diff --git a/Bookshelf/Enderton/Logic.tex b/Bookshelf/Enderton/Logic.tex index 8f1862c..af50981 100644 --- a/Bookshelf/Enderton/Logic.tex +++ b/Bookshelf/Enderton/Logic.tex @@ -8,6 +8,7 @@ % Truth table start and final color \definecolor{TTStart}{gray}{0.95} \definecolor{TTEnd}{rgb}{1,1,0} +\colorlet{TTInvalid}{Salmon} \newcolumntype{s}{>{\columncolor{TTStart}}c} \newcolumntype{e}{>{\columncolor{TTEnd}}c} @@ -711,7 +712,7 @@ Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$. \subsubsection{\verified{Exercise 1.1.5a}}% -\hyperlabel{ssub:exercise-1.1.5.a} +\hyperlabel{ssub:exercise-1.1.5a} Show that the length of $\alpha$ (i.e., the number of symbols in the string) is odd. @@ -719,14 +720,14 @@ $4k + 1$. \code*{Enderton.Logic.Chapter\_1} - {Enderton.Logic.Chapter\_1.exercise\_1\_1\_5\_a} + {Enderton.Logic.Chapter\_1.exercise\_1\_1\_5a} \begin{proof} Define $L$ to be the length function mapping arbitrary \nameref{ref:well-formed-formula} to its length and let \begin{equation} - \hyperlabel{ssub:exercise-1.1.5.a-eq1} + \hyperlabel{ssub:exercise-1.1.5a-eq1} S = \{\phi \mid \phi \text{ is a wff containing } \neg \text{ or } \exists k \in \mathbb{N}, L(\phi) = 4k + 1\}. @@ -736,14 +737,14 @@ We then conclude with (iii) the proof of the theorem statement. \paragraph{(i)}% - \hyperlabel{par:exercise-1.1.5.a-i} + \hyperlabel{par:exercise-1.1.5a-i} Every sentence symbol has length 1 by definition. That is, every sentence symbol has length $(4)(0) + 1$. Hence $S$ contains every sentence symbol. \paragraph{(ii)}% - \hyperlabel{par:exercise-1.1.5.a-ii} + \hyperlabel{par:exercise-1.1.5a-ii} Let $\alpha, \beta \in S$. Then there exists some $k_\alpha$ and $k_\beta$ such that @@ -769,7 +770,7 @@ \paragraph{(iii)}% - By \nameref{par:exercise-1.1.5.a-i} and \nameref{par:exercise-1.1.5.a-ii}, + By \nameref{par:exercise-1.1.5a-i} and \nameref{par:exercise-1.1.5a-ii}, the \nameref{sub:induction-principle-1} indicates $S$ is the set of all wffs. Thus all well-formed formulas not containing symbol $\neg$ has length @@ -779,14 +780,14 @@ \end{proof} \subsubsection{\verified{Exercise 1.1.5b}}% -\hyperlabel{ssub:exercise-1.1.5-b} +\hyperlabel{ssub:exercise-1.1.5b} Show that more than a quarter of the symbols are sentence symbols. \textit{Suggestion}: Apply induction to show that the number of sentence symbols is of the form $k + 1$. \code*{Enderton.Logic.Chapter\_1} - {Enderton.Logic.Chapter\_1.exercise\_1\_1\_5\_b} + {Enderton.Logic.Chapter\_1.exercise\_1\_1\_5b} \begin{proof} @@ -847,16 +848,14 @@ \begin{proof} Yes. To prove, consider the following truth table: - $$ - \begin{array}{s|c|s|c|s|e|s} + $$\begin{array}{s|c|s|c|s|e|s} (((P & \Rightarrow & Q) & \Rightarrow & P) & \Rightarrow & P) \\ \hline T & T & T & T & T & T & T \\ T & F & F & T & T & T & T \\ F & T & T & F & F & T & F \\ F & T & F & F & F & T & F - \end{array} - $$ + \end{array}$$ \end{proof} \subsection{\pending{Exercise 1.2.2b}}% @@ -894,16 +893,14 @@ By definition, $$\sigma_{k + 2} = ((\sigma_{k} \Rightarrow P) \Rightarrow P).