Enderton. Definitions, theorem 3E.
parent
91d1990903
commit
9db5bcdac6
|
@ -24,6 +24,24 @@
|
||||||
\chapter{Reference}%
|
\chapter{Reference}%
|
||||||
\label{chap:reference}
|
\label{chap:reference}
|
||||||
|
|
||||||
|
\section{\partial{Composition}}%
|
||||||
|
\label{ref:composition}
|
||||||
|
|
||||||
|
The \textbf{composition} of sets $F$ and $G$ is
|
||||||
|
$$F \circ G = \{\left< u, v \right> \mid \exists t(uGt \land tFv)\}.$$
|
||||||
|
|
||||||
|
\section{\defined{Domain}}%
|
||||||
|
\label{ref:domain}
|
||||||
|
|
||||||
|
Given \nameref{ref:relation} $R$, the \textbf{domain} of $R$, denoted $\dom{R}$,
|
||||||
|
is given by $$x \in \dom{R} \iff \exists y \left< x, y \right> \in R.$$
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
|
||||||
|
\lean*{Common/Set/Relation}{Set.Relation.dom}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\section{\defined{Empty Set Axiom}}%
|
\section{\defined{Empty Set Axiom}}%
|
||||||
\label{ref:empty-set-axiom}
|
\label{ref:empty-set-axiom}
|
||||||
|
|
||||||
|
@ -49,6 +67,18 @@ If two sets have exactly the same members, then they are equal:
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
|
||||||
|
\section{\defined{Field}}%
|
||||||
|
\label{ref:field}
|
||||||
|
|
||||||
|
Given \nameref{ref:relation} $R$, the \textbf{field} of $R$, denoted $\fld{R}$,
|
||||||
|
is given by $$\fld{R} = \dom{R} \cup \ran{R}.$$
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
|
||||||
|
\lean*{Common/Set/Relation}{Set.Relation.fld}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\section{\defined{Function}}%
|
\section{\defined{Function}}%
|
||||||
\label{ref:function}
|
\label{ref:function}
|
||||||
|
|
||||||
|
@ -75,6 +105,23 @@ One-to-one functions are sometimes called \textbf{injections}.
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
\section{\partial{Image}}%
|
||||||
|
\label{ref:image}
|
||||||
|
|
||||||
|
Let $A$ and $F$ be arbitrary sets.
|
||||||
|
The \textbf{image of $A$ under $F$} is the set
|
||||||
|
\begin{align*}
|
||||||
|
F[A]
|
||||||
|
& = \ran{(F \restriction A)} \\
|
||||||
|
& = \{v \mid (\exists u \in A) uFv\}.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\section{\partial{Inverse}}%
|
||||||
|
\label{ref:inverse}
|
||||||
|
|
||||||
|
The \textbf{inverse} of a set $F$ is the set
|
||||||
|
$$F^{-1} = \{\left< u, v \right> \mid vFu\}.$$
|
||||||
|
|
||||||
\section{\defined{Ordered Pair}}%
|
\section{\defined{Ordered Pair}}%
|
||||||
\label{ref:ordered-pair}
|
\label{ref:ordered-pair}
|
||||||
|
|
||||||
|
@ -144,30 +191,35 @@ For any set $a$, there is a set whose members are exactly the subsets of $a$:
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
|
||||||
|
\section{\defined{Range}}%
|
||||||
|
\label{ref:range}
|
||||||
|
|
||||||
|
Given \nameref{ref:relation} $R$, the \textbf{range} of $R$, denoted $\ran{R}$,
|
||||||
|
is given by $$x \in \ran{R} \iff \exists t \left< t, x \right> \in R.$$
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
|
||||||
|
\lean*{Common/Set/Relation}{Set.Relation.ran}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\section{\defined{Relation}}%
|
\section{\defined{Relation}}%
|
||||||
\label{ref:relation}
|
\label{ref:relation}
|
||||||
|
|
||||||
A \textbf{relation} is a set of \nameref{ref:ordered-pair}s.
|
A \textbf{relation} is a set of \nameref{ref:ordered-pair}s.
|
||||||
Given relation $R$, the \textbf{domain} of $R$ ($\dom{R}$), the \textbf{range}
|
|
||||||
of $R$ ($\ran{R}$), and the \textbf{field} of $R$ ($\fld{R}$) is given by
|
|
||||||
\begin{align*}
|
|
||||||
x \in \dom{R} & \iff \exists y \left< x, y \right> \in R, \\
|
|
||||||
x \in \ran{R} & \iff \exists t \left< t, x \right> \in R, \\
|
|
||||||
\fld{R} & = \dom{R} \cup \ran{R}.
