`.
-/
have ⟨a, ha₁, ha₂⟩ : ∃ a, a < n ∧ a ∉ g '' M' := by
unfold Set.SurjOn at ng_surj
rw [Set.subset_def] at ng_surj
simp only [
Set.mem_Iio,
Set.mem_image,
not_forall,
not_exists,
not_and,
exists_prop
] at ng_surj
unfold Set.image
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and]
exact ng_surj
/-
> By the *Trichotomy Law for `ω`*, `a ≠ n`. Therefore `a ∉ ran f'`.
> `ran f' = ran f` meaning `a ∉ ran f`. Because `a ∈ n ∈ n⁺`, *Theorem 4F*
> implies `a ∈ n⁺`. Hence `f` is not onto `n⁺`.
-/
refine absurd (hf_surj $ calc a
_ < n := ha₁
_ < n + 1 := by simp) (show ↑a ∉ f '' M from ?_)
suffices g '' M = f '' M by
rw [← this]
show a ∉ g '' M
unfold Set.image at ha₂ ⊢
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and] at ha₂ ⊢
intro x hx
by_cases hxp : x = p
· unfold Set.Function.swap
rw [if_pos hxp, ht₂]
exact (Nat.ne_of_lt ha₁).symm
· refine ha₂ x ?_
exact Set.mem_diff_of_mem hx hxp
ext x
dsimp only
unfold Set.Function.swap
simp only [Set.mem_image, Set.mem_Iio]
apply Iff.intro
· intro ⟨y, hy₁, hy₂⟩
by_cases hc₁ : y = p
· rw [if_pos hc₁, ht₂] at hy₂
rw [hy₂] at ht₂
exact ⟨t, ht₁, ht₂⟩
· rw [if_neg hc₁] at hy₂
by_cases hc₂ : y = t
· rw [if_pos hc₂] at hy₂
exact ⟨p, hp₁, hy₂⟩
· rw [if_neg hc₂] at hy₂
exact ⟨y, hy₁, hy₂⟩
· intro ⟨y, hy₁, hy₂⟩
by_cases hc₁ : y = p
· refine ⟨t, ht₁, ?_⟩
by_cases hc₂ : y = t
· rw [hc₂, ht₂] at hy₂
rw [← hc₁, ← hc₂]
simp only [ite_self, ite_true]
rwa [hc₂, ht₂]
· rw [hc₁, ← Ne.def] at hc₂
rwa [if_neg hc₂.symm, if_pos rfl, ← hc₁]
· by_cases hc₂ : y = t
· refine ⟨p, hp₁, ?_⟩
simp only [ite_self, ite_true]
rwa [hc₂] at hy₂
· refine ⟨y, hy₁, ?_⟩
rwa [if_neg hc₁, if_neg hc₂]
/-
> ##### Subconclusion
> The foregoing cases are exhaustive. Hence `n⁺ ∈ S`.
>
> #### (iii)
> By *(i)* and *(ii)*, `S` is an inductive set. By *Theorem 4B*, `S = ω`. Thus
> for all natural numbers `n`, there is no one-to-one correspondence between `n`
> and a proper subset of `n`. In other words, no natural number is equinumerous
> to a proper subset of itself.
-/
/--
No natural number is equinumerous to a proper subset of itself.
-/
theorem pigeonhole_principle {n : }
: ∀ {M}, M ⊂ Set.Iio n → M ≉ Set.Iio n := by
intro M hM nM
have ⟨f, hf⟩ := nM
have := pigeonhole_principle_aux n M hM f ⟨hf.left, hf.right.left⟩
exact absurd hf.right.right this
/-- ### Corollary 6C
No finite set is equinumerous to a proper subset of itself.
-/
theorem corollary_6c [DecidableEq α] [Nonempty α]
{S S' : Set α} (hS : Set.Finite S) (h : S' ⊂ S)
: S ≉ S' := by
/-
> Let `S` be a finite set and `S'` be a proper subset of `S`. Then there exists
> some set `T`, disjoint from `S'`, such that `S' T = S`. By definition of a
> finite set, `S` is equinumerous to a natural number `n`.
-/
let T := S \ S'
have hT : S = S' (S \ S') := by
simp only [Set.union_diff_self]
exact (Set.left_subset_union_eq_self (subset_of_ssubset h)).symm
/-
> By *Theorem 6A*, `S' T ≈ S` which, by the same theorem, implies
> `S' T ≈ n`.
-/
have hF := Set.equinumerous_refl S
conv at hF => arg 1; rw [hT]
have ⟨n, hG⟩ := Set.finite_iff_equinumerous_nat.mp hS
/-
> Let `f` be a one-to-one correspondence between `S' T` and `n`.
-/
have ⟨f, hf⟩ := Set.equinumerous_trans hF hG
/-
> Then `f ↾ S'` is a one-to-one correspondence between `S'` and a proper subset
> of `n`.
