Enderton (logic). Most of exercises 6.1.

finite-set-exercises
Joshua Potter 2023-08-18 11:22:23 -06:00
parent a4f72d0a84
commit 9fe4f2ee78
5 changed files with 511 additions and 42 deletions

View File

@ -8,6 +8,7 @@
% Truth table start and final color % Truth table start and final color
\definecolor{TTStart}{gray}{0.95} \definecolor{TTStart}{gray}{0.95}
\definecolor{TTEnd}{rgb}{1,1,0} \definecolor{TTEnd}{rgb}{1,1,0}
\colorlet{TTInvalid}{Salmon}
\newcolumntype{s}{>{\columncolor{TTStart}}c} \newcolumntype{s}{>{\columncolor{TTStart}}c}
\newcolumntype{e}{>{\columncolor{TTEnd}}c} \newcolumntype{e}{>{\columncolor{TTEnd}}c}
@ -711,7 +712,7 @@
Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$. Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$.
\subsubsection{\verified{Exercise 1.1.5a}}% \subsubsection{\verified{Exercise 1.1.5a}}%
\hyperlabel{ssub:exercise-1.1.5.a} \hyperlabel{ssub:exercise-1.1.5a}
Show that the length of $\alpha$ (i.e., the number of symbols in the string) Show that the length of $\alpha$ (i.e., the number of symbols in the string)
is odd. is odd.
@ -719,14 +720,14 @@
$4k + 1$. $4k + 1$.
\code*{Enderton.Logic.Chapter\_1} \code*{Enderton.Logic.Chapter\_1}
{Enderton.Logic.Chapter\_1.exercise\_1\_1\_5\_a} {Enderton.Logic.Chapter\_1.exercise\_1\_1\_5a}
\begin{proof} \begin{proof}
Define $L$ to be the length function mapping arbitrary Define $L$ to be the length function mapping arbitrary
\nameref{ref:well-formed-formula} to its length and let \nameref{ref:well-formed-formula} to its length and let
\begin{equation} \begin{equation}
\hyperlabel{ssub:exercise-1.1.5.a-eq1} \hyperlabel{ssub:exercise-1.1.5a-eq1}
S = \{\phi \mid S = \{\phi \mid
\phi \text{ is a wff containing } \neg \text{ or } \phi \text{ is a wff containing } \neg \text{ or }
\exists k \in \mathbb{N}, L(\phi) = 4k + 1\}. \exists k \in \mathbb{N}, L(\phi) = 4k + 1\}.
@ -736,14 +737,14 @@
We then conclude with (iii) the proof of the theorem statement. We then conclude with (iii) the proof of the theorem statement.
\paragraph{(i)}% \paragraph{(i)}%
\hyperlabel{par:exercise-1.1.5.a-i} \hyperlabel{par:exercise-1.1.5a-i}
Every sentence symbol has length 1 by definition. Every sentence symbol has length 1 by definition.
That is, every sentence symbol has length $(4)(0) + 1$. That is, every sentence symbol has length $(4)(0) + 1$.
Hence $S$ contains every sentence symbol. Hence $S$ contains every sentence symbol.
\paragraph{(ii)}% \paragraph{(ii)}%
\hyperlabel{par:exercise-1.1.5.a-ii} \hyperlabel{par:exercise-1.1.5a-ii}
Let $\alpha, \beta \in S$. Let $\alpha, \beta \in S$.
Then there exists some $k_\alpha$ and $k_\beta$ such that Then there exists some $k_\alpha$ and $k_\beta$ such that
@ -769,7 +770,7 @@
\paragraph{(iii)}% \paragraph{(iii)}%
By \nameref{par:exercise-1.1.5.a-i} and \nameref{par:exercise-1.1.5.a-ii}, By \nameref{par:exercise-1.1.5a-i} and \nameref{par:exercise-1.1.5a-ii},
the \nameref{sub:induction-principle-1} indicates $S$ is the set of all the \nameref{sub:induction-principle-1} indicates $S$ is the set of all
wffs. wffs.
Thus all well-formed formulas not containing symbol $\neg$ has length Thus all well-formed formulas not containing symbol $\neg$ has length
@ -779,14 +780,14 @@
\end{proof} \end{proof}
\subsubsection{\verified{Exercise 1.1.5b}}% \subsubsection{\verified{Exercise 1.1.5b}}%
\hyperlabel{ssub:exercise-1.1.5-b} \hyperlabel{ssub:exercise-1.1.5b}
Show that more than a quarter of the symbols are sentence symbols. Show that more than a quarter of the symbols are sentence symbols.
\textit{Suggestion}: Apply induction to show that the number of sentence \textit{Suggestion}: Apply induction to show that the number of sentence
symbols is of the form $k + 1$. symbols is of the form $k + 1$.
\code*{Enderton.Logic.Chapter\_1} \code*{Enderton.Logic.Chapter\_1}
{Enderton.Logic.Chapter\_1.exercise\_1\_1\_5\_b} {Enderton.Logic.Chapter\_1.exercise\_1\_1\_5b}
\begin{proof} \begin{proof}
@ -847,16 +848,14 @@
\begin{proof} \begin{proof}
Yes. Yes.
To prove, consider the following truth table: To prove, consider the following truth table:
$$ $$\begin{array}{s|c|s|c|s|e|s}
\begin{array}{s|c|s|c|s|e|s}
(((P & \Rightarrow & Q) & \Rightarrow & P) & \Rightarrow & P) \\ (((P & \Rightarrow & Q) & \Rightarrow & P) & \Rightarrow & P) \\
\hline \hline
T & T & T & T & T & T & T \\ T & T & T & T & T & T & T \\
T & F & F & T & T & T & T \\ T & F & F & T & T & T & T \\
F & T & T & F & F & T & F \\ F & T & T & F & F & T & F \\
F & T & F & F & F & T & F F & T & F & F & F & T & F
\end{array} \end{array}$$
$$
\end{proof} \end{proof}
\subsection{\pending{Exercise 1.2.2b}}% \subsection{\pending{Exercise 1.2.2b}}%
@ -894,16 +893,14 @@
By definition, By definition,
$$\sigma_{k + 2} = ((\sigma_{k} \Rightarrow P) \Rightarrow P).$$ $$\sigma_{k + 2} = ((\sigma_{k} \Rightarrow P) \Rightarrow P).$$
Consider the truth table of the above: Consider the truth table of the above:
$$ $$\begin{array}{c|c|s|e|s}
\begin{array}{c|c|s|e|s}
((\sigma_k & \Rightarrow & P) & \Rightarrow & P) \\ ((\sigma_k & \Rightarrow & P) & \Rightarrow & P) \\
\hline \hline
T & T & T & T & T \\ T & T & T & T & T \\
T & T & T & T & T \\ T & T & T & T & T \\
T & F & F & T & F \\ T & F & F & T & F \\
T & F & F & T & F T & F & F & T & F
\end{array} \end{array}$$
$$
This shows $\sigma_{k+2}$ is a tautology. This shows $\sigma_{k+2}$ is a tautology.
Hence $P(k + 2)$ is true. Hence $P(k + 2)$ is true.
@ -927,16 +924,14 @@
Suppose $k = 1$. Suppose $k = 1$.
Then $\sigma_k = \sigma_1 = ((P \Rightarrow Q) \Rightarrow P)$. Then $\sigma_k = \sigma_1 = ((P \Rightarrow Q) \Rightarrow P)$.
The following truth table shows $\sigma_1$ is not a tautology: The following truth table shows $\sigma_1$ is not a tautology:
$$ $$\begin{array}{s|c|s|e|s}
\begin{array}{s|c|s|e|s}
(((P & \Rightarrow & Q) & \Rightarrow & P) \\ (((P & \Rightarrow & Q) & \Rightarrow & P) \\
\hline \hline
T & T & T & T & T \\ T & T & T & T & T \\
T & F & F & T & T \\ T & F & F & T & T \\
F & T & T & F & F \\ F & T & T & F & F \\
F & T & F & F & F F & T & F & F & F
\end{array} \end{array}$$
$$
\subparagraph{Case 2}% \subparagraph{Case 2}%
@ -945,40 +940,65 @@
By definition, $$\sigma_k = (\sigma_{k-1} \Rightarrow P).$$ By definition, $$\sigma_k = (\sigma_{k-1} \Rightarrow P).$$
By \eqref{par:exercise-1.2.2b-i}, $\sigma_{k-1}$ is a tautology. By \eqref{par:exercise-1.2.2b-i}, $\sigma_{k-1}$ is a tautology.
The following truth table shows $\sigma_k$ is not: The following truth table shows $\sigma_k$ is not:
$$ $$\begin{array}{c|e|s}
\begin{array}{c|e|s}
(\sigma_{k-1} & \Rightarrow & P) \\ (\sigma_{k-1} & \Rightarrow & P) \\
\hline \hline
T & T & T \\ T & T & T \\
T & T & T \\ T & T & T \\
T & F & F \\ T & F & F \\
T & F & F T & F & F
\end{array} \end{array}$$
$$
\end{proof} \end{proof}
\subsection{\sorry{Exercise 1.2.3a}}% \subsection{\pending{Exercise 1.2.3a}}%
\hyperlabel{sub:exercise-1.2.3a} \hyperlabel{sub:exercise-1.2.3a}
Determine whether or not $((P \Rightarrow Q) \lor (Q \Rightarrow P))$ is a Determine whether or not $((P \Rightarrow Q) \lor (Q \Rightarrow P))$ is a
tautology. tautology.
\begin{proof} \begin{proof}
TODO Consider the following truth table:
$$\begin{array}{s|c|s|e|s|c|s}
((P & \Rightarrow & Q) & \lor & (Q & \Rightarrow & P)) \\
\hline
T & T & T & T & T & T & T \\
T & F & F & T & F & T & T \\
F & T & T & T & T & F & F \\
F & T & F & T & F & T & F
\end{array}$$
The above makes it immediately evident that
$((P \Rightarrow Q) \lor (Q \Rightarrow P))$ is a tautology.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 1.2.3b}}% \subsection{\pending{Exercise 1.2.3b}}%
\hyperlabel{sub:exercise-1.2.3b} \hyperlabel{sub:exercise-1.2.3b}
Determine whether or not $((P \land Q) \Rightarrow R)$ tautologically implies Determine whether or not $((P \land Q) \Rightarrow R)$ tautologically implies
$((P \Rightarrow R) \lor (Q \Rightarrow R))$. $((P \Rightarrow R) \lor (Q \Rightarrow R))$.
\begin{proof} \begin{proof}
TODO Consider the following truth table:
$$\begin{array}{s|s|s|e|e}
P & Q & R &
((P \land Q) \Rightarrow R) &
((P \Rightarrow R) \lor (Q \Rightarrow R)) \\
\hline
T & T & T & T & T \\
T & T & F & F & F \\
T & F & T & T & T \\
T & F & F & T & T \\
F & T & T & T & T \\
F & T & F & T & T \\
F & F & T & T & T \\
F & F & F & T & T
\end{array}$$
The above makes it immediately evident that
$((P \land Q) \Rightarrow R)$ tautologically implies
$((P \Rightarrow R) \lor (Q \Rightarrow R))$.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 1.2.4}}% \subsection{\pending{Exercise 1.2.4}}%
\hyperlabel{sub:exercise-1.2.4} \hyperlabel{sub:exercise-1.2.4}
Show that the following hold: Show that the following hold:
@ -992,10 +1012,98 @@
together with the one possibly new member $\alpha$.) together with the one possibly new member $\alpha$.)
\begin{proof} \begin{proof}
TODO
\paragraph{(a)}%
We prove each direction of the biconditional.
\subparagraph{($\Rightarrow$)}%
Assume $\Sigma; \alpha \vDash \beta$.
Let $v$ be a truth assignment for the sentence symbols in
$\Sigma; \alpha$ and $\beta$.
Then if $v$ satisfies every member of $\Sigma$ and $\alpha$, it must
also satisfy $\beta$.
Denote $\bar{v}(\Sigma)$ as the proposition that $v$ satisfies every
member of $\Sigma$ and consider the following truth table:
$$\begin{array}{s|s|s|e}
\bar{v}(\Sigma) & \bar{v}(\alpha) & \bar{v}(\beta) &
\bar{v}((\alpha \Rightarrow \beta)) \\
\hline
T & T & T & T \\
\rowcolor{TTInvalid}
T & T & F & F \\
T & F & T & T \\
T & F & F & T \\
F & T & T & T \\
F & T & F & F \\
F & F & T & T \\
F & F & F & T
\end{array}$$
The red row denotes a contradiction: it is not possible for
$\bar{v}(\Sigma)$ and $\bar{v}(\alpha)$ to be true but
$\bar{v}(\beta)$ to be false.
All remaining rows show that when $\bar{v}(\Sigma)$ is true, so is
$\bar{v}((\alpha \Rightarrow \beta))$.
Thus $\Sigma \vDash (\alpha \Rightarrow \beta)$.
\subparagraph{($\Leftarrow$)}%
Assume $\Sigma \vDash (\alpha \Rightarrow \beta)$.
Let $v$ be a \nameref{ref:truth-assignment} for the sentence symbols in
$\Sigma$, $\alpha$, and $\beta$.
Then if $v$ satisfies every member of $\Sigma$, it must also satisfy
$(\alpha \Rightarrow \beta)$.
Denote $\bar{v}(\Sigma)$ as the proposition that $v$ satisfies every
member of $\Sigma$.
By definition, $\bar{v}((\alpha \Rightarrow \beta)) = T$ if and only if
$\bar{v}(\alpha) = F$ or $\bar{v}(\alpha)$ and $\bar{v}(\beta)$ are
both true.
Thus the only situation in which both $\bar{v}(\Sigma) = T$ and
$\bar{v}(\alpha) = T$ corresponds to when $\bar{v}(\beta) = T$.
Hence $\Sigma; \alpha \vDash \beta$.
\paragraph{(b)}%
We prove each direction of the biconditional.
\subparagraph{($\Rightarrow$)}%
Suppose $\alpha \vDash \Dashv \beta$.
Let $v$ be a \nameref{ref:truth-assignment} for the sentence symbols in
$\alpha$ and $\beta$.
Consider the following truth table:
$$\begin{array}{s|e|s}
(\alpha & \Leftrightarrow & \beta) \\
\hline
T & T & T \\
\rowcolor{TTInvalid}
T & F & F \\
\rowcolor{TTInvalid}
F & F & T \\
F & T & F
\end{array}$$
The red rows indicate possibilites that cannot occur, for
$\alpha \vDash \beta$ and $\beta \vDash \alpha$ by hypothesis.
Of the remaining rows, $(\alpha \Leftrightarrow \beta)$ is true.
Hence $\vDash (\alpha \Leftrightarrow \beta)$.
\subparagraph{($\Leftarrow$)}%
Assume $\vDash (\alpha \Rightarrow \beta)$.
Let $v$ be a \nameref{ref:truth-assignment} for the sentence symbols in
$\alpha$ and $\beta$.
By definition, $\bar{v}((\alpha \Leftrightarrow \beta)) = T$ if and only
if $\bar{v}(\alpha) = \bar{v}(\beta)$.
Thus if $\bar{v}(\alpha)$ is true, so must $\bar{v}(\beta)$.
That is, $\alpha \vDash \beta$.
Likewise, if $\bar{v}(\beta)$ is true, so must $\bar{v}(\alpha)$.
Therefore $\beta \vDash \alpha$.
Hence $\alpha \vDash \Dashv \beta$.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 1.2.5}}% \subsection{\pending{Exercise 1.2.5}}%
\hyperlabel{sub:exercise-1.2.5} \hyperlabel{sub:exercise-1.2.5}
Prove or refute each of the following assertions: Prove or refute each of the following assertions:
@ -1007,10 +1115,62 @@
\end{enumerate} \end{enumerate}
\begin{proof} \begin{proof}
TODO
\paragraph{(a)}%
WLOG, suppose $\Sigma \vDash \alpha$.
That is, every truth assignment for sentence symbols found in $\Sigma$ and
$\alpha$ that satisfies every member of $\Sigma$ also satisfies
$\alpha$.
Let $v$ be one of these truth assignments.
Denote $\bar{v}(\Sigma)$ as the proposition that $v$ satisfies every
member of $\Sigma$ and consider the following truth table:
$$\begin{array}{s|s|s|e}
\bar{v}(\Sigma) & \bar{v}(\alpha) & \bar{v}(\beta) &
\bar{v}((\alpha \lor \beta)) \\
\hline
T & T & T & T \\
T & T & F & T \\
\rowcolor{TTInvalid}
T & F & T & T \\
\rowcolor{TTInvalid}
T & F & F & T \\
F & T & T & T \\
F & T & F & T \\
F & F & T & T \\
F & F & F & F
\end{array}$$
The red rows indicate possiblities that cannot occur since
$\Sigma \vDash \alpha$ by hypothesis.
All remaining rows show that when $\bar{v}(\Sigma)$ is true, so is
$\bar{v}((\alpha \lor \beta))$.
Hence $\Sigma \vDash (\alpha \lor \beta)$.
\paragraph{(b)}%
We proceed by counterexample.
Suppose $\Sigma = \emptyset$.
That is, assume $(\alpha \lor \beta)$ is a tautology, i.e.
$\vDash (\alpha \lor \beta)$.
Consider the following truth table:
$$\begin{array}{s|e|s}
(\alpha & \lor & \beta) \\
\hline
T & T & T \\
T & T & F \\
F & T & T \\
\rowcolor{TTInvalid}
F & F & F
\end{array}$$
The red row indicates an impossibility, since $(\alpha \lor \beta)$ should
always be true by hypothesis.
But this table also clearly demonstrates that $\not\vDash \alpha$ and
$\not\vDash \beta$.
Thus the conditional statement proposed must not be generally true.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 1.2.6a}}% \subsection{\pending{Exercise 1.2.6a}}%
\hyperlabel{sub:exercise-1.2.6a} \hyperlabel{sub:exercise-1.2.6a}
Show that if $v_1$ and $v_2$ are \nameref{ref:truth-assignment}s which agree Show that if $v_1$ and $v_2$ are \nameref{ref:truth-assignment}s which agree
@ -1019,7 +1179,104 @@
Use the \nameref{sub:induction-principle-1}. Use the \nameref{sub:induction-principle-1}.
\begin{proof} \begin{proof}
TODO
Let $\sigma$ map a \nameref{ref:well-formed-formula} $\phi$ to the set of
sentence symbols found in $\phi$.
Define
\begin{equation}
\hyperlabel{sub:exercise-1.2.6a-eq1}
S = \{\phi \mid ((\sigma(\phi) = \sigma(\alpha)) \Rightarrow
(\bar{v}_1(\phi) = \bar{v}_2(\phi)))\}.
\end{equation}
We prove that (i) the set of sentence symbols is found in $\phi$ and (ii)
$S$ is closed under the five \nameref{ref:formula-building-operations}.
Afterward we show that (iii) our theorem statement holds.
\paragraph{(i)}%
\hyperlabel{par:exercise-1.2.6a-i}
Let $A_n$ denote an arbitrary sentence symbol.
Suppose $\sigma(A_n) = \{A_n\} = \sigma(\alpha)$.
But then $\bar{v}_1(A_n) = \bar{v}_2(A_n)$ since, by hypothesis, $v_1$
and $v_2$ agree on all the sentence symbols found in $\alpha$.
Hence $S$ contains all the sentence symbols.
\paragraph{(ii)}%
\hyperlabel{par:exercise-1.2.6a-ii}
Let $\beta, \gamma \in S$.
There are three cases to consider:
\subparagraph{Case 1}%
\hyperlabel{spar:exercise-1.2.6a-ii-1}
Suppose $\sigma(\beta) \neq \sigma(\alpha)$.
By definition, $\mathcal{E}_{\neg}(\beta) = (\neg\beta)$.
Then clearly $\sigma(\mathcal{E}_{\neg}(\beta)) \neq \sigma(\alpha)$.
Therefore $\mathcal{E}_{\neg}(\beta) \in S$.
Likewise,
$\mathcal{E}_{\square}(\beta, \gamma) =
(\beta \mathop{\square} \gamma)$
where $\square$ is one of the binary connectives $\land$, $\lor$,
$\Rightarrow$, $\Leftrightarrow$.
Again, it clearly follows that
$\mathcal{E}_{\square}(\beta, \gamma) \neq \sigma(\alpha)$.
Thus $\mathcal{E}_{\square}(\beta, \gamma) \in S$.
\subparagraph{Case 2}%
Suppose $\sigma(\gamma) \neq \sigma(\alpha)$.
This case mirrors \nameref{spar:exercise-1.2.6a-ii-1}.
\subparagraph{Case 3}%
Suppose $\sigma(\beta) = \sigma(\alpha) = \sigma(\alpha)$.
By definition, $\mathcal{E}_{\neg}(\beta) = (\neg\beta)$.
Then clearly $\sigma(\mathcal{E}_{\neg}(\beta)) = \sigma(\alpha)$.
Since
\begin{align*}
\bar{v}_1((\neg\beta))
& = (\neg\bar{v}_1(\beta)) \\
& = (\neg\bar{v}_2(\beta)) & \eqref{sub:exercise-1.2.6a-eq1} \\
& = \bar{v}_2((\neg\beta)),
\end{align*}
it follows that $\mathcal{E}_{\neg}(\beta) \in S$.
Likewise,
$\mathcal{E}_{\square}(\beta, \gamma) =
(\beta \mathop{\square} \gamma)$
where $\square$ is one of the binary connectives $\land$, $\lor$,
$\Rightarrow$, $\Leftrightarrow$.
Again, it clearly follows that
$\mathcal{E}_{\square}(\beta, \gamma) \neq \sigma(\alpha)$.
Since
\begin{align*}
\bar{v}_1((\alpha \mathop{\square} \beta))
& = (\bar{v}_1(\alpha) \mathop{\square} \bar{v}_1(\beta)) \\
& = (\bar{v}_2(\alpha) \mathop{\square} \bar{v}_2(\beta)
& \eqref{sub:exercise-1.2.6a-eq1} \\
& = \bar{v}_2((\alpha \mathop{\square} \beta)),
\end{align*}
it follows that $\mathcal{E}_{\square}(\beta, \gamma) \in S$.
\subparagraph{Subconclusion}%
The above three cases are exhaustive.
Thus it follows $S$ is closed under the five formula-buildiong
operations.
\paragraph{(iii)}%
By \nameref{par:exercise-1.2.6a-i} and \nameref{par:exercise-1.2.6a-ii},
the \nameref{sub:induction-principle-1} indicates $S$ is the set of all
wffs.
Since $\alpha$ is a well-formed formula, it follows $\alpha \in S$.
Therefore
$$((\sigma(\alpha) = \sigma(\alpha)) \Rightarrow
\bar{v}_1(\alpha) = \bar{v}_2(\alpha)).$$
The antecedent clearly holds true.
Hence $\bar{v}_1(\alpha) = \bar{v}_2(\alpha)$ as expected.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 1.2.6b}}% \subsection{\sorry{Exercise 1.2.6b}}%
@ -1030,7 +1287,7 @@
Show that $\Sigma \vDash \tau$ iff every truth assignment for $\mathcal{S}$ Show that $\Sigma \vDash \tau$ iff every truth assignment for $\mathcal{S}$
which satisfies every member of $\Sigma$ also satisfies $\tau$. which satisfies every member of $\Sigma$ also satisfies $\tau$.
(This is an easy consequence of part (a). The point of part (b) is that we do (This is an easy consequence of part (a). The point of part (b) is that we do
not need to worry aboutgetting the domain of a truth assignment not need to worry about getting the domain of a truth assignment
\textit{exactly} perfect, as long as it is big enough. For example, one \textit{exactly} perfect, as long as it is big enough. For example, one
option would be always to use truth assignments on the set of \textit{all} option would be always to use truth assignments on the set of \textit{all}
sentence symbols. The drawback is that these are infinite objects, and there sentence symbols. The drawback is that these are infinite objects, and there

View File

@ -327,7 +327,7 @@ length of `α` (i.e., the number of symbols in the string) is odd.
*Suggestion*: Apply induction to show that the length is of the form `4k + 1`. *Suggestion*: Apply induction to show that the length is of the form `4k + 1`.
-/ -/
theorem exercise_1_1_5_a (α : Wff) (hα : ¬α.hasNotSymbol) theorem exercise_1_1_5a (α : Wff) (hα : ¬α.hasNotSymbol)
: Odd α.length := by : Odd α.length := by
suffices ∃ k : , α.length = 4 * k + 1 by suffices ∃ k : , α.length = 4 * k + 1 by
have ⟨k, hk⟩ := this have ⟨k, hk⟩ := this
@ -363,7 +363,7 @@ than a quarter of the symbols are sentence symbols.
*Suggestion*: Apply induction to show that the number of sentence symbols is *Suggestion*: Apply induction to show that the number of sentence symbols is
`k + 1`. `k + 1`.
-/ -/
theorem exercise_1_1_5_b (α : Wff) (hα : ¬α.hasNotSymbol) theorem exercise_1_1_5b (α : Wff) (hα : ¬α.hasNotSymbol)
: α.sentenceSymbolCount > (Nat.cast α.length : ) / 4 := by : α.sentenceSymbolCount > (Nat.cast α.length : ) / 4 := by
rw [ rw [
α.length_eq_sum_symbol_count, α.length_eq_sum_symbol_count,

View File

@ -8603,14 +8603,83 @@
\section{Exercises 6}% \section{Exercises 6}%
\hyperlabel{sec:exercises-6} \hyperlabel{sec:exercises-6}
\subsection{\sorry{Exercise 6.1}}% \subsection{\unverified{Exercise 6.1}}%
\hyperlabel{sub:exercise-6-1} \hyperlabel{sub:exercise-6-1}
Show that the equation $$f(m, n) = 2^m(2n + 1) - 1$$ defines a one-one-one Show that the equation $$f(m, n) = 2^m(2n + 1) - 1$$ defines a one-one-one
correspondence between $\omega \times \omega$ and $\omega$. correspondence between $\omega \times \omega$ and $\omega$.
\begin{proof} \begin{proof}
TODO
We prove that (i) $f$ is one-to-one and (ii) $f$ is onto $\omega$.
\paragraph{(i)}%
Let $y \in \ran{f}$.
Then there exists $(m_1, n_1) \in \omega \times \omega$ such that
$f(m_1, n_1) = y$.
Suppose there exists $(m_2, n_2) \in \omega \times \omega$ such that
$f(m_2, n_2) = y$.
We show that $m_1 = m_2$ and $n_1 = n_2$.
By \nameref{sub:trichotomy-law-natural-numbers}, we know either
$m_1 \leq m_2$ or $m_2 \leq m_1$ and either $n_1 \leq n_2$ or
$n_2 \leq n_1$.
WLOG, assume $m_1 \leq m_2$ and $n_1 \leq n_2$.
Then by \nameref{sub:exercise-4.23}, there exists some $p \in \omega$ such
that $m_1 + p = m_2$.
Likewise, there exists some $q \in \omega$ such that $n_1 + q = n_2$.
Therefore
\begin{align*}
& f(m_1, n_1) = f(m_2, n_2) \\
& \iff 2^{m_1}(2n_1 + 1) - 1 = 2^{m_2}(2n_2 + 1) - 1 \\
& \iff 2^{m_1}(2n_1 + 1) = 2^{m_2}(2n_2 + 1) \\
& \iff 2^{m_1}(2n_1 + 1) = 2^{m_1+p}(2(n_1 + q) + 1) \\
& \iff 2^{m_1}(2n_1 + 1) = 2^{m_1}2^p(2n_1 + 2q + 1) \\
& \iff 2n_1 + 1 = 2^p(2n_1 + 2q + 1) \\
& \iff 2n_1 + 1 = 2^{p+1}n_1 + 2^{p+1}q + 2^p.
\end{align*}
Notice though that the right-hand side of the above equality is smallest
when $p = 0$ and $q = 0$.
Since when evaluated at $p = 0$ and $q = 0$, the equality holds, it
follows this value of $p$ and $q$ are the only possible values that
$p$ and $q$ can take on.
Thus $m_1 + p = m_1 = m_2$ and $n_1 + q = n_1 = n_2$.
\paragraph{(ii)}%
We show $\ran{f} = \omega$ by the
\nameref{sub:strong-induction-principle-natural-numbers}.
It is clear that $\ran{f}$ is a subset of $\omega$.
Let $x \in \omega$ and suppose every number less than $x$ is in $\ran{f}$.
All that remains to be shown is that $x \in \ran{f}$.
By \nameref{sub:exercise-4.14}, there are two cases to consider:
\subparagraph{Case 1}%
Suppose $x$ is an even number.
Then $x = 2 \cdot y$ for some $y \in \omega$.
Then $f(0, y) = 2^0(2y + 1) - 1 = 2y = x$.
Hence $x \in \ran{f}$.
\subparagraph{Case 2}%
Suppose $x$ is an odd number.
Then $x = (2 \cdot y) + 1$ for some $y$.
It immediately follows $x - 1$ is an even number, meaning there exists
some $z$ such that $x - 1 = 2z$.
Since $z \in x$, the induction hypothesis states that there exists
some $m, n \in \omega$ such that $$f(m, n) = z = 2^m(2n + 1) - 1.$$
Therefore
\begin{align*}
f(m + 1, n)
& = 2^{m+1}(2n + 1) - 1 \\
& = (2)(2^m)(2n + 1) - 1 \\
& = 2z + 1 \\
& = x.
\end{align*}
Hence $x \in \ran{f}$.
\end{proof} \end{proof}
\subsection{\unverified{Exercise 6.2}}% \subsection{\unverified{Exercise 6.2}}%
@ -8652,7 +8721,7 @@
Hence $J$ is correctly defined. Hence $J$ is correctly defined.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.3}}% \subsection{\unverified{Exercise 6.3}}%
\hyperlabel{sub:exercise-6-3} \hyperlabel{sub:exercise-6-3}
Find a one-to-one correspondence between the open unit interval $\ioo{0}{1}$ Find a one-to-one correspondence between the open unit interval $\ioo{0}{1}$
@ -8660,7 +8729,150 @@
irrationals. irrationals.
\begin{proof} \begin{proof}
TODO
\begin{figure}[ht]
\label{sub:exercise-6-3-fig1}
\includegraphics[width=0.6\textwidth]{exercise-6.3.png}
\centering
\end{figure}
Consider function $f \colon (0, 1) \rightarrow \mathbb{R}$ given by
$$f(x) = \begin{cases}
\frac{1}{2x} - 1 & \text{if } x \leq \frac{1}{2} \\
\frac{1}{2(x - 1)} + 1 & \text{otherwise}.
\end{cases}$$
We prove that (i) $f$ is a one-to-one into $\mathbb{R}$, (ii) $f$ is onto
$\mathbb{R}$, and (iii) $f$ takes rationals to rationals and irrationals
to irrationals.
\paragraph{(i)}%
Before proceeding, consider the solutions to the following identity:
\begin{align*}
\frac{1}{2x} - 1 = \frac{1}{2(x - 1)} + 1
& \iff -8x^2 + 8x - 2 = 0 \\
& \iff 4x^2 - 4x + 1 = 0.
\end{align*}
Applying the quadratic equation shows $x = 1 / 2$ is the only solution.
Thus for any $x_1, x_2 \in \ioo{0}{1}$ such that $f(x_1) = f(x_2)$, it
must be that $x_1, x_2 \leq 1 / 2$ or $x_1, x_2 > 1 / 2$.
We now prove $f$ is one-to-one.
Let $y \in \ran{f}$.
Then there exists some $x_1 \in \ioo{0}{1}$ such that $f(x_1) = y$.