|
|
||||||
\end{align*}
|
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
||||||
\statementpadding
|
\lean*{Common/Set/Relation}{Set.Relation}
|
||||||
|
|
||||||
\lean*{Mathlib/Data/Rel}{Rel}
|
|
||||||
|
|
||||||
\lean*{Mathlib/Data/Rel}{Rel.dom}
|
|
||||||
|
|
||||||
\lean*{Mathlib/Data/Rel}{Rel.codom}
|
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
\section{\partial{Restriction}}%
|
||||||
|
\label{ref:restriction}
|
||||||
|
|
||||||
|
The \textbf{restriction} of a set $F$ to set $A$ is the set
|
||||||
|
$$F \restriction A = \{\left< u, v \right> \mid uFv \land u \in A\}.$$
|
||||||
|
|
||||||
\section{\defined{Subset Axioms}}%
|
\section{\defined{Subset Axioms}}%
|
||||||
\label{ref:subset-axioms}
|
\label{ref:subset-axioms}
|
||||||
|
|
||||||
|
@ -2730,8 +2782,8 @@ Show that a set $A$ is a relation iff $A \subseteq \dom{A} \times \ran{A}$.
|
||||||
Let $a \in A$.
|
Let $a \in A$.
|
||||||
Since $A$ is a relation, $a$ is an ordered pair.
|
Since $A$ is a relation, $a$ is an ordered pair.
|
||||||
Then there exists some sets $x$ and $y$ such that $a = \left< x, y \right>$.
|
Then there exists some sets $x$ and $y$ such that $a = \left< x, y \right>$.
|
||||||
By definition of the domain and range of $A$, $x \in \dom{A}$ and
|
By the definition of the \nameref{ref:domain} and \nameref{ref:range} of
|
||||||
$y \in \ran{A}$.
|
$A$, $x \in \dom{A}$ and $y \in \ran{A}$.
|
||||||
Thus $a = \left< x, y \right> \in \dom{A} \times \ran{A}$ as well.
|
Thus $a = \left< x, y \right> \in \dom{A} \times \ran{A}$ as well.
|
||||||
This proves $A \subseteq \dom{A} \times \ran{A}$.
|
This proves $A \subseteq \dom{A} \times \ran{A}$.
|
||||||
|
|
||||||
|
@ -2885,14 +2937,14 @@ Discuss the result of replacing the union operation by the intersection
|
||||||
\paragraph{(i)}%
|
\paragraph{(i)}%
|
||||||
|
|
||||||
Let $x \in \dom{\bigcap{\mathscr{A}}}$.
|
Let $x \in \dom{\bigcap{\mathscr{A}}}$.
|
||||||
By definition of the domain of a set,
|
By definition of the \nameref{ref:domain} of a set,
|
||||||
$\exists y, \left< x, y \right> \in \bigcap{\mathscr{A}}$.
|
$\exists y, \left< x, y \right> \in \bigcap{\mathscr{A}}$.
|
||||||
By definition of the intersection of sets,
|
By definition of the intersection of sets,
|
||||||
$\exists y, \forall R \in \mathscr{A}, \left< x, y \right> \in R$.
|
$\exists y, \forall R \in \mathscr{A}, \left< x, y \right> \in R$.
|
||||||
But this implies that
|
But this implies that
|
||||||
$\forall R \in \mathscr{A}, \exists y, \left< x, y \right> \in R$.
|
$\forall R \in \mathscr{A}, \exists y, \left< x, y \right> \in R$.
|
||||||
By another application of the definition of the domain of a set,
|
By another application of the definition of the \nameref{ref:domain} of a
|
||||||
$\forall R \in \mathscr{A}, x \in \dom{R}$.
|
set, $\forall R \in \mathscr{A}, x \in \dom{R}$.
|
||||||
By another application of the intersection of sets,
|
By another application of the intersection of sets,
|
||||||
$x \in \bigcap\;\{ \dom{R} \mid R \in \mathscr{A} \}$.
|
$x \in \bigcap\;\{ \dom{R} \mid R \in \mathscr{A} \}$.
|
||||||
Thus \eqref{sub:exercise-6.9-eq1} holds.
|
Thus \eqref{sub:exercise-6.9-eq1} holds.
|
||||||
|
@ -2900,14 +2952,14 @@ Discuss the result of replacing the union operation by the intersection
|
||||||
\paragraph{(ii)}%
|
\paragraph{(ii)}%
|
||||||
|
|
||||||
Let $x \in \ran{\bigcap{\mathscr{A}}}$.
|
Let $x \in \ran{\bigcap{\mathscr{A}}}$.
|
||||||
By definition of the range of a set,
|
By definition of the \nameref{ref:range} of a set,
|
||||||
$\exists t, \left< t, x \right> \in \bigcap{\mathscr{A}}$.
|
$\exists t, \left< t, x \right> \in \bigcap{\mathscr{A}}$.
|
||||||
By definition of the intersection of sets,
|
By definition of the intersection of sets,
|
||||||
$\exists t, \forall R \in \mathscr{A}, \left< t, x \right> \in R$.
|
$\exists t, \forall R \in \mathscr{A}, \left< t, x \right> \in R$.
|
||||||
But this implies that
|
But this implies that
|
||||||
$\forall R \in \mathscr{A}, \exists t, \left< t, x \right> \in R$.
|
$\forall R \in \mathscr{A}, \exists t, \left< t, x \right> \in R$.
|
||||||
By another application of the definition of the domain of a set,
|
By another application of the definition of the \nameref{ref:range} of a
|
||||||
$\forall R \in \mathscr{A}, x \in \ran{R}$.
|
set, $\forall R \in \mathscr{A}, x \in \ran{R}$.
|
||||||
By another application of the intersection of sets,
|
By another application of the intersection of sets,
|
||||||
$x \in \bigcap\;\{ \ran{R} \mid R \in \mathscr{A} \}$.
|
$x \in \bigcap\;\{ \ran{R} \mid R \in \mathscr{A} \}$.
|
||||||
Thus \eqref{sub:exercise-6.9-eq2} holds.
|
Thus \eqref{sub:exercise-6.9-eq2} holds.
|
||||||
|
@ -2945,19 +2997,50 @@ Show that an ordered $4$-tuple is also an ordered $m$-tuple for every positive
|
||||||
\section{Functions}%
|
\section{Functions}%
|
||||||
\label{sec:functions}
|
\label{sec:functions}
|
||||||
|
|
||||||
\subsection{\unverified{Theorem 3E}}%
|
\subsection{\partial{Theorem 3E}}%
|
||||||
\label{sub:theorem-3e}
|
\label{sub:theorem-3e}
|
||||||
|
|
||||||
\begin{theorem}[3E]
|
\begin{theorem}[3E]
|
||||||
|
|
||||||
For a set $F$, $\dom{F^{-1}} = \ran{F}$ and $\ran{F^{-1}} = \dom{F}$.
|
For a set $F$, $\dom{(F^{-1})} = \ran{F}$ and $\ran{(F^{-1})} = \dom{F}$.
|
||||||
For a relation $F$, $(F^{-1})^{-1} = F$.
|
For a relation $F$, $(F^{-1})^{-1} = F$.
|
||||||
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
We prove that (i) $\dom{(F^{-1})} = \ran{F}$, (ii) $\ran{(F^{-1})} = \dom{F}$,
|
||||||
|
and (iii) $(F^{-1})^{-1} = F$.
|
||||||
|
|
||||||
|
\paragraph{(i)}%
|
||||||
|
|
||||||
|
By definition of the \nameref{ref:domain}, $x \in \dom{(F^{-1})}$ if and
|
||||||
|
only if there exists some $y$ such that $\left< x, y \right> \in F^{-1}$.
|
||||||
|
By definition of the \nameref{ref:inverse} of a set,
|
||||||
|
$\left< y, x \right> \in F$.
|
||||||
|
By definition of the \nameref{ref:range}, $x \in \ran{F}$.
|
||||||
|
Since each step holds biconditionally, it follows
|
||||||
|
$\dom{(F^{-1})} = \ran{F}$ as expected.
|
||||||
|
|
||||||
|
\paragraph{(ii)}%
|
||||||
|
|
||||||
|
By definition of the \nameref{ref:range}, $x \in \ran{(F^{-1})}$ if and
|
||||||
|
only if there exists some $t$ such that $\left< t, x \right> \in F^{-1}$.
|
||||||
|
By definition of the \nameref{ref:inverse} of a set,
|
||||||
|
$\left< x, t \right> \in F$.
|
||||||
|
By definition of the \nameref{ref:domain}, $x \in \dom{F}$.
|
||||||
|
Since each step holds biconditionally, it follows
|
||||||
|
$\ran{(F^{-1})} = \dom{F}$.
|
||||||
|
|
||||||
|
\paragraph{(iii)}%
|
||||||
|
|
||||||
|
By definition of the \nameref{ref:inverse} of a set,
|
||||||
|
\begin{align*}
|
||||||
|
(F^{-1})^{-1}
|
||||||
|
& = \{\left< u, v \right> \mid \left< v, u \right> \in F^{-1}\} \\
|
||||||
|
& = \{\left< u, v \right> \mid \left< u, v \right> \in F\} \\
|
||||||
|
& = F.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue