Enderton. Exercise set 7.
parent
3d556bc613
commit
91d1990903
|
@ -2917,17 +2917,30 @@ Discuss the result of replacing the union operation by the intersection
|
|||
\section{Exercises 7}%
|
||||
\label{sec:exercises-7}
|
||||
|
||||
\subsection{\unverified{Exercise 7.10}}%
|
||||
\subsection{\partial{Exercise 7.10}}%
|
||||
\label{sub:exercise-7.10}
|
||||
|
||||
Show that an ordered $4$-tuple is also an ordered $m$-tuple for every positive
|
||||
integer $m$ less than $4$.
|
||||
|
||||
\begin{proof}
|
||||
\begin{answer}
|
||||
|
||||
TODO
|
||||
Let $\left< x_1, x_2, x_3, x_4 \right>$ denote an arbitrary $4$-tuple.
|
||||
Then
|
||||
\begin{align}
|
||||
\left< x_1, x_2, x_3, x_4 \right>
|
||||
& = \left< \left< x_1, x_2, x_3 \right>, x_4 \right>
|
||||
& \label{sub:exercise-7.10-eq1} \\
|
||||
& = \left< \left< \left< x_1, x_2 \right>, x_3 \right>, x_4 \right>
|
||||
& \label{sub:exercise-7.10-eq2}
|
||||
\end{align}
|
||||
Here \eqref{sub:exercise-7.10-eq1} is an equivalent ordered $2$-tuple and
|
||||
\eqref{sub:exercise-7.10-eq2} is an equivalent ordered $3$-tuple.
|
||||
Furthermore, $\left< x_1, x_2, x_3, x_4 \right> =
|
||||
\left< \left< x_1, x_2, x_3, x_4 \right> \right>$, showing it can be
|
||||
represented as an ordered $1$-tuple as well.
|
||||
|
||||
\end{proof}
|
||||
\end{answer}
|
||||
|
||||
\section{Functions}%
|
||||
\label{sec:functions}
|
||||
|
|
Loading…
Reference in New Issue