-/
let R := (Set.Iio n) \ (f '' T)
have hR : Set.BijOn f S' R := by
refine ⟨?_, ?_, ?_⟩
· -- `Set.MapsTo H S' R`
intro x hx
refine ⟨hf.left $ Set.mem_union_left T hx, ?_⟩
unfold Set.image
by_contra nx
simp only [Finset.mem_coe, Set.mem_setOf_eq] at nx
have ⟨a, ha₁, ha₂⟩ := nx
have hc₁ : a ∈ S' T := Set.mem_union_right S' ha₁
have hc₂ : x ∈ S' T := Set.mem_union_left T hx
rw [hf.right.left hc₁ hc₂ ha₂] at ha₁
have hx₁ : {x} ⊆ S' := Set.singleton_subset_iff.mpr hx
have hx₂ : {x} ⊆ T := Set.singleton_subset_iff.mpr ha₁
have hx₃ := Set.disjoint_sdiff_right hx₁ hx₂
simp only [
Set.bot_eq_empty,
Set.le_eq_subset,
Set.singleton_subset_iff,
Set.mem_empty_iff_false
] at hx₃
· -- `Set.InjOn H S'`
intro x₁ hx₁ x₂ hx₂ h
have hc₁ : x₁ ∈ S' T := Set.mem_union_left T hx₁
have hc₂ : x₂ ∈ S' T := Set.mem_union_left T hx₂
exact hf.right.left hc₁ hc₂ h
· -- `Set.SurjOn H S' R`
show ∀ r, r ∈ R → r ∈ f '' S'
intro r hr
unfold Set.image
simp only [Set.mem_setOf_eq]
dsimp only at hr
have := hf.right.right hr.left
simp only [Set.mem_image, Set.mem_union] at this
have ⟨x, hx⟩ := this
apply Or.elim hx.left
· intro hx'
exact ⟨x, hx', hx.right⟩
· intro hx'
refine absurd ?_ hr.right
rw [← hx.right]
simp only [Set.mem_image, Finset.mem_coe]
exact ⟨x, hx', rfl⟩
/-
> By the *Pigeonhole Principle*, `n` is not equinumerous to any proper subset of
> `n`. Therefore *Theorem 6A* implies `S'` cannot be equinumerous to `n`, which,
> by the same theorem, implies `S'` cannot be equinumerous to `S`. Hence no
> finite set is equinumerous to a proper subset of itself.
-/
intro hf'
have hf₁ : S ≈ R := Set.equinumerous_trans hf' ⟨f, hR⟩
have hf₂ : R ≈ Set.Iio n := by
have ⟨k, hk⟩ := Set.equinumerous_symm hf₁
exact Set.equinumerous_trans ⟨k, hk⟩ hG
refine absurd hf₂ (pigeonhole_principle ?_)
show R ⊂ Set.Iio n
apply And.intro
· show ∀ r, r ∈ R → r ∈ Set.Iio n
intro _ hr
exact hr.left
· show ¬ ∀ r, r ∈ Set.Iio n → r ∈ R
intro nr
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
have ht₂ : f t ∈ Set.Iio n := hf.left (Set.mem_union_right S' ht₁)
have ht₃ : f t ∈ R := nr (f t) ht₂
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
/-- ### Corollary 6D (a)
Any set equinumerous to a proper subset of itself is infinite.
-/
theorem corollary_6d_a [DecidableEq α] [Nonempty α]
{S S' : Set α} (hS : S' ⊂ S) (hf : S ≈ S')
: Set.Infinite S := by
/-
> Let `S` be a set equinumerous to proper subset `S'` of itself. Then `S` cannot
> be a finite set by *Corollary 6C*. By definition, `S` is an infinite set.
-/
by_contra nS
simp only [Set.not_infinite] at nS
exact absurd hf (corollary_6c nS hS)
/-- ### Corollary 6D (b)
The set `ω` is infinite.
-/
theorem corollary_6d_b
: Set.Infinite (@Set.univ ) := by
/-
> Consider set `S = {n ∈ ω | n is even}`. We prove that (i) `S` is equinumerous
> to `ω` and (ii) that `ω` is infinite.
-/
let S : Set := { 2 * n | n ∈ @Set.univ }
let f x := 2 * x
/-
> #### (i)
> Define `f : ω → S` given by `f(n) = 2 ⬝ n`. Notice `f` is well-defined by the
> definition of an even natural number, introduced in *Exercise 4.14*. We first
> show `f` is one-to-one and then that `f` is onto.
-/
have : Set.BijOn f (@Set.univ ) S := by
refine ⟨by simp, ?_, ?_⟩
/-
> Suppose `f(n₁) = f(n₁) = 2 ⬝ n₁`. We must prove that `n₁ = n₂`.
-/
· -- `Set.InjOn f Set.univ`
intro n₁ _ n₂ _ hf
/-
> By the *Trichotomy Law for `ω`*, exactly one of the following may occur:
> `n₁ = n₂`, `n₁ < n₂`, or `n₂ < n₁`. If `n₁ < n₂`, then *Theorem 4N* implies
> `n₁ ⬝ 2 < n₂ ⬝ 2`. *Theorem 4K-5* then indicates `2 ⬝ n₁ < 2 ⬝ n₂`, a
> contradiction to `2 ⬝ n₁ = 2 ⬝ n₂`. A parallel argument holds for when
> `n₂ < n₁`. Thus `n₁ = n₂`.
-/
match @trichotomous LT.lt _ n₁ n₂ with
| Or.inr (Or.inl r) => exact r
| Or.inl r =>
have := (Chapter_4.theorem_4n_ii n₁ n₂ 1).mp r
conv at this => left; rw [mul_comm]
conv at this => right; rw [mul_comm]
exact absurd hf (Nat.ne_of_lt this)
| Or.inr (Or.inr r) =>
have := (Chapter_4.theorem_4n_ii n₂ n₁ 1).mp r
conv at this => left; rw [mul_comm]
conv at this => right; rw [mul_comm]
exact absurd hf.symm (Nat.ne_of_lt this)
/-
> Next, let `m ∈ S`. That is, `m` is an even number. By definition, there exists
> some `n ∈ ω` such that `m = 2 ⬝ n`. Thus `f(n) = m`.
-/
· -- `Set.SurjOn f Set.univ S`
show ∀ x, x ∈ S → x ∈ f '' Set.univ
intro x hx
unfold Set.image
simp only [Set.mem_univ, true_and, Set.mem_setOf_eq] at hx ⊢
exact hx
/-
> By *(i)*, `ω` is equinumerous to a subset of itself. By *Corollary 6D (a)*,
> `ω` is infinite.
-/
refine corollary_6d_a ?_ ⟨f, this⟩
rw [Set.ssubset_def]
apply And.intro
· simp
· show ¬ ∀ x, x ∈ Set.univ → x ∈ S
simp only [
Set.mem_univ,
true_and,
Set.mem_setOf_eq,
forall_true_left,
not_forall,
not_exists
]
refine ⟨1, ?_⟩
intro x nx
simp only [mul_eq_one, false_and] at nx
/-- ### Corollary 6E
Any finite set is equinumerous to a unique natural number.
-/
theorem corollary_6e [Nonempty α] (S : Set α) (hS : Set.Finite S)
: ∃! n : , S ≈ Set.Iio n := by
/-
> Let `S` be a finite set. By definition `S` is equinumerous to a natural number
> `n`.
-/
have ⟨n, hf⟩ := Set.finite_iff_equinumerous_nat.mp hS
refine ⟨n, hf, ?_⟩
/-
> Suppose `S` is equinumerous to another natural number `m`.
-/
intro m hg
/-
> By the *Trichotomy Law for `ω`*, exactly one of three situations is possible:
> `n = m`, `n < m`, or `m < n`.
-/
match @trichotomous LT.lt _ m n with
/-
> If `n < m`, then `m ≈ S` and `S ≈ n`. By *Theorem 6A*, it follows `m ≈ n`. But
> the *Pigeonhole Principle* indicates no natural number is equinumerous to a
> proper subset of itself, a contradiction.
-/
| Or.inr (Or.inr r) =>
have hh := Set.equinumerous_symm hf
have hk := Set.equinumerous_trans hh hg
have hnm : Set.Iio n ⊂ Set.Iio m := Set.Iio_nat_lt_ssubset r
exact absurd hk (pigeonhole_principle hnm)
/-
> If `m < n`, a parallel argument applies.
-/
| Or.inl r =>
have hh := Set.equinumerous_symm hg
have hk := Set.equinumerous_trans hh hf
have hmn : Set.Iio m ⊂ Set.Iio n := Set.Iio_nat_lt_ssubset r
exact absurd hk (pigeonhole_principle hmn)
/-
> Hence `n = m`, proving every finite set is equinumerous to a unique natural
> number.
-/
| Or.inr (Or.inl r) => exact r
/-- ### Lemma 6F
If `C` is a proper subset of a natural number `n`, then `C ≈ m` for some `m`
less than `n`.
-/
lemma lemma_6f {n : }
: ∀ {C}, C ⊂ Set.Iio n → ∃ m, m < n ∧ C ≈ Set.Iio m := by
/-
> Let
>
> `S = {n ∈ ω | ∀C ⊂ n, ∃m < n such that C ≈ m}`. (2)
>
> We prove that (i) `0 ∈ S` and (ii) if `n ∈ S` then `n⁺ ∈ S`. Afterward we
> prove (iii) the lemma statement.
-/
induction n with
/-
> #### (i)
> By definition, `0 = ∅`. Thus `0` has no proper subsets. Hence `0 ∈ S`
> vacuously.
-/
| zero =>
intro C hC
unfold Set.Iio at hC
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hC
rw [Set.ssubset_empty_iff_false] at hC
exact False.elim hC
/-
> #### (ii)
> Suppose `n ∈ S` and consider `n⁺`. By definition of the successor,
> `n⁺ = n {n}`. There are two cases to consider:
-/
| succ n ih =>
/-
> Let `C` be an arbitrary, proper subset of `n⁺`.
-/
intro C hC
-- A useful theorem we use in a couple of places.
have h_subset_equinumerous
: ∀ S, S ⊆ Set.Iio n →
∃ m, m < n + 1 ∧ S ≈ Set.Iio m := by
intro S hS
rw [subset_iff_ssubset_or_eq] at hS
apply Or.elim hS
· -- `S ⊂ Set.Iio n`
intro h
have ⟨m, hm⟩ := ih h
exact ⟨m, calc m
_ < n := hm.left
_ < n + 1 := by simp, hm.right⟩
· -- `S = Set.Iio n`
intro h
exact ⟨n, by simp, Set.eq_imp_equinumerous h⟩
/-
> There are two cases to consider:
-/
by_cases hn : n ∉ C
/-
> ##### Case 1
> Suppose `n ∉ C`. Then `C ⊆ n`. If `C` is a proper subset of `n`, *(2)* implies
> `C` is equinumerous to some `m < n < n⁺`. If `C = n`, then *Theorem 6A*
> implies `C` is equinumerous to `n < n⁺`.
-/
· refine h_subset_equinumerous C ?_
show ∀ x, x ∈ C → x ∈ Set.Iio n
intro x hx
apply Or.elim (Nat.lt_or_eq_of_lt (subset_of_ssubset hC hx))
· exact id
· intro hx₁
rw [hx₁] at hx
exact absurd hx hn
/-
> ##### Case 2
> Suppose `n ∈ C`. Since `C` is a proper subset of `n⁺`, the set `n⁺ - C` is
> nonempty. By the *Well Ordering of `ω`*, `n⁺ - C` has a least element, say
> `p` (which does not equal `n`).
-/
simp only [not_not] at hn
have hC₁ : Set.Nonempty (Set.Iio (n + 1) \ C) := by
rw [Set.ssubset_def] at hC
have : ¬ ∀ x, x ∈ Set.Iio (n + 1) → x ∈ C := hC.right
simp only [Set.mem_Iio, not_forall, exists_prop] at this
exact this
-- `p` is the least element of `n⁺ - C`.
have ⟨p, hp⟩ := Chapter_4.well_ordering_nat hC₁
/-
> Consider now set `C' = (C - {n}) {p}`. By construction, `C' ⊆ n`.