$$ Consider the truth table of the above: - $$ - \begin{array}{c|c|s|e|s} + $$\begin{array}{c|c|s|e|s} ((\sigma_k & \Rightarrow & P) & \Rightarrow & P) \\ \hline T & T & T & T & T \\ T & T & T & T & T \\ T & F & F & T & F \\ T & F & F & T & F - \end{array} - $$ + \end{array}$$ This shows $\sigma_{k+2}$ is a tautology. Hence $P(k + 2)$ is true. @@ -927,16 +924,14 @@ Suppose $k = 1$. Then $\sigma_k = \sigma_1 = ((P \Rightarrow Q) \Rightarrow P)$. The following truth table shows $\sigma_1$ is not a tautology: - $$ - \begin{array}{s|c|s|e|s} + $$\begin{array}{s|c|s|e|s} (((P & \Rightarrow & Q) & \Rightarrow & P) \\ \hline T & T & T & T & T \\ T & F & F & T & T \\ F & T & T & F & F \\ F & T & F & F & F - \end{array} - $$ + \end{array}$$ \subparagraph{Case 2}% @@ -945,40 +940,65 @@ By definition, $$\sigma_k = (\sigma_{k-1} \Rightarrow P).$$ By \eqref{par:exercise-1.2.2b-i}, $\sigma_{k-1}$ is a tautology. The following truth table shows $\sigma_k$ is not: - $$ - \begin{array}{c|e|s} + $$\begin{array}{c|e|s} (\sigma_{k-1} & \Rightarrow & P) \\ \hline T & T & T \\ T & T & T \\ T & F & F \\ T & F & F - \end{array} - $$ + \end{array}$$ \end{proof} -\subsection{\sorry{Exercise 1.2.3a}}% +\subsection{\pending{Exercise 1.2.3a}}% \hyperlabel{sub:exercise-1.2.3a} Determine whether or not $((P \Rightarrow Q) \lor (Q \Rightarrow P))$ is a tautology. \begin{proof} - TODO + Consider the following truth table: + $$\begin{array}{s|c|s|e|s|c|s} + ((P & \Rightarrow & Q) & \lor & (Q & \Rightarrow & P)) \\ + \hline + T & T & T & T & T & T & T \\ + T & F & F & T & F & T & T \\ + F & T & T & T & T & F & F \\ + F & T & F & T & F & T & F + \end{array}$$ + The above makes it immediately evident that + $((P \Rightarrow Q) \lor (Q \Rightarrow P))$ is a tautology. \end{proof} -\subsection{\sorry{Exercise 1.2.3b}}% +\subsection{\pending{Exercise 1.2.3b}}% \hyperlabel{sub:exercise-1.2.3b} Determine whether or not $((P \land Q) \Rightarrow R)$ tautologically implies $((P \Rightarrow R) \lor (Q \Rightarrow R))$. \begin{proof} - TODO + Consider the following truth table: + $$\begin{array}{s|s|s|e|e} + P & Q & R & + ((P \land Q) \Rightarrow R) & + ((P \Rightarrow R) \lor (Q \Rightarrow R)) \\ + \hline + T & T & T & T & T \\ + T & T & F & F & F \\ + T & F & T & T & T \\ + T & F & F & T & T \\ + F & T & T & T & T \\ + F & T & F & T & T \\ + F & F & T & T & T \\ + F & F & F & T & T + \end{array}$$ + The above makes it immediately evident that + $((P \land Q) \Rightarrow R)$ tautologically implies + $((P \Rightarrow R) \lor (Q \Rightarrow R))$. \end{proof} -\subsection{\sorry{Exercise 1.2.4}}% +\subsection{\pending{Exercise 1.2.4}}% \hyperlabel{sub:exercise-1.2.4} Show that the following hold: @@ -992,10 +1012,98 @@ together with the one possibly new member $\alpha$.) \begin{proof} - TODO + + \paragraph{(a)}% + + We prove each direction of the biconditional. + + \subparagraph{($\Rightarrow$)}% + + Assume $\Sigma; \alpha \vDash \beta$. + Let $v$ be a truth assignment for the sentence symbols in + $\Sigma; \alpha$ and $\beta$. + Then if $v$ satisfies every member of $\Sigma$ and $\alpha$, it must + also satisfy $\beta$. + Denote $\bar{v}(\Sigma)$ as the proposition that $v$ satisfies every + member of $\Sigma$ and consider the following truth table: + $$\begin{array}{s|s|s|e} + \bar{v}(\Sigma) & \bar{v}(\alpha) & \bar{v}(\beta) & + \bar{v}((\alpha \Rightarrow \beta)) \\ + \hline + T & T & T & T \\ + \rowcolor{TTInvalid} + T & T & F & F \\ + T & F & T & T \\ + T & F & F & T \\ + F & T & T & T \\ + F & T & F & F \\ + F & F & T & T \\ + F & F & F & T + \end{array}$$ + The red row denotes a contradiction: it is not possible for + $\bar{v}(\Sigma)$ and $\bar{v}(\alpha)$ to be true but + $\bar{v}(\beta)$ to be false. + All remaining rows show that when $\bar{v}(\Sigma)$ is true, so is + $\bar{v}((\alpha \Rightarrow \beta))$. + Thus $\Sigma \vDash (\alpha \Rightarrow \beta)$. + + \subparagraph{($\Leftarrow$)}% + + Assume $\Sigma \vDash (\alpha \Rightarrow \beta)$. + Let $v$ be a \nameref{ref:truth-assignment} for the sentence symbols in + $\Sigma$, $\alpha$, and $\beta$. + Then if $v$ satisfies every member of $\Sigma$, it must also satisfy + $(\alpha \Rightarrow \beta)$. + Denote $\bar{v}(\Sigma)$ as the proposition that $v$ satisfies every + member of $\Sigma$. + By definition, $\bar{v}((\alpha \Rightarrow \beta)) = T$ if and only if + $\bar{v}(\alpha) = F$ or $\bar{v}(\alpha)$ and $\bar{v}(\beta)$ are + both true. + Thus the only situation in which both $\bar{v}(\Sigma) = T$ and + $\bar{v}(\alpha) = T$ corresponds to when $\bar{v}(\beta) = T$. + Hence $\Sigma; \alpha \vDash \beta$. + + \paragraph{(b)}% + + We prove each direction of the biconditional. + + \subparagraph{($\Rightarrow$)}% + + Suppose $\alpha \vDash \Dashv \beta$. + Let $v$ be a \nameref{ref:truth-assignment} for the sentence symbols in + $\alpha$ and $\beta$. + Consider the following truth table: + $$\begin{array}{s|e|s} + (\alpha & \Leftrightarrow & \beta) \\ + \hline + T & T & T \\ + \rowcolor{TTInvalid} + T & F & F \\ + \rowcolor{TTInvalid} + F & F & T \\ + F & T & F + \end{array}$$ + The red rows indicate possibilites that cannot occur, for + $\alpha \vDash \beta$ and $\beta \vDash \alpha$ by hypothesis. + Of the remaining rows, $(\alpha \Leftrightarrow \beta)$ is true. + Hence $\vDash (\alpha \Leftrightarrow \beta)$. + + \subparagraph{($\Leftarrow$)}% + + Assume $\vDash (\alpha \Rightarrow \beta)$. + Let $v$ be a \nameref{ref:truth-assignment} for the sentence symbols in + $\alpha$ and $\beta$. + By definition, $\bar{v}((\alpha \Leftrightarrow \beta)) = T$ if and only + if $\bar{v}(\alpha) = \bar{v}(\beta)$. + Thus if $\bar{v}(\alpha)$ is true, so must $\bar{v}(\beta)$. + That is, $\alpha \vDash \beta$. + Likewise, if $\bar{v}(\beta)$ is true, so must $\bar{v}(\alpha)$. + Therefore $\beta \vDash \alpha$. + Hence $\alpha \vDash \Dashv \beta$. + \end{proof} -\subsection{\sorry{Exercise 1.2.5}}% +\subsection{\pending{Exercise 1.2.5}}% \hyperlabel{sub:exercise-1.2.5} Prove or refute each of the following assertions: @@ -1007,10 +1115,62 @@ \end{enumerate} \begin{proof} - TODO + + \paragraph{(a)}% + + WLOG, suppose $\Sigma \vDash \alpha$. + That is, every truth assignment for sentence symbols found in $\Sigma$ and + $\alpha$ that satisfies every member of $\Sigma$ also satisfies + $\alpha$. + Let $v$ be one of these truth assignments. + Denote $\bar{v}(\Sigma)$ as the proposition that $v$ satisfies every + member of $\Sigma$ and consider the following truth table: + $$\begin{array}{s|s|s|e} + \bar{v}(\Sigma) & \bar{v}(\alpha) & \bar{v}(\beta) & + \bar{v}((\alpha \lor \beta)) \\ + \hline + T & T & T & T \\ + T & T & F & T \\ + \rowcolor{TTInvalid} + T & F & T & T \\ + \rowcolor{TTInvalid} + T & F & F & T \\ + F & T & T & T \\ + F & T & F & T \\ + F & F & T & T \\ + F & F & F & F + \end{array}$$ + The red rows indicate possiblities that cannot occur since + $\Sigma \vDash \alpha$ by hypothesis. + All remaining rows show that when $\bar{v}(\Sigma)$ is true, so is + $\bar{v}((\alpha \lor \beta))$. + Hence $\Sigma \vDash (\alpha \lor \beta)$. + + \paragraph{(b)}% + + We proceed by counterexample. + Suppose $\Sigma = \emptyset$. + That is, assume $(\alpha \lor \beta)$ is a tautology, i.e. + $\vDash (\alpha \lor \beta)$. + Consider the following truth table: + $$\begin{array}{s|e|s} + (\alpha & \lor & \beta) \\ + \hline + T & T & T \\ + T & T & F \\ + F & T & T \\ + \rowcolor{TTInvalid} + F & F & F + \end{array}$$ + The red row indicates an impossibility, since $(\alpha \lor \beta)$ should + always be true by hypothesis. + But this table also clearly demonstrates that $\not\vDash \alpha$ and + $\not\vDash \beta$. + Thus the conditional statement proposed must not be generally true. + \end{proof} -\subsection{\sorry{Exercise 1.2.6a}}% +\subsection{\pending{Exercise 1.2.6a}}% \hyperlabel{sub:exercise-1.2.6a} Show that if $v_1$ and $v_2$ are \nameref{ref:truth-assignment}s which agree @@ -1019,7 +1179,104 @@ Use the \nameref{sub:induction-principle-1}. \begin{proof} - TODO + + Let $\sigma$ map a \nameref{ref:well-formed-formula} $\phi$ to the set of + sentence symbols found in $\phi$. + Define + \begin{equation} + \hyperlabel{sub:exercise-1.2.6a-eq1} + S = \{\phi \mid ((\sigma(\phi) = \sigma(\alpha)) \Rightarrow + (\bar{v}_1(\phi) = \bar{v}_2(\phi)))\}. + \end{equation} + We prove that (i) the set of sentence symbols is found in $\phi$ and (ii) + $S$ is closed under the five \nameref{ref:formula-building-operations}. + Afterward we show that (iii) our theorem statement holds. + + \paragraph{(i)}% + \hyperlabel{par:exercise-1.2.6a-i} + + Let $A_n$ denote an arbitrary sentence symbol. + Suppose $\sigma(A_n) = \{A_n\} = \sigma(\alpha)$. + But then $\bar{v}_1(A_n) = \bar{v}_2(A_n)$ since, by hypothesis, $v_1$ + and $v_2$ agree on all the sentence symbols found in $\alpha$. + Hence $S$ contains all the sentence symbols. + + \paragraph{(ii)}% + \hyperlabel{par:exercise-1.2.6a-ii} + + Let $\beta, \gamma \in S$. + There are three cases to consider: + + \subparagraph{Case 1}% + \hyperlabel{spar:exercise-1.2.6a-ii-1} + + Suppose $\sigma(\beta) \neq \sigma(\alpha)$. + By definition, $\mathcal{E}_{\neg}(\beta) = (\neg\beta)$. + Then