Enderton. Part of ordering theorems/exercises.
parent
ca58d67d8e
commit
aae9eac4d0
|
@ -7304,7 +7304,7 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Corollary 4Q}}%
|
||||
\subsection{\unverified{Corollary 4Q}}%
|
||||
\hyperlabel{sub:corollary-4q}
|
||||
|
||||
\begin{corollary}[4Q]
|
||||
|
@ -7313,7 +7313,11 @@
|
|||
\end{corollary}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
Let $f \colon \omega \rightarrow \omega$.
|
||||
Then $\emptyset \subset \ran{f} \subseteq \omega$.
|
||||
By the \nameref{sub:well-ordering-natural-numbers}, $\ran{f}$ must have
|
||||
a least element.
|
||||
Therefore it isn't possible $f(n^+) \in f(n)$ for all $n \in \omega$.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{%
|
||||
|
@ -7322,13 +7326,22 @@
|
|||
|
||||
\begin{theorem}
|
||||
Let $A$ be a subset of $\omega$, and assume that for every $n \in \omega$,
|
||||
$$\text{if every number less than } n \text{ is in } A,
|
||||
\text{ then } n \in A.$$
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:strong-induction-principle-natural-numbers-eq1}
|
||||
\text{if every number less than } n \text{ is in } A,
|
||||
\text{ then } n \in A.
|
||||
\end{equation}
|
||||
Then $A = \omega$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
For the sake of contradiction, suppose $\omega - A$ is a nonempty set.
|
||||
By \nameref{sub:well-ordering-natural-numbers}, there exists a least element
|
||||
$m \in \omega - A$.
|
||||
Then every number less than $m$ is in $A$.
|
||||
But then \eqref{sub:strong-induction-principle-natural-numbers-eq1} implies
|
||||
$m \in A$, a contradiction.
|
||||
Thus $\omega - A$ is an empty set meaning $A = \omega$.
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 4}%
|
||||
|
@ -7889,13 +7902,18 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.18}}%
|
||||
\subsection{\unverified{Exercise 4.18}}%
|
||||
\hyperlabel{sub:exercise-4.18}
|
||||
|
||||
Simplify $\img{\in_\omega^{-1}}{\{7, 8\}}$.
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
By definition,
|
||||
$$\in_\omega = \{\pair{m, n} \in \omega \times \omega \mid m \in n\}.$$
|
||||
Thus, the \nameref{ref:inverse} of $\in_\omega$ is
|
||||
$$\in_\omega^{-1} =
|
||||
\{\pair{n, m} \in \omega \times \omega \mid m \in n\}.$$
|
||||
Therefore $$\img{\in_\omega^{-1}}{\{7, 8\}} = \{6, 7\}.$$
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.19}}%
|
||||
|
|
Loading…
Reference in New Issue