-/
let C' := (C \ {n}) {p}
have hC'₁ : C' ⊆ Set.Iio n := by
show ∀ x, x ∈ C' → x ∈ Set.Iio n
intro x hx
match @trichotomous LT.lt _ x n with
| Or.inl r => exact r
| Or.inr (Or.inl r) =>
rw [r] at hx
apply Or.elim hx
· intro nx
simp at nx
· intro nx
simp only [Set.mem_singleton_iff] at nx
rw [nx] at hn
exact absurd hn hp.left.right
| Or.inr (Or.inr r) =>
apply Or.elim hx
· intro ⟨h₁, h₂⟩
have h₃ := subset_of_ssubset hC h₁
simp only [Set.mem_singleton_iff, Set.mem_Iio] at h₂ h₃
exact Or.elim (Nat.lt_or_eq_of_lt h₃) id (absurd · h₂)
· intro h
simp only [Set.mem_singleton_iff] at h
have := hp.left.left
rw [← h] at this
exact Or.elim (Nat.lt_or_eq_of_lt this)
id (absurd · (Nat.ne_of_lt r).symm)
/-
> As seen in *Case 1*, `C'` is equinumerous to some `m < n⁺`.
-/
have ⟨m, hm₁, hm₂⟩ := h_subset_equinumerous C' hC'₁
/-
> It suffices to show there exists a one-to-one correspondence between `C'` and
> `C`, since then *Theorem 6A* implies `C` is equinumerous to `m` as well.
-/
suffices C' ≈ C from
⟨m, hm₁, Set.equinumerous_trans (Set.equinumerous_symm this) hm₂⟩
/-
> Function `f : C' → C` given by
>
> `f(x) = if x = p then n else x`
>
> is trivially one-to-one and onto as expected.
-/
let f x := if x = p then n else x
refine ⟨f, ?_, ?_, ?_⟩
· -- `Set.MapsTo f C' C`
intro x hx
dsimp only
by_cases hxp : x = p
· rw [if_pos hxp]
exact hn
· rw [if_neg hxp]
apply Or.elim hx
· exact fun x => x.left
· intro hx₁
simp only [Set.mem_singleton_iff] at hx₁
exact absurd hx₁ hxp
· -- `Set.InjOn f C'`
intro x₁ hx₁ x₂ hx₂ hf
dsimp only at hf
by_cases hx₁p : x₁ = p
· by_cases hx₂p : x₂ = p
· rw [hx₁p, hx₂p]
· rw [if_pos hx₁p, if_neg hx₂p] at hf
apply Or.elim hx₂
· intro nx
exact absurd hf.symm nx.right
· intro nx
simp only [Set.mem_singleton_iff] at nx
exact absurd nx hx₂p
· by_cases hx₂p : x₂ = p
· rw [if_neg hx₁p, if_pos hx₂p] at hf
apply Or.elim hx₁
· intro nx
exact absurd hf nx.right
· intro nx
simp only [Set.mem_singleton_iff] at nx
exact absurd nx hx₁p
· rwa [if_neg hx₁p, if_neg hx₂p] at hf
· -- `Set.SurjOn f C' C`
show ∀ x, x ∈ C → x ∈ f '' C'
intro x hx
simp only [
Set.union_singleton,
Set.mem_diff,
Set.mem_singleton_iff,
Set.mem_image,
Set.mem_insert_iff,
exists_eq_or_imp,
ite_true
]
by_cases nx₁ : x = n
· left
exact nx₁.symm
· right
by_cases nx₂ : x = p
· have := hp.left.right
rw [← nx₂] at this
exact absurd hx this
· exact ⟨x, ⟨hx, nx₁⟩, by rwa [if_neg]⟩
/-
> #### (iii)
> By *(i)* and *(ii)*, `S` is an inductive set. By *Theorem 4B*, `S = ω`.
> Therefore, for every proper subset `C` of a natural number `n`, there exists
> some `m < n` such that `C ≈ n`.
-/
/-- ### Corollary 6G
Any subset of a finite set is finite.
-/
theorem corollary_6g {S S' : Set α} (hS : Set.Finite S) (hS' : S' ⊆ S)
: Set.Finite S' := by
/-
> Let `S` be a finite set and `S' ⊆ S`.
-/
rw [subset_iff_ssubset_or_eq, or_comm] at hS'
apply Or.elim hS'
/-
> Clearly, if `S' = S`, then `S'` is finite.
-/
· intro h
rwa [h]
/-
> Therefore suppose `S'` is a proper subset of `S`.
-/
intro h
/-
> By definition of a finite set, `S` is equinumerous to some natural number `n`.
> Let `f` be a one-to-one correspondence between `S` and `n`.
-/
rw [Set.finite_iff_equinumerous_nat] at hS
have ⟨n, f, hf⟩ := hS
/-
> Then `f ↾ S'` is a one-to-one correspondence between `S'` and some proper
> subset of `n`.
-/
-- Mirrors logic found in `corollary_6c`.
let T := S \ S'
let R := (Set.Iio n) \ (f '' T)
have hR : R ⊂ Set.Iio n := by
rw [Set.ssubset_def]
apply And.intro
· show ∀ x, x ∈ R → x ∈ Set.Iio n
intro _ hx
exact hx.left
· show ¬ ∀ x, x ∈ Set.Iio n → x ∈ R
intro nr
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
have ht₂ : f t ∈ Set.Iio n := hf.left ht₁.left
have ht₃ : f t ∈ R := nr (f t) ht₂
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
have : Set.BijOn f S' R := by
refine ⟨?_, ?_, ?_⟩
· -- `Set.MapsTo f S' R`
intro x hx
dsimp only
simp only [Set.mem_diff, Set.mem_Iio, Set.mem_image, not_exists, not_and]
apply And.intro
· exact hf.left (subset_of_ssubset h hx)
· intro y hy
by_contra nf
have := hf.right.left (subset_of_ssubset h hx) hy.left nf.symm
rw [this] at hx
exact absurd hx hy.right
· -- `Set.InjOn f S'`
intro x₁ hx₁ x₂ hx₂ hf'
have h₁ : x₁ ∈ S := subset_of_ssubset h hx₁
have h₂ : x₂ ∈ S := subset_of_ssubset h hx₂
exact hf.right.left h₁ h₂ hf'
· -- `Set.SurjOn f S' R`
show ∀ x, x ∈ R → x ∈ f '' S'
intro x hx
have h₁ := hf.right.right
unfold Set.SurjOn at h₁
rw [Set.subset_def] at h₁
have ⟨y, hy⟩ := h₁ x hx.left
refine ⟨y, ?_, hy.right⟩
rw [← hy.right] at hx
simp only [Set.mem_image, Set.mem_diff, not_exists, not_and] at hx
by_contra ny
exact (hx.right y ⟨hy.left, ny⟩) rfl
/-
> By *Lemma 6f*, `ran (f ↾ S')` is equinumerous to some `m < n`.
-/
have ⟨m, hm⟩ := lemma_6f hR
/-
> Then *Theorem 6A* indicates `S' ≈ m`. Hence `S'` is a finite set.
-/
have := Set.equinumerous_trans ⟨f, this⟩ hm.right
exact Set.finite_iff_equinumerous_nat.mpr ⟨m, this⟩
/-- ### Subset Size
Let `A` be a finite set and `B ⊂ A`. Then there exist natural numbers `m, n ∈ ω`
such that `B ≈ m`, `A ≈ n`, and `m ≤ n`.
-/
lemma subset_size [DecidableEq α] [Nonempty α] {A B : Set α}
(hBA : B ⊆ A) (hA : Set.Finite A)
: ∃ m n : , B ≈ Set.Iio m ∧ A ≈ Set.Iio n ∧ m ≤ n := by
/-
> Let `A` be a finite set and `B` be a subset of `A`. By *Corollary 6G*, `B`
> must be finite. By definition of a finite set, there exists natural numbers
> `m, n ∈ ω` such that `B ≈ m` and `A ≈ n`.
-/
have ⟨n, hn⟩ := Set.finite_iff_equinumerous_nat.mp hA
have ⟨m, hm⟩ := Set.finite_iff_equinumerous_nat.mp (corollary_6g hA hBA)
refine ⟨m, n, hm, hn, ?_⟩
/-
> By the *Trichotomy Law for `ω`*, it suffices to prove that `m > n` is not
> possible for then either `m < n` or `m = n`.
-/
suffices ¬ m > n by
match @trichotomous LT.lt _ m n with
| Or.inr (Or.inl hr) => -- m = n
rw [hr]
| Or.inr (Or.inr hr) => -- m > n
exact absurd hr this
| Or.inl hr => -- m < n
exact Nat.le_of_lt hr
/-
> For the sake of contradiction, assume `m > n`. By definition of equinumerous,
> there exists a one-to-one correspondence between `B` and `m`. *Theorem 6A*
> indicates there then exists a one-to-one correspondence `f` between `m` and
> `B`. Likewise, there exists a one-to-one correspondence `g` between `A` and
> `n`.
-/
by_contra nr
have ⟨f, hf⟩ := Set.equinumerous_symm hm
have ⟨g, hg⟩ := hn
/-
> Define `h : A → B` as `h(x) = f(g(x))` for all `x ∈ A`. Since `n ⊂ m` by
> *Corollary 4M*, `h` is well-defined. By *One-to-One Composition*, `h` must be
> one-to-one. thus `h` is a one-to-one correspondence between `A` and `ran h`,
> i.e. `A ≈ ran h`.
-/
let h x := f (g x)
have hh : Set.BijOn h A (h '' A) := by
refine ⟨?_, ?_, Eq.subset rfl⟩
· -- `Set.MapsTo h A (ran h)`
intro x hx
simp only [Set.mem_image]
exact ⟨x, hx, rfl⟩
· -- `Set.InjOn h A`
refine Set.InjOn.comp hf.right.left hg.right.left ?_
intro x hx
exact Nat.lt_trans (hg.left hx) nr
/-
> But `n < m` meaning `ran h ⊂ B` which in turn is a proper subset of `A` by
> hypothesis. *Corollary 6C* states no finite set is equinumerous to a proper
> subset of itself, a contradiction.
-/
have : h '' A ⊂ A := by
rw [Set.ssubset_def]
apply And.intro
· show ∀ x, x ∈ h '' A → x ∈ A
intro x hx
have ⟨y, hy₁, hy₂⟩ := hx
have h₁ : g y ∈ Set.Iio n := hg.left hy₁
have h₂ : f (g y) ∈ B := hf.left (Nat.lt_trans h₁ nr)
have h₃ : x ∈ B := by rwa [← hy₂]
exact hBA h₃
· rw [Set.subset_def]
simp only [Set.mem_image, not_forall, not_exists, not_and, exists_prop]
refine ⟨f n, hBA (hf.left nr), ?_⟩
intro x hx
by_contra nh
have h₁ : g x < n := hg.left hx
have h₂ : g x ∈ Set.Iio m := Nat.lt_trans h₁ nr
rw [hf.right.left h₂ nr nh] at h₁
simp at h₁
exact absurd ⟨h, hh⟩ (corollary_6c hA this)
/-- ### Finite Domain and Range Size
Let `A` and `B` be finite sets and `f : A → B` be a function. Then there exist
natural numbers `m, n ∈ ω` such that `dom f ≈ m`, `ran f ≈ n`, and `m ≥ n`.
-/
theorem finite_dom_ran_size [Nonempty α] {A B : Set α}
(hA : Set.Finite A) (hB : Set.Finite B) (hf : Set.MapsTo f A B)
: ∃ m n : , A ≈ Set.Iio m ∧ f '' A ≈ Set.Iio n ∧ m ≥ n := by
have ⟨m, hm⟩ := Set.finite_iff_equinumerous_nat.mp hA
have ⟨p, hp⟩ := Set.finite_iff_equinumerous_nat.mp hB
have ⟨g, hg⟩ := Set.equinumerous_symm hm
let A_y y := { x ∈ Set.Iio m | f (g x) = y }
have hA₁ : ∀ y ∈ B, A_y y ≈ f ⁻¹' {y} := by
sorry
have hA₂ : ∀ y ∈ B, Set.Nonempty (A_y y) := by
sorry
have hA₃ : ∀ y ∈ B, ∃ q : , ∀ p ∈ A_y y, q ≤ p := by
sorry
let C := { q | ∃ y ∈ B, ∀ p ∈ A_y y, q ≤ p }
let h x := f (g x)
have hh : C ≈ f '' A := by
sorry
sorry
/-- ### Set Difference Size
Let `A ≈ m` for some natural number `m` and `B ⊆ A`. Then there exists some
`n ∈ ω` such that `B ≈ n` and `A - B ≈ m - n`.
-/
lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
: ∀ A : Set α, A ≈ Set.Iio m →
∀ B, B ⊆ A →
∃ n : , n ≤ m ∧ B ≈ Set.Iio n ∧ A \ B ≈ (Set.Iio m) \ (Set.Iio n) := by
/-
> `Let
>
> `S = {m ∈ ω | ∀ A ≈ m, ∀ B ⊆ A, ∃ n ∈ ω(n ≤ m ∧ B ≈ n ∧ A - B ≈ m - n) }`.
>
> We prove that (i) `0 ∈ S` and (ii) if `n ∈ S` then `n⁺ ∈ S`. Afterward we
> prove (iii) the lemma statement.
-/
induction m with
| zero =>
/-
> #### (i)
> Let `A ≈ 0` and `B ⊆ A`. Then it follows `A = B = ∅ = 0`. Since `0 ≤ 0`,
> `B ≈ 0`, and `A - B = ∅ ≈ 0 = 0 - 0`, it follows `0 ∈ S`.
-/
intro A hA B hB
refine ⟨0, ?_⟩
simp only [
Nat.zero_eq,
sdiff_self,
Set.bot_eq_empty,
Set.equinumerous_zero_iff_emptyset
] at hA ⊢
have hB' : B = ∅ := Set.subset_eq_empty hB hA
have : A \ B = ∅ := by
rw [hB']
simp only [Set.diff_empty]
exact hA
rw [this]
refine ⟨trivial, hB', Set.equinumerous_emptyset_emptyset⟩
| succ m ih =>
/-
> #### (ii)
> Suppose `m ∈ S` and consider `m⁺`. Let `A ≈ m⁺` and let `B ⊆ A`. By definition
> of equinumerous, there exists a one-to-one corerspondnece `f` between `A` and
> `m⁺`.
-/
intro A ⟨f, hf⟩ B hB
/-
> Since `f` is one-to-one and onto, there exists a unique value `a ∈ A` such
> that `f(a) = m`.
-/
have hfa := hf.right.right
unfold Set.SurjOn at hfa
have ⟨a, ha₁, ha₂⟩ := (Set.subset_def ▸ hfa) m (by simp)
/-
> Then `B - {a} ⊆A - {a}` and `f` is a one-to-one correspondence between
> `A - {a}` and `m`.
-/
have hBA : B \ {a} ⊆ A \ {a} := Set.diff_subset_diff_left hB
have hfBA : Set.BijOn f (A \ {a}) (Set.Iio m) := by
refine ⟨?_, ?_, ?_⟩
· intro x hx
have := hf.left hx.left
simp only [Set.mem_Iio, gt_iff_lt] at this ⊢
apply Or.elim (Nat.lt_or_eq_of_lt this)
· simp
· intro h
rw [← ha₂] at h
exact absurd (hf.right.left hx.left ha₁ h) hx.right
· intro x₁ hx₁ x₂ hx₂ h
exact hf.right.left hx₁.left hx₂.left h
· have := hf.right.right
unfold Set.SurjOn Set.image at this ⊢
rw [Set.subset_def] at this ⊢
simp only [
Set.mem_Iio,
Set.mem_diff,
Set.mem_singleton_iff,
Set.mem_setOf_eq
] at this ⊢
intro x hx
have ⟨b, hb⟩ := this x (Nat.lt.step hx)
refine ⟨b, ⟨hb.left, ?_⟩, hb.right⟩
by_contra nb
rw [← nb, hb.right] at ha₂
exact absurd ha₂ (Nat.ne_of_lt hx)
/-
> By *(IH)*, there exists some `n ∈ ω` such that `n ≤ m`, `B - {a} ≈ n` and
>
> `(A - {a}) - (B - {a}) ≈ m - n`. (6.4)
>
> There are two cases to consider:
-/
-- `(A - {a}) - (B - {a}) ≈ m - n`
have ⟨n, hn₁, hn₂, hn₃⟩ := ih (A \ {a}) ⟨f, hfBA⟩ (B \ {a}) hBA
by_cases hc : a ∈ B
· refine ⟨n.succ, ?_, ?_, ?_⟩
/-
> ##### Case 1
> Assume `a ∈ B`. Then `B ≈ n⁺`.
-/
· exact Nat.succ_le_succ hn₁
· -- `B ≈ Set.Iio n.succ`
have ⟨g, hg⟩ := hn₂
let g' x := if x = a then n else g x
refine ⟨g', ⟨?_, ?_, ?_⟩⟩
· -- `Set.MapsTo g' B (Set.Iio n.succ)`
intro x hx
dsimp only
by_cases hx' : x = a
· rw [if_pos hx']
simp
· rw [if_neg hx']
calc g x
_ < n := hg.left ⟨hx, hx'⟩
_ < n + 1 := by simp
· -- `Set.InjOn g' B`
intro x₁ hx₁ x₂ hx₂ h
dsimp only at h
by_cases hc₁ : x₁ = a <;> by_cases hc₂ : x₂ = a
· rw [hc₁, hc₂]
· rw [if_pos hc₁, if_neg hc₂] at h
exact absurd h.symm (Nat.ne_of_lt $ hg.left ⟨hx₂, hc₂⟩)
· rw [if_neg hc₁, if_pos hc₂] at h
exact absurd h (Nat.ne_of_lt $ hg.left ⟨hx₁, hc₁⟩)
· rw [if_neg hc₁, if_neg hc₂] at h
exact hg.right.left ⟨hx₁, hc₁⟩ ⟨hx₂, hc₂⟩ h
· -- `Set.SurjOn g' B (Set.Iio n.succ)`
have := hg.right.right
unfold Set.SurjOn Set.image at this ⊢
rw [Set.subset_def] at this ⊢
simp only [Set.mem_Iio, Set.mem_setOf_eq] at this ⊢
intro x hx
by_cases hc₁ : x = n
· refine ⟨a, hc, ?_⟩
simp only [ite_true]
exact hc₁.symm
· apply Or.elim (Nat.lt_or_eq_of_lt hx)
· intro hx₁
have ⟨b, ⟨hb₁, hb₂⟩, hb₃⟩ := this x hx₁
refine ⟨b, hb₁, ?_⟩
simp only [Set.mem_singleton_iff] at hb₂
rwa [if_neg hb₂]
· intro hx₁
exact absurd hx₁ hc₁
/-
> Furthermore, by definition of the set difference,
>
> `...`
-/
· have hA₁ : (A \ {a}) \ (B \ {a}) = (A \ B) \ {a} :=
Set.diff_mem_diff_mem_eq_diff_diff_mem
/-
> Since `a ∈ A` and `a ∈ B`, `(A - B) - {a} = A - B`.
-/
have hA₂ : (A \ B) \ {a} = A \ B := by
refine Set.not_mem_diff_eq_self ?_
by_contra na
exact absurd hc na.right
/-
> Thus
>
> `(A - {a} - (B - {a})) = (A - B) - {a}`
> ` = A - B`
> ` ≈ m - n` *(6.4)*
> ` ≈ m⁺ - n⁺` *(Theorem 6A)*
-/
rw [hA₁, hA₂] at hn₃
suffices (Set.Iio m) \ (Set.Iio n) ≈ (Set.Iio m.succ) \ (Set.Iio n.succ)
from Set.equinumerous_trans hn₃ this
-- `m - n ≈ m⁺ - n⁺`
refine ⟨fun x => x + 1, ?_, ?_, ?_⟩
· intro x ⟨hx₁, hx₂⟩
simp at hx₁ hx₂ ⊢
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
· intro _ _ _ _ h
simp only [add_left_inj] at h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
intro x ⟨hx₁, hx₂⟩
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_setOf_eq,
Set.mem_Iio
] at hx₁ hx₂ ⊢
have ⟨p, hp⟩ : ∃ p : , x = p.succ := by
refine Nat.exists_eq_succ_of_ne_zero ?_
have := calc 0
_ < n.succ := by simp
_ ≤ x := hx₂
exact Nat.pos_iff_ne_zero.mp this
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
· rw [hp] at hx₂
exact Nat.lt_succ.mp hx₂
· rw [hp] at hx₁
exact Nat.succ_lt_succ_iff.mp hx₁
/-
> ##### Case 2
> Assume `a ∉ B`. Then `B - {a} = B` (i.e. `B ≈ n`) and
>
> `(A - {a}) - (B - {a}) = (A - {a}) - B`
> ` ≈ m - n`. *(6.4)
-/
· have hB : B \ {a} = B := Set.not_mem_diff_eq_self hc
refine ⟨n, ?_, ?_, ?_⟩
· calc n
_ ≤ m := hn₁
_ ≤ m + 1 := by simp
· rwa [← hB]
/-
> The above implies that there exists a one-to-one correspondence `g` between
> `(A - {a}) - B` and `m - n`. Therefore `g {⟨a, m⟩}` is a one-to-one
> correspondence between `A - B` and `(m - n) {m}`.
-/
· rw [hB] at hn₃
have ⟨g, hg⟩ := hn₃
have hAB : A \ B ≈ (Set.Iio m) \ (Set.Iio n) {m} := by
refine ⟨fun x => if x = a then m else g x, ?_, ?_, ?_⟩
· intro x hx
dsimp only
by_cases hc₁ : x = a
· rw [if_pos hc₁]
simp
· rw [if_neg hc₁]
have := hg.left ⟨⟨hx.left, hc₁⟩, hx.right⟩
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.union_singleton,
Set.mem_Ico,
lt_self_iff_false,
and_false,
Set.mem_insert_iff
] at this ⊢
right
exact this
· intro x₁ hx₁ x₂ hx₂ h
dsimp only at h
by_cases hc₁ : x₁ = a <;> by_cases hc₂ : x₂ = a
· rw [hc₁, hc₂]
· rw [if_pos hc₁, if_neg hc₂] at h
have := hg.left ⟨⟨hx₂.left, hc₂⟩, hx₂.right⟩
simp at this
exact absurd h.symm (Nat.ne_of_lt this.right)
· rw [if_neg hc₁, if_pos hc₂] at h
have := hg.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩
simp only [Set.Iio_diff_Iio, gt_iff_lt, not_lt, ge_iff_le, Set.mem_Ico] at this
exact absurd h (Nat.ne_of_lt this.right)
· rw [if_neg hc₁, if_neg hc₂] at h
exact hg.right.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩ ⟨⟨hx₂.left, hc₂⟩, hx₂.right⟩ h
· have := hg.right.right
unfold Set.SurjOn Set.image at this ⊢
rw [Set.subset_def] at this ⊢
simp at this ⊢
refine ⟨⟨a, ⟨ha₁, hc⟩, ?_⟩, ?_⟩
· intro ha
simp at ha
· intro x hx₁ hx₂
have ⟨y, hy₁, hy₂⟩ := this x hx₁ hx₂
refine ⟨y, ?_, ?_⟩
· exact ⟨hy₁.left.left, hy₁.right⟩
· rwa [if_neg hy₁.left.right]
/-
> By *Theorem 6A*
>
> `A - B ≈ (m - n) {m} ≈ m⁺ - n`.
-/
suffices (Set.Iio m) \ (Set.Iio n) {m} ≈ (Set.Iio m.succ) \ (Set.Iio n)
from Set.equinumerous_trans hAB this
refine ⟨fun x => x, ?_, ?_, ?_⟩
· intro x hx
simp at hx ⊢
apply Or.elim hx
· intro hx₁
rw [hx₁]
exact ⟨hn₁, by simp⟩
· intro ⟨hx₁, hx₂⟩
exact ⟨hx₁, calc x
_ < m := hx₂
_ < m + 1 := by simp⟩
· intro _ _ _ _ h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_Ico,
Set.union_singleton,
lt_self_iff_false,
and_false,
Set.mem_insert_iff,
exists_eq_right,
Set.mem_setOf_eq,
and_imp
]
intro x hn hm
apply Or.elim (Nat.lt_or_eq_of_lt hm)
· intro hx
right
exact ⟨hn, hx⟩
· intro hx
left
exact hx
/-
> ##### Subconclusion
> The above two cases are exhaustive and both conclude the existence of some
> `n ∈ ω` such that `n ≤ m⁺`, `B ≈ n`, and `A - B ≈ m⁺ - n`. Hence `m⁺ ∈ S`.
>
> #### (iii)
> By *(i)* and *(ii)*, `S ⊆ ω` is an inductive set. Thus *Theorem 4B* implies
> `S = ω`. Hence, for all `A ≈ m` for some `m ∈ ω`, if `B ⊆ A`, then there
> exists some `n ∈ ω` such that `n ≤ m`, `B ≈ n`, and `A - B ≈ m - n`.
-/
lemma sdiff_size [DecidableEq α] [Nonempty α] {A B : Set α}
(hB : B ⊆ A) (hA : A ≈ Set.Iio m)
: ∃ n : , n ≤ m ∧ B ≈ Set.Iio n ∧ A \ B ≈ (Set.Iio m) \ (Set.Iio n) :=
sdiff_size_aux A hA B hB
/-- ### Exercise 6.7
Assume that `A` is finite and `f : A → A`. Show that `f` is one-to-one **iff**
`ran f = A`.
-/
theorem exercise_6_7 [DecidableEq α] [Nonempty α] {A : Set α} {f : αα}
(hA₁ : Set.Finite A) (hA₂ : Set.MapsTo f A A)
: Set.InjOn f A ↔ f '' A = A := by
apply Iff.intro
· intro hf
have hf₂ : A ≈ f '' A := by
refine ⟨f, ?_, hf, ?_⟩
· -- `Set.MapsTo f A (f '' A)`
intro x hx
simp only [Set.mem_image]
exact ⟨x, hx, rfl⟩
· -- `Set.SurjOn f A (f '' A)`
intro _ hx
exact hx
have hf₃ : f '' A ⊆ A := by
show ∀ x, x ∈ f '' A → x ∈ A
intro x ⟨a, ha₁, ha₂⟩
rw [← ha₂]
exact hA₂ ha₁
rw [subset_iff_ssubset_or_eq] at hf₃
exact Or.elim hf₃ (fun h => absurd hf₂ (corollary_6c hA₁ h)) id
· intro hf₁
by_cases hA₃ : A = ∅
· rw [hA₃]
simp
· intro x₁ hx₁ x₂ hx₂ hf₂
let y := f x₁
let B := f ⁻¹' {y}
have hB₁ : x₁ ∈ B := sorry
have hB₂ : x₂ ∈ B := sorry
have hB₃ : B ⊆ A := sorry
have ⟨m₁, n₁, hm₁, hn₁, hmn₁⟩ := subset_size hB₃ hA₁
have hf'₁ : Set.MapsTo f (A \ B) (A \ {y}) := sorry
have hf'₂ : f '' (A \ B) = A \ {y} := sorry
have hf'₃ : Set.Finite (A \ B) := sorry
have hf'₄ : Set.Finite (A \ {y}) := sorry
have ⟨m₂, n₂, hm₂, hn₂, hmn₂⟩ := finite_dom_ran_size hf'₃ hf'₄ hf'₁
have h₁ : A \ B ≈ Set.Iio (n₁ - m₁) := sorry
have h₂ : A \ {y} ≈ Set.Iio (n₁ - 1) := sorry
sorry
/-- ### Exercise 6.8
Prove that the union of two finites sets is finite, without any use of
arithmetic.
-/
theorem exercise_6_8 {A B : Set α} (hA : Set.Finite A) (hB : Set.Finite B)
: Set.Finite (A B) := by
sorry
/-- ### Exercise 6.9
Prove that the Cartesian product of two finites sets is finite, without any use
of arithmetic.
-/
theorem exercise_6_9 {A : Set α} {B : Set β}
(hA : Set.Finite A) (hB : Set.Finite B)
: Set.Finite (Set.prod A B) := by
sorry
end Enderton.Set.Chapter_6