clearly $\sigma(\mathcal{E}_{\neg}(\beta)) \neq \sigma(\alpha)$. + Therefore $\mathcal{E}_{\neg}(\beta) \in S$. + Likewise, + $\mathcal{E}_{\square}(\beta, \gamma) = + (\beta \mathop{\square} \gamma)$ + where $\square$ is one of the binary connectives $\land$, $\lor$, + $\Rightarrow$, $\Leftrightarrow$. + Again, it clearly follows that + $\mathcal{E}_{\square}(\beta, \gamma) \neq \sigma(\alpha)$. + Thus $\mathcal{E}_{\square}(\beta, \gamma) \in S$. + + \subparagraph{Case 2}% + + Suppose $\sigma(\gamma) \neq \sigma(\alpha)$. + This case mirrors \nameref{spar:exercise-1.2.6a-ii-1}. + + \subparagraph{Case 3}% + + Suppose $\sigma(\beta) = \sigma(\alpha) = \sigma(\alpha)$. + By definition, $\mathcal{E}_{\neg}(\beta) = (\neg\beta)$. + Then clearly $\sigma(\mathcal{E}_{\neg}(\beta)) = \sigma(\alpha)$. + Since + \begin{align*} + \bar{v}_1((\neg\beta)) + & = (\neg\bar{v}_1(\beta)) \\ + & = (\neg\bar{v}_2(\beta)) & \eqref{sub:exercise-1.2.6a-eq1} \\ + & = \bar{v}_2((\neg\beta)), + \end{align*} + it follows that $\mathcal{E}_{\neg}(\beta) \in S$. + + Likewise, + $\mathcal{E}_{\square}(\beta, \gamma) = + (\beta \mathop{\square} \gamma)$ + where $\square$ is one of the binary connectives $\land$, $\lor$, + $\Rightarrow$, $\Leftrightarrow$. + Again, it clearly follows that + $\mathcal{E}_{\square}(\beta, \gamma) \neq \sigma(\alpha)$. + Since + \begin{align*} + \bar{v}_1((\alpha \mathop{\square} \beta)) + & = (\bar{v}_1(\alpha) \mathop{\square} \bar{v}_1(\beta)) \\ + & = (\bar{v}_2(\alpha) \mathop{\square} \bar{v}_2(\beta) + & \eqref{sub:exercise-1.2.6a-eq1} \\ + & = \bar{v}_2((\alpha \mathop{\square} \beta)), + \end{align*} + it follows that $\mathcal{E}_{\square}(\beta, \gamma) \in S$. + + \subparagraph{Subconclusion}% + + The above three cases are exhaustive. + Thus it follows $S$ is closed under the five formula-buildiong + operations. + + \paragraph{(iii)}% + + By \nameref{par:exercise-1.2.6a-i} and \nameref{par:exercise-1.2.6a-ii}, + the \nameref{sub:induction-principle-1} indicates $S$ is the set of all + wffs. + Since $\alpha$ is a well-formed formula, it follows $\alpha \in S$. + Therefore + $$((\sigma(\alpha) = \sigma(\alpha)) \Rightarrow + \bar{v}_1(\alpha) = \bar{v}_2(\alpha)).$$ + The antecedent clearly holds true. + Hence $\bar{v}_1(\alpha) = \bar{v}_2(\alpha)$ as expected. + \end{proof} \subsection{\sorry{Exercise 1.2.6b}}% @@ -1030,7 +1287,7 @@ Show that $\Sigma \vDash \tau$ iff every truth assignment for $\mathcal{S}$ which satisfies every member of $\Sigma$ also satisfies $\tau$. (This is an easy consequence of part (a). The point of part (b) is that we do - not need to worry aboutgetting the domain of a truth assignment + not need to worry about getting the domain of a truth assignment \textit{exactly} perfect, as long as it is big enough. For example, one option would be always to use truth assignments on the set of \textit{all} sentence symbols. The drawback is that these are infinite objects, and there diff --git a/Bookshelf/Enderton/Logic/Chapter_1.lean b/Bookshelf/Enderton/Logic/Chapter_1.lean index 92e87ed..1fe0010 100644 --- a/Bookshelf/Enderton/Logic/Chapter_1.lean +++ b/Bookshelf/Enderton/Logic/Chapter_1.lean @@ -327,7 +327,7 @@ length of `α` (i.e., the number of symbols in the string) is odd. *Suggestion*: Apply induction to show that the length is of the form `4k + 1`. -/ -theorem exercise_1_1_5_a (α : Wff) (hα : ¬α.hasNotSymbol) +theorem exercise_1_1_5a (α : Wff) (hα : ¬α.hasNotSymbol) : Odd α.length := by suffices ∃ k : ℕ, α.length = 4 * k + 1 by have ⟨k, hk⟩ := this @@ -363,7 +363,7 @@ than a quarter of the symbols are sentence symbols. *Suggestion*: Apply induction to show that the number of sentence symbols is `k + 1`. -/ -theorem exercise_1_1_5_b (α : Wff) (hα : ¬α.hasNotSymbol) +theorem exercise_1_1_5b (α : Wff) (hα : ¬α.hasNotSymbol) : α.sentenceSymbolCount > (Nat.cast α.length : ℝ) / 4 := by rw [ α.length_eq_sum_symbol_count, diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index c279881..f327f97 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -8603,14 +8603,83 @@ \section{Exercises 6}% \hyperlabel{sec:exercises-6} -\subsection{\sorry{Exercise 6.1}}% +\subsection{\unverified{Exercise 6.1}}% \hyperlabel{sub:exercise-6-1} Show that the equation $$f(m, n) = 2^m(2n + 1) - 1$$ defines a one-one-one correspondence between $\omega \times \omega$ and $\omega$. \begin{proof} - TODO + + We prove that (i) $f$ is one-to-one and (ii) $f$ is onto $\omega$. + + \paragraph{(i)}% + + Let $y \in \ran{f}$. + Then there exists $(m_1, n_1) \in \omega \times \omega$ such that + $f(m_1, n_1) = y$. + Suppose there exists $(m_2, n_2) \in \omega \times \omega$ such that + $f(m_2, n_2) = y$. + We show that $m_1 = m_2$ and $n_1 = n_2$. + + By \nameref{sub:trichotomy-law-natural-numbers}, we know either + $m_1 \leq m_2$ or $m_2 \leq m_1$ and either $n_1 \leq n_2$ or + $n_2 \leq n_1$. + WLOG, assume $m_1 \leq m_2$ and $n_1 \leq n_2$. + Then by \nameref{sub:exercise-4.23}, there exists some $p \in \omega$ such + that $m_1 + p = m_2$. + Likewise, there exists some $q \in \omega$ such that $n_1 + q = n_2$. + Therefore + \begin{align*} + & f(m_1, n_1) = f(m_2, n_2) \\ + & \iff 2^{m_1}(2n_1 + 1) - 1 = 2^{m_2}(2n_2 + 1) - 1 \\ + & \iff 2^{m_1}(2n_1 + 1) = 2^{m_2}(2n_2 + 1) \\ + & \iff 2^{m_1}(2n_1 + 1) = 2^{m_1+p}(2(n_1 + q) + 1) \\ + & \iff 2^{m_1}(2n_1 + 1) = 2^{m_1}2^p(2n_1 + 2q + 1) \\ + & \iff 2n_1 + 1 = 2^p(2n_1 + 2q + 1) \\ + & \iff 2n_1 + 1 = 2^{p+1}n_1 + 2^{p+1}q + 2^p. + \end{align*} + Notice though that the right-hand side of the above equality is smallest + when $p = 0$ and $q = 0$. + Since when evaluated at $p = 0$ and $q = 0$, the equality holds, it + follows this value of $p$ and $q$ are the only possible values that + $p$ and $q$ can take on. + Thus $m_1 + p = m_1 = m_2$ and $n_1 + q = n_1 = n_2$. + + \paragraph{(ii)}% + + We show $\ran{f} = \omega$ by the + \nameref{sub:strong-induction-principle-natural-numbers}. + It is clear that $\ran{f}$ is a subset of $\omega$. + Let $x \in \omega$ and suppose every number less than $x$ is in $\ran{f}$. + All that remains to be shown is that $x \in \ran{f}$. + By \nameref{sub:exercise-4.14}, there are two cases to consider: + + \subparagraph{Case 1}% + + Suppose $x$ is an even number. + Then $x = 2 \cdot y$ for some $y \in \omega$. + Then $f(0, y) = 2^0(2y + 1) - 1 = 2y = x$. + Hence $x \in \ran{f}$. + + \subparagraph{Case 2}% + + Suppose $x$ is an odd number. + Then $x = (2 \cdot y) + 1$ for some $y$. + It immediately follows $x - 1$ is an even number, meaning there exists + some $z$ such that $x - 1 = 2z$. + Since $z \in x$, the induction hypothesis states that there exists + some $m, n \in \omega$ such that $$f(m, n) = z = 2^m(2n + 1) - 1.$$ + Therefore + \begin{align*} + f(m + 1, n) + & = 2^{m+1}(2n + 1) - 1 \\ + & = (2)(2^m)(2n + 1) - 1 \\ + & = 2z + 1 \\ + & = x. + \end{align*} + Hence $x \in \ran{f}$. + \end{proof} \subsection{\unverified{Exercise 6.2}}% @@ -8652,7 +8721,7 @@ Hence $J$ is correctly defined. \end{proof} -\subsection{\sorry{Exercise 6.3}}% +\subsection{\unverified{Exercise 6.3}}% \hyperlabel{sub:exercise-6-3} Find a one-to-one correspondence between the open unit interval $\ioo{0}{1}$ @@ -8660,7 +8729,150 @@ irrationals. \begin{proof} - TODO + + \begin{figure}[ht] + \label{sub:exercise-6-3-fig1} + \includegraphics[width=0.6\textwidth]{exercise-6.3.png} + \centering + \end{figure} + + Consider function $f \colon (0, 1) \rightarrow \mathbb{R}$ given by + $$f(x) = \begin{cases} + \frac{1}{2x} - 1 & \text{if } x \leq \frac{1}{2} \\ + \frac{1}{2(x - 1)} + 1 & \text{otherwise}. + \end{cases}$$ + We prove that (i) $f$ is a one-to-one into $\mathbb{R}$, (ii) $f$ is onto + $\mathbb{R}$, and (iii) $f$ takes rationals to rationals and irrationals + to irrationals. + + \paragraph{(i)}% + + Before proceeding, consider the solutions to the following identity: + \begin{align*} + \frac{1}{2x} - 1 = \frac{1}{2(x - 1)} + 1 + & \iff -8x^2 + 8x - 2 = 0 \\ + & \iff 4x^2 - 4x + 1 = 0. + \end{align*} + Applying the quadratic equation shows $x = 1 / 2$ is the only solution. + Thus for any $x_1, x_2 \in \ioo{0}{1}$ such that $f(x_1) = f(x_2)$, it + must be that $x_1, x_2 \leq 1 / 2$ or $x_1, x_2 > 1 / 2$. + + We now prove $f$ is one-to-one. + Let $y \in \ran{f}$. + Then there exists some $x_1 \in \ioo{0}{1}$ such that $f(x_1) = y$. + Suppose there exists some $x_2 \in \ioo{0}{1}$ such that $f(x_1) = f(x_2)$. + We prove that $x_1 = x_2$ by case analysis: + + \subparagraph{Case 1}% + + Suppose $x_1, x_2 \leq 1 / 2$. + Then $$\frac{1}{2x_1} - 1 = \frac{1}{2x_2} - 1$$ which straightforwardly + simplifies to $x_1 = x_2$. + + \subparagraph{Case 2}% + + Suppose $x_1, x_2 > 1 / 2$. + Then $$\frac{1}{2(x_1 - 1)} + 1 = \frac{1}{2(x_2 - 1)} + 1$$ also + straightfowardly simplies to $x_1 = x_2$. + + \subparagraph{Subconclusion}% + + The above cases are exhaustive. + Therefore $f(x_1) = f(x_2)$ implies $x_1 = x_2$. + Hence $f$ is one-to-one. + + \paragraph{(ii)}% + + Let $y \in \mathbb{R}$. + We prove that there exists an $x \in (0, 1)$ such that $f(x) = y$. + There are three cases we consider: + + \subparagraph{Case 1}% + + Suppose $y = 0$. + Then $f(1 / 2) = 0 = y$ is a readily identifiable solution. + + \subparagraph{Case 2}% + + Suppose $y > 0$. + Consider $x = \frac{1}{2(y + 1)}$. + We note that $x < 1 / 2$ meaning + \begin{align*} + f(x) + & = f\left(\frac{1}{2(y + 1)}\right) \\ + & = \frac{1}{2(\frac{1}{2(y + 1)})} - 1 \\ + & = (y + 1) - 1 \\ + & = y. + \end{align*} + + \subparagraph{Case 3}% + + Suppose $y < 0$. + Consider $x = \frac{1}{2(y - 1)} + 1$. + We note that $x > 1 / 2$ meaning + \begin{align*} + f(x) + & = f\left(\frac{1}{2(y - 1)} + 1\right) \\ + & = \frac{1}{2((\frac{1}{2(y - 1)} + 1) - 1)} + 1 \\ + & = (y - 1) + 1 \\ + & = y. + \end{align*} + + \subparagraph{Subconclusion}% + + The above three cases are exhaustive. + Thus $\ran{f} = \mathbb{R}$, i.e. $f$ is onto $\mathbb{R}$. + + \paragraph{(iii)}% + + Let $x \in (0, 1)$. + There are two cases to consider: + + \subparagraph{Case 1}% + + Suppose $x$ is a rational number. + Then there exist integers $m$ and $n$ such that $x = m / n$. + If $x \leq 1 / 2$, then + \begin{align*} + f(x) + & = f(m / n) \\ + & = \frac{1}{2\left(\frac{m}{n}\right)} - 1 \\ + & = \frac{n}{2m} - 1 \\ + & = \frac{n - 2m}{2m}. + \end{align*} + Since $n - 2m$ and $2m$ are integers, $f(x)$ is a rational number. + If instead $x > 1 / 2$, then + \begin{align*} + f(x) + & = f(m / n) \\ + & = \frac{1}{2\left(\frac{m}{n} - 1\right)} + 1 \\ + & = \frac{n}{2(m - n)} + 1 \\ + & = \frac{n + 2(m - n)}{2(m - n)}. + \end{align*} + Since $n + 2(m - n)$ and $2(m - n)$ are integers, $f(x)$ is again a + rational number. + Thus $f$ maps every rational number to a rational number. + + \subparagraph{Case 2}% + + Suppose $x$ is an irrational number. + First, consider the case where $x \leq 1 / 2$ and, for the sake of + contradiction, suppose $f(x)$ was a rational number. + Then there exist integers $m$ and $n$ such that + $$f(x) = \frac{1}{2x} - 1 = \frac{m}{n}.$$ + But this would imply $$x = \frac{n}{2(m + n)},$$ a contradiction. + Thus $f(x)$ must be irrational. + + Likewise, consider the case where $x > 1 / 2$. + Again, for the sake of contradiction, suppose $f(x)$ was a rational + number. + Then there exist integers $m$ and $n$ such that + $$f(x) = \frac{1}{2(x - 1)} + 1 = \frac{m}{n}.$$ + But this would imply $$x = \frac{n}{2(m - n)} + 1,$$ a contradiction. + Thus $f(x)$ must be irrational. + + Hence $f$ maps every irrational number to an irrational number. + \end{proof} \subsection{\sorry{Exercise 6.4}}% diff --git a/Bookshelf/Enderton/Set/images/exercise-6.3.png b/Bookshelf/Enderton/Set/images/exercise-6.3.png new file mode 100644 index 0000000..32a780b Binary files /dev/null and b/Bookshelf/Enderton/Set/images/exercise-6.3.png differ diff --git a/preamble.tex b/preamble.tex index 18c67ac..f56500e 100644 --- a/preamble.tex +++ b/preamble.tex @@ -36,7 +36,7 @@ \newcommand\suitdivider{$$\spadesuit\;\spadesuit\;\spadesuit$$} % ======================================== -% Linking +% Links % ======================================== \hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue}