From aae9eac4d0893108853cd5840d7a80adfa3ec363 Mon Sep 17 00:00:00 2001 From: Joshua Potter Date: Fri, 11 Aug 2023 07:00:57 -0600 Subject: [PATCH] Enderton. Part of ordering theorems/exercises. --- Bookshelf/Enderton/Set.tex | 32 +++++++++++++++++++++++++------- 1 file changed, 25 insertions(+), 7 deletions(-) diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index b7a5ca5..da6338c 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -7304,7 +7304,7 @@ \end{proof} -\subsection{\sorry{Corollary 4Q}}% +\subsection{\unverified{Corollary 4Q}}% \hyperlabel{sub:corollary-4q} \begin{corollary}[4Q] @@ -7313,7 +7313,11 @@ \end{corollary} \begin{proof} - TODO + Let $f \colon \omega \rightarrow \omega$. + Then $\emptyset \subset \ran{f} \subseteq \omega$. + By the \nameref{sub:well-ordering-natural-numbers}, $\ran{f}$ must have + a least element. + Therefore it isn't possible $f(n^+) \in f(n)$ for all $n \in \omega$. \end{proof} \subsection{\sorry{% @@ -7322,13 +7326,22 @@ \begin{theorem} Let $A$ be a subset of $\omega$, and assume that for every $n \in \omega$, - $$\text{if every number less than } n \text{ is in } A, - \text{ then } n \in A.$$ + \begin{equation} + \hyperlabel{sub:strong-induction-principle-natural-numbers-eq1} + \text{if every number less than } n \text{ is in } A, + \text{ then } n \in A. + \end{equation} Then $A = \omega$. \end{theorem} \begin{proof} - TODO + For the sake of contradiction, suppose $\omega - A$ is a nonempty set. + By \nameref{sub:well-ordering-natural-numbers}, there exists a least element + $m \in \omega - A$. + Then every number less than $m$ is in $A$. + But then \eqref{sub:strong-induction-principle-natural-numbers-eq1} implies + $m \in A$, a contradiction. + Thus $\omega - A$ is an empty set meaning $A = \omega$. \end{proof} \section{Exercises 4}% @@ -7889,13 +7902,18 @@ \end{proof} -\subsection{\sorry{Exercise 4.18}}% +\subsection{\unverified{Exercise 4.18}}% \hyperlabel{sub:exercise-4.18} Simplify $\img{\in_\omega^{-1}}{\{7, 8\}}$. \begin{proof} - TODO + By definition, + $$\in_\omega = \{\pair{m, n} \in \omega \times \omega \mid m \in n\}.$$ + Thus, the \nameref{ref:inverse} of $\in_\omega$ is + $$\in_\omega^{-1} = + \{\pair{n, m} \in \omega \times \omega \mid m \in n\}.$$ + Therefore $$\img{\in_\omega^{-1}}{\{7, 8\}} = \{6, 7\}.$$ \end{proof} \subsection{\sorry{Exercise 4.19}}%