Suppose there exists some $x_2 \in \ioo{0}{1}$ such that $f(x_1) = f(x_2)$.
We prove that $x_1 = x_2$ by case analysis:
\subparagraph{Case 1}%
Suppose $x_1, x_2 \leq 1 / 2$.
Then $$\frac{1}{2x_1} - 1 = \frac{1}{2x_2} - 1$$ which straightforwardly
simplifies to $x_1 = x_2$.
\subparagraph{Case 2}%
Suppose $x_1, x_2 > 1 / 2$.
Then $$\frac{1}{2(x_1 - 1)} + 1 = \frac{1}{2(x_2 - 1)} + 1$$ also
straightfowardly simplies to $x_1 = x_2$.
\subparagraph{Subconclusion}%
The above cases are exhaustive.
Therefore $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
Hence $f$ is one-to-one.
\paragraph{(ii)}%
Let $y \in \mathbb{R}$.
We prove that there exists an $x \in (0, 1)$ such that $f(x) = y$.
There are three cases we consider:
\subparagraph{Case 1}%
Suppose $y = 0$.
Then $f(1 / 2) = 0 = y$ is a readily identifiable solution.
\subparagraph{Case 2}%
Suppose $y > 0$.
Consider $x = \frac{1}{2(y + 1)}$.
We note that $x < 1 / 2$ meaning
\begin{align*}
f(x)
& = f\left(\frac{1}{2(y + 1)}\right) \\
& = \frac{1}{2(\frac{1}{2(y + 1)})} - 1 \\
& = (y + 1) - 1 \\
& = y.
\end{align*}
\subparagraph{Case 3}%
Suppose $y < 0$.
Consider $x = \frac{1}{2(y - 1)} + 1$.
We note that $x > 1 / 2$ meaning
\begin{align*}
f(x)
& = f\left(\frac{1}{2(y - 1)} + 1\right) \\
& = \frac{1}{2((\frac{1}{2(y - 1)} + 1) - 1)} + 1 \\
& = (y - 1) + 1 \\
& = y.
\end{align*}
\subparagraph{Subconclusion}%
The above three cases are exhaustive.
Thus $\ran{f} = \mathbb{R}$, i.e. $f$ is onto $\mathbb{R}$.
\paragraph{(iii)}%
Let $x \in (0, 1)$.
There are two cases to consider:
\subparagraph{Case 1}%
Suppose $x$ is a rational number.
Then there exist integers $m$ and $n$ such that $x = m / n$.
If $x \leq 1 / 2$, then
\begin{align*}
f(x)
& = f(m / n) \\
& = \frac{1}{2\left(\frac{m}{n}\right)} - 1 \\
& = \frac{n}{2m} - 1 \\
& = \frac{n - 2m}{2m}.
\end{align*}
Since $n - 2m$ and $2m$ are integers, $f(x)$ is a rational number.
If instead $x > 1 / 2$, then
\begin{align*}
f(x)
& = f(m / n) \\
& = \frac{1}{2\left(\frac{m}{n} - 1\right)} + 1 \\
& = \frac{n}{2(m - n)} + 1 \\
& = \frac{n + 2(m - n)}{2(m - n)}.
\end{align*}
Since $n + 2(m - n)$ and $2(m - n)$ are integers, $f(x)$ is again a
rational number.
Thus $f$ maps every rational number to a rational number.
\subparagraph{Case 2}%
Suppose $x$ is an irrational number.
First, consider the case where $x \leq 1 / 2$ and, for the sake of
contradiction, suppose $f(x)$ was a rational number.
Then there exist integers $m$ and $n$ such that
$$f(x) = \frac{1}{2x} - 1 = \frac{m}{n}.$$
But this would imply $$x = \frac{n}{2(m + n)},$$ a contradiction.
Thus $f(x)$ must be irrational.
Likewise, consider the case where $x > 1 / 2$.
Again, for the sake of contradiction, suppose $f(x)$ was a rational
number.
Then there exist integers $m$ and $n$ such that
$$f(x) = \frac{1}{2(x - 1)} + 1 = \frac{m}{n}.$$
But this would imply $$x = \frac{n}{2(m - n)} + 1,$$ a contradiction.
Thus $f(x)$ must be irrational.
Hence $f$ maps every irrational number to an irrational number.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.4}}% \subsection{\sorry{Exercise 6.4}}%

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@ -36,7 +36,7 @@
\newcommand\suitdivider{$$\spadesuit\;\spadesuit\;\spadesuit$$} \newcommand\suitdivider{$$\spadesuit\;\spadesuit\;\spadesuit$$}
% ======================================== % ========================================
% Linking % Links
% ======================================== % ========================================
\hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue} \hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue}