Normalize formatting further, macros for lean commands.

finite-set-exercises
Joshua Potter 2023-05-17 12:28:02 -06:00
parent ca3dc196c7
commit 9ac70c15c9
4 changed files with 121 additions and 115 deletions

View File

@ -1,14 +1,10 @@
\documentclass{report} \documentclass{report}
\usepackage{graphicx} \usepackage{graphicx}
\input{../preamble}
\graphicspath{{./Apostol/images/}} \graphicspath{{./Apostol/images/}}
\newcommand{\lean}[2]{\leanref{../#1.html\##2}{#2}} \input{../preamble}
\newcommand{\leanPretty}[3]{\leanref{../#1.html\##2}{#3}} \makeleancommands{..}
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
\begin{document} \begin{document}
@ -228,7 +224,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\section{\verified{Lemma 1}}% \section{\verified{Lemma 1}}%
\label{sec:lemma-1} \label{sec:lemma-1}
\begin{lemma}{1} \begin{lemma}[1]
Nonempty set $S$ has supremum $L$ if and only if set $-S$ has infimum $-L$. Nonempty set $S$ has supremum $L$ if and only if set $-S$ has infimum $-L$.
@ -239,8 +235,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.is\_lub\_neg\_set\_iff\_is\_glb\_set\_neg} {Apostol.Chapter\_I\_03.is\_lub\_neg\_set\_iff\_is\_glb\_set\_neg}
\divider
Suppose $L = \sup{S}$ and fix $x \in S$. Suppose $L = \sup{S}$ and fix $x \in S$.
By definition of the \nameref{sec:def-supremum}, $x \leq L$ and $L$ is the By definition of the \nameref{sec:def-supremum}, $x \leq L$ and $L$ is the
smallest value satisfying this inequality. smallest value satisfying this inequality.
@ -253,7 +247,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\section{\verified{Theorem I.27}}% \section{\verified{Theorem I.27}}%
\label{sec:theorem-i.27} \label{sec:theorem-i.27}
\begin{theorem}{I.27} \begin{theorem}[I.27]
Every nonempty set $S$ that is bounded below has a greatest lower bound; that Every nonempty set $S$ that is bounded below has a greatest lower bound; that
is, there is a real number $L$ such that $L = \inf{S}$. is, there is a real number $L$ such that $L = \inf{S}$.
@ -265,8 +259,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.exists\_isGLB} {Apostol.Chapter\_I\_03.exists\_isGLB}
\divider
Let $S$ be a nonempty set bounded below by $x$. Let $S$ be a nonempty set bounded below by $x$.
Then $-S$ is nonempty and bounded above by $x$. Then $-S$ is nonempty and bounded above by $x$.
By the \nameref{sec:completeness-axiom}, there exists a By the \nameref{sec:completeness-axiom}, there exists a
@ -279,7 +271,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\section{\verified{Theorem I.29}}% \section{\verified{Theorem I.29}}%
\label{sec:theorem-i.29} \label{sec:theorem-i.29}
\begin{theorem}{I.29} \begin{theorem}[I.29]
For every real $x$ there exists a positive integer $n$ such that $n > x$. For every real $x$ there exists a positive integer $n$ such that $n > x$.
@ -290,8 +282,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.exists\_pnat\_geq\_self} {Apostol.Chapter\_I\_03.exists\_pnat\_geq\_self}
\divider
Let $n = \abs{\ceil{x}} + 1$. Let $n = \abs{\ceil{x}} + 1$.
It is trivial to see $n$ is a positive integer satisfying $n \geq 1$. It is trivial to see $n$ is a positive integer satisfying $n \geq 1$.
Thus all that remains to be shown is that $n > x$. Thus all that remains to be shown is that $n > x$.
@ -305,7 +295,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\label{sec:archimedean-property-reals} \label{sec:archimedean-property-reals}
\label{sec:theorem-i.30} \label{sec:theorem-i.30}
\begin{theorem}{I.30} \begin{theorem}[I.30]
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive
integer $n$ such that $nx > y$. integer $n$ such that $nx > y$.
@ -317,8 +307,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.exists\_pnat\_mul\_self\_geq\_of\_pos} {Apostol.Chapter\_I\_03.exists\_pnat\_mul\_self\_geq\_of\_pos}
\divider
Let $x > 0$ and $y$ be an arbitrary real number. Let $x > 0$ and $y$ be an arbitrary real number.
By \nameref{sec:theorem-i.29}, there exists a positive integer $n$ such that By \nameref{sec:theorem-i.29}, there exists a positive integer $n$ such that
$n > y / x$. $n > y / x$.
@ -329,7 +317,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\section{\verified{Theorem I.31}}% \section{\verified{Theorem I.31}}%
\label{sec:theorem-i.31} \label{sec:theorem-i.31}
\begin{theorem}{I.31} \begin{theorem}[I.31]
If three real numbers $a$, $x$, and $y$ satisfy the inequalities If three real numbers $a$, $x$, and $y$ satisfy the inequalities
$$a \leq x \leq a + \frac{y}{n}$$ for every integer $n \geq 1$, then $$a \leq x \leq a + \frac{y}{n}$$ for every integer $n \geq 1$, then
@ -342,8 +330,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.forall\_pnat\_leq\_self\_leq\_frac\_imp\_eq} {Apostol.Chapter\_I\_03.forall\_pnat\_leq\_self\_leq\_frac\_imp\_eq}
\divider
By the trichotomy of the reals, there are three cases to consider: By the trichotomy of the reals, there are three cases to consider:
\paragraph{Case 1}% \paragraph{Case 1}%
@ -378,7 +364,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\section{\verified{Lemma 2}}% \section{\verified{Lemma 2}}%
\label{sec:lemma-2} \label{sec:lemma-2}
\begin{lemma}{2} \begin{lemma}[2]
If three real numbers $a$, $x$, and $y$ satisfy the inequalities If three real numbers $a$, $x$, and $y$ satisfy the inequalities
$$a - y / n \leq x \leq a$$ for every integer $n \geq 1$, then $x = a$. $$a - y / n \leq x \leq a$$ for every integer $n \geq 1$, then $x = a$.
@ -390,8 +376,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.forall\_pnat\_frac\_leq\_self\_leq\_imp\_eq} {Apostol.Chapter\_I\_03.forall\_pnat\_frac\_leq\_self\_leq\_imp\_eq}
\divider
By the trichotomy of the reals, there are three cases to consider: By the trichotomy of the reals, there are three cases to consider:
\paragraph{Case 1}% \paragraph{Case 1}%
@ -431,7 +415,7 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers.
\subsection{\verified{Theorem I.32a}}% \subsection{\verified{Theorem I.32a}}%
\label{sub:theorem-i.32a} \label{sub:theorem-i.32a}
\begin{theorem}{I.32a} \begin{theorem}[I.32a]
If $S$ has a supremum, then for some $x$ in $S$ we have $x > \sup{S} - h$. If $S$ has a supremum, then for some $x$ in $S$ we have $x > \sup{S} - h$.
@ -442,8 +426,6 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers.
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.sup\_imp\_exists\_gt\_sup\_sub\_delta} {Apostol.Chapter\_I\_03.sup\_imp\_exists\_gt\_sup\_sub\_delta}
\divider
By definition of a \nameref{sec:def-supremum}, $\sup{S}$ is the least upper By definition of a \nameref{sec:def-supremum}, $\sup{S}$ is the least upper
bound of $S$. bound of $S$.
For the sake of contradiction, suppose for all $x \in S$, For the sake of contradiction, suppose for all $x \in S$,
@ -459,7 +441,7 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers.
\subsection{\verified{Theorem I.32b}}% \subsection{\verified{Theorem I.32b}}%
\label{sub:theorem-i.32b} \label{sub:theorem-i.32b}
\begin{theorem}{I.32b} \begin{theorem}[I.32b]
If $S$ has an infimum, then for some $x$ in $S$ we have $x < \inf{S} + h$. If $S$ has an infimum, then for some $x$ in $S$ we have $x < \inf{S} + h$.
@ -470,8 +452,6 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers.
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.inf\_imp\_exists\_lt\_inf\_add\_delta} {Apostol.Chapter\_I\_03.inf\_imp\_exists\_lt\_inf\_add\_delta}
\divider
By definition of an \nameref{sec:def-infimum}, $\inf{S}$ is the greatest lower By definition of an \nameref{sec:def-infimum}, $\inf{S}$ is the greatest lower
bound of $S$. bound of $S$.
For the sake of contradiction, suppose for all $x \in S$, For the sake of contradiction, suppose for all $x \in S$,
@ -495,7 +475,7 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
\subsection{\verified{Theorem I.33a}}% \subsection{\verified{Theorem I.33a}}%
\label{sub:theorem-i.33a} \label{sub:theorem-i.33a}
\begin{theorem}{I.33a} \begin{theorem}[I.33a]
If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and
$$\sup{C} = \sup{A} + \sup{B}.$$ $$\sup{C} = \sup{A} + \sup{B}.$$
@ -507,8 +487,6 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.sup\_minkowski\_sum\_eq\_sup\_add\_sup} {Apostol.Chapter\_I\_03.sup\_minkowski\_sum\_eq\_sup\_add\_sup}
\divider
We prove (i) $\sup{A} + \sup{B}$ is an upper bound of $C$ and (ii) We prove (i) $\sup{A} + \sup{B}$ is an upper bound of $C$ and (ii)
$\sup{A} + \sup{B}$ is the \textit{least} upper bound of $C$. $\sup{A} + \sup{B}$ is the \textit{least} upper bound of $C$.
@ -568,7 +546,7 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
\subsection{\verified{Theorem I.33b}}% \subsection{\verified{Theorem I.33b}}%
\label{sub:theorem-i.33b} \label{sub:theorem-i.33b}
\begin{theorem}{I.33b} \begin{theorem}[I.33b]
If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and
$$\inf{C} = \inf{A} + \inf{B}.$$ $$\inf{C} = \inf{A} + \inf{B}.$$
@ -580,8 +558,6 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.inf\_minkowski\_sum\_eq\_inf\_add\_inf} {Apostol.Chapter\_I\_03.inf\_minkowski\_sum\_eq\_inf\_add\_inf}
\divider
We prove (i) $\inf{A} + \inf{B}$ is a lower bound of $C$ and (ii) We prove (i) $\inf{A} + \inf{B}$ is a lower bound of $C$ and (ii)
$\inf{A} + \inf{B}$ is the \textit{greatest} lower bound of $C$. $\inf{A} + \inf{B}$ is the \textit{greatest} lower bound of $C$.
@ -641,7 +617,7 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
\section{\verified{Theorem I.34}}% \section{\verified{Theorem I.34}}%
\label{sec:theorem-i.34} \label{sec:theorem-i.34}
\begin{theorem}{I.34} \begin{theorem}[I.34]
Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that $$s \leq t$$ Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that $$s \leq t$$
for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$ for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$
@ -654,8 +630,6 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
\lean{Bookshelf/Apostol/Chapter\_I\_03} \lean{Bookshelf/Apostol/Chapter\_I\_03}
{Apostol.Chapter\_I\_03.forall\_mem\_le\_forall\_mem\_imp\_sup\_le\_inf} {Apostol.Chapter\_I\_03.forall\_mem\_le\_forall\_mem\_imp\_sup\_le\_inf}
\divider
By hypothesis, $S$ and $T$ are nonempty sets. By hypothesis, $S$ and $T$ are nonempty sets.
Let $s \in S$ and $t \in T$. Let $s \in S$ and $t \in T$.
Then $t$ is an upper bound of $S$ and $s$ is a lower bound of $T$. Then $t$ is an upper bound of $S$ and $s$ is a lower bound of $T$.
@ -689,7 +663,7 @@ For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$.
\begin{axiom} \begin{axiom}
\leanPretty{Common/Geometry/Area}{Nonnegative-Property} \leanp{Common/Geometry/Area}{Nonnegative-Property}
{Nonnegative Property} {Nonnegative Property}
\end{axiom} \end{axiom}
@ -702,7 +676,7 @@ If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in
\begin{axiom} \begin{axiom}
\leanPretty{Common/Geometry/Area}{Additive-Property} \leanp{Common/Geometry/Area}{Additive-Property}
{Additive Property} {Additive Property}
\end{axiom} \end{axiom}
@ -715,7 +689,7 @@ If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in
\begin{axiom} \begin{axiom}
\leanPretty{Common/Geometry/Area}{Difference-Property} \leanp{Common/Geometry/Area}{Difference-Property}
{Difference Property} {Difference Property}
\end{axiom} \end{axiom}
@ -728,7 +702,7 @@ If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is
\begin{axiom} \begin{axiom}
\leanPretty{Common/Geometry/Area}{Invariance-Under-Congruence} \leanp{Common/Geometry/Area}{Invariance-Under-Congruence}
{Invariance Under Congruence} {Invariance Under Congruence}
\end{axiom} \end{axiom}
@ -741,7 +715,7 @@ If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$.
\begin{axiom} \begin{axiom}
\leanPretty{Common/Geometry/Area}{Choice-of-Scale} \leanp{Common/Geometry/Area}{Choice-of-Scale}
{Choice of Scale} {Choice of Scale}
\end{axiom} \end{axiom}
@ -761,7 +735,7 @@ If there is one and only one number $c$ which satisfies the inequalities
\begin{axiom} \begin{axiom}
\leanPretty{Common/Geometry/Area}{Exhaustion-Property} \leanp{Common/Geometry/Area}{Exhaustion-Property}
{Exhaustion Property} {Exhaustion Property}
\end{axiom} \end{axiom}
@ -1045,7 +1019,7 @@ Prove that every trapezoid and every parallelogram is measurable and derive the
These cases are exhaustive and in agreement with one another. These cases are exhaustive and in agreement with one another.
Thus $S$ is measurable and $$a(S) = \frac{b_1 + b_2}{2}h.$$ Thus $S$ is measurable and $$a(S) = \frac{b_1 + b_2}{2}h.$$
\divider \suitdivider
Let $P$ be a parallelogram with base $b$ and height $h$. Let $P$ be a parallelogram with base $b$ and height $h$.
Then $P$ is the union of non-overlapping triangle $T$ and right trapezoid $R$. Then $P$ is the union of non-overlapping triangle $T$ and right trapezoid $R$.
@ -1355,8 +1329,6 @@ $\floor{x + n} = \floor{x} + n$ for every integer $n$.
\lean{Bookshelf/Apostol/Chapter\_1\_11} \lean{Bookshelf/Apostol/Chapter\_1\_11}
{Apostol.Chapter\_1\_11.exercise\_4a} {Apostol.Chapter\_1\_11.exercise\_4a}
\divider
Let $x$ be a real number and $n$ an integer. Let $x$ be a real number and $n$ an integer.
Let $m = \floor{x + n}$. Let $m = \floor{x + n}$.
By definition of the floor function, $m$ is the unique integer such that By definition of the floor function, $m$ is the unique integer such that
@ -1380,14 +1352,12 @@ $\floor{-x} =
\ \vspace{6pt} \ \vspace{6pt}
\lean{Bookshelf/Apostol/Chapter\_1\_11} \lean*{Bookshelf/Apostol/Chapter\_1\_11}
{Apostol.Chapter\_1\_11.exercise\_4b\_1} {Apostol.Chapter\_1\_11.exercise\_4b\_1}
\lean{Bookshelf/Apostol/Chapter\_1\_11} \lean{Bookshelf/Apostol/Chapter\_1\_11}
{Apostol.Chapter\_1\_11.exercise\_4b\_2} {Apostol.Chapter\_1\_11.exercise\_4b\_2}
\divider
There are two cases to consider: There are two cases to consider:
\paragraph{Case 1}% \paragraph{Case 1}%
@ -1428,8 +1398,6 @@ $\floor{x + y} = \floor{x} + \floor{y}$ or $\floor{x} + \floor{y} + 1$.
\lean{Bookshelf/Apostol/Chapter\_1\_11} \lean{Bookshelf/Apostol/Chapter\_1\_11}
{Apostol.Chapter\_1\_11.exercise\_4c} {Apostol.Chapter\_1\_11.exercise\_4c}
\divider
Rewrite $x$ and $y$ as the sum of their floor and fractional components: Rewrite $x$ and $y$ as the sum of their floor and fractional components:
$x = \floor{x} + \{x\}$ and $y = \floor{y} + \{y\}$. $x = \floor{x} + \{x\}$ and $y = \floor{y} + \{y\}$.
Now Now
@ -1474,8 +1442,6 @@ $\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$
\lean{Bookshelf/Apostol/Chapter\_1\_11} \lean{Bookshelf/Apostol/Chapter\_1\_11}
{Apostol.Chapter\_1\_11.exercise\_4d} {Apostol.Chapter\_1\_11.exercise\_4d}
\divider
This is immediately proven by applying \nameref{sec:hermites-identity}. This is immediately proven by applying \nameref{sec:hermites-identity}.
\end{proof} \end{proof}
@ -1490,8 +1456,6 @@ $\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$
\lean{Bookshelf/Apostol/Chapter\_1\_11} \lean{Bookshelf/Apostol/Chapter\_1\_11}
{Apostol.Chapter\_1\_11.exercise\_4e} {Apostol.Chapter\_1\_11.exercise\_4e}
\divider
This is immediately proven by applying \nameref{sec:hermites-identity}. This is immediately proven by applying \nameref{sec:hermites-identity}.
\end{proof} \end{proof}
@ -1508,8 +1472,6 @@ State and prove such a generalization.
\lean{Bookshelf/Apostol/Chapter\_1\_11} \lean{Bookshelf/Apostol/Chapter\_1\_11}
{Apostol.Chapter\_1\_11.exercise\_5} {Apostol.Chapter\_1\_11.exercise\_5}
\divider
We prove that for all natural numbers $n$ and real numbers $x$, the following We prove that for all natural numbers $n$ and real numbers $x$, the following
identity holds: identity holds:
\begin{equation} \begin{equation}
@ -1734,8 +1696,6 @@ Now apply Exercises 4(a) and (b) to the bracket on the right.
\lean{Bookshelf/Apostol/Chapter\_1\_11} \lean{Bookshelf/Apostol/Chapter\_1\_11}
{Apostol.Chapter\_1\_11.exercise\_7b} {Apostol.Chapter\_1\_11.exercise\_7b}
\divider
Let $n = 1, \ldots, b - 1$. Let $n = 1, \ldots, b - 1$.
By hypothesis, $a$ and $b$ are coprime. By hypothesis, $a$ and $b$ are coprime.
Furthermore, $n < b$ for all values of $n$. Furthermore, $n < b$ for all values of $n$.
@ -1807,7 +1767,7 @@ This property is described by saying that every step function is a linear
\label{sec:step-additive-property} \label{sec:step-additive-property}
\label{sec:theorem-1.2} \label{sec:theorem-1.2}
\begin{theorem}{1.2} \begin{theorem}[1.2]
Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval
$[a, b]$. $[a, b]$.
@ -1850,7 +1810,7 @@ This property is described by saying that every step function is a linear
\label{sec:step-homogeneous-property} \label{sec:step-homogeneous-property}
\label{sec:theorem-1.3} \label{sec:theorem-1.3}
\begin{theorem}{1.3} \begin{theorem}[1.3]
Let $s$ be a \nameref{sec:def-step-function} on closed interval $[a, b]$. Let $s$ be a \nameref{sec:def-step-function} on closed interval $[a, b]$.
For every real number $c$, we have For every real number $c$, we have
@ -1881,7 +1841,7 @@ This property is described by saying that every step function is a linear
\label{sec:step-linearity-property} \label{sec:step-linearity-property}
\label{sec:theorem-1.4} \label{sec:theorem-1.4}
\begin{theorem}{1.4} \begin{theorem}[1.4]
Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval
$[a, b]$. $[a, b]$.
@ -1911,7 +1871,7 @@ This property is described by saying that every step function is a linear
\label{sec:step-comparison-theorem} \label{sec:step-comparison-theorem}
\label{sec:theorem-1.5} \label{sec:theorem-1.5}
\begin{theorem}{1.5} \begin{theorem}[1.5]
Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval
$[a, b]$. $[a, b]$.
@ -1950,7 +1910,7 @@ This property is described by saying that every step function is a linear
\label{sec:step-additivity-with-respect-interval-integration} \label{sec:step-additivity-with-respect-interval-integration}
\label{sec:theorem-1.6} \label{sec:theorem-1.6}
\begin{theorem}{1.6} \begin{theorem}[1.6]
Let $a, b, c \in \mathbb{R}$ and $s$ a \nameref{sec:def-step-function} on the Let $a, b, c \in \mathbb{R}$ and $s$ a \nameref{sec:def-step-function} on the
smallest closed interval containing them. smallest closed interval containing them.
@ -1996,7 +1956,7 @@ This property is described by saying that every step function is a linear
\label{sec:step-invariance-under-translation} \label{sec:step-invariance-under-translation}
\label{sec:theorem-1.7} \label{sec:theorem-1.7}
\begin{theorem}{1.7} \begin{theorem}[1.7]
Let $s$ be a step function on closed interval $[a, b]$. Let $s$ be a step function on closed interval $[a, b]$.
Then Then
@ -2037,7 +1997,7 @@ This property is described by saying that every step function is a linear
\label{sec:step-expansion-contraction-interval-integration} \label{sec:step-expansion-contraction-interval-integration}
\label{sec:theorem-1.8} \label{sec:theorem-1.8}
\begin{theorem}{1.8} \begin{theorem}[1.8]
Let $s$ be a step function on closed interval $[a, b]$. Let $s$ be a step function on closed interval $[a, b]$.
Then Then
@ -2425,13 +2385,13 @@ Which of the following properties would remain valid in this new theory?
$\int_a^b s + \int_b^c s = \int_a^c s$. $\int_a^b s + \int_b^c s = \int_a^c s$.
\note{This property mirrors \note{This property mirrors
\nameref{sec:step-additivity-with-respect-interval-integration}} \nameref{sec:step-additivity-with-respect-interval-integration}.}
\begin{proof} \begin{proof}
The above property is valid. The above property is \textbf{valid}.
\divider \vspace{6pt}
WLOG, suppose $a < b < c$. WLOG, suppose $a < b < c$.
Let $s$ be a step function defined on closed interval $[a, c]$. Let $s$ be a step function defined on closed interval $[a, c]$.
@ -2464,9 +2424,9 @@ $\int_a^b (s + t) = \int_a^b s + \int_a^b t$.
\begin{proof} \begin{proof}
The above property is invalid. The above property is \textbf{invalid}.
\divider \vspace{6pt}
Let $s$ and $t$ be step functions on closed interval $[a, b]$. Let $s$ and $t$ be step functions on closed interval $[a, b]$.
By definition of a step function, there exists a \nameref{sec:def-partition} By definition of a step function, there exists a \nameref{sec:def-partition}
@ -2511,9 +2471,9 @@ $\int_a^b c \cdot s = c \int_a^b s$.
\begin{proof} \begin{proof}
The above property is invalid. The above property is \textbf{invalid}.
\divider \vspace{6pt}
Let $s$ be a step function on closed interval $[a, b]$. Let $s$ be a step function on closed interval $[a, b]$.
By definition of a step function, there exists a \nameref{sec:def-partition} By definition of a step function, there exists a \nameref{sec:def-partition}
@ -2543,9 +2503,9 @@ $\int_{a+c}^{b+c} s(x) \mathop{dx} = \int_a^b s(x + c) \mathop{dx}$.
\begin{proof} \begin{proof}
The above property is valid. The above property is \textbf{valid}.
\divider \vspace{6pt}
Let $s$ be a step function on closed interval $[a + c, b + c]$. Let $s$ be a step function on closed interval $[a + c, b + c]$.
By definition of a \nameref{sec:def-step-function}, there exists a \nameref{sec:def-partition} $P = \{x_0, x_1, \ldots, x_n\}$ such that $s$ is constant on each open subinterval of $P$. By definition of a \nameref{sec:def-step-function}, there exists a \nameref{sec:def-partition} $P = \{x_0, x_1, \ldots, x_n\}$ such that $s$ is constant on each open subinterval of $P$.
@ -2577,9 +2537,9 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
\begin{proof} \begin{proof}
The above property is valid. The above property is \textbf{valid}.
\divider \vspace{6pt}
Let $s$ and $t$ be step functions on closed interval $[a, b]$. Let $s$ and $t$ be step functions on closed interval $[a, b]$.
By definition of a \nameref{sec:def-step-function}, there exists a \nameref{sec:def-partition} By definition of a \nameref{sec:def-step-function}, there exists a \nameref{sec:def-partition}
@ -2611,7 +2571,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
\section{\partial{Theorem 1.9}}% \section{\partial{Theorem 1.9}}%
\label{sec:theorem-1.9} \label{sec:theorem-1.9}
\begin{theorem}{1.9} \begin{theorem}[1.9]
Every function $f$ which is bounded on $[a, b]$ has a lower integral Every function $f$ which is bounded on $[a, b]$ has a lower integral
$\ubar{I}(f)$ and an upper integral $\overline{I}(f)$ satisfying the $\ubar{I}(f)$ and an upper integral $\overline{I}(f)$ satisfying the
@ -2677,7 +2637,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
\label{sec:measurability-ordinate-sets} \label{sec:measurability-ordinate-sets}
\label{sec:theorem-1.10} \label{sec:theorem-1.10}
\begin{theorem}{1.10} \begin{theorem}[1.10]
Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval
$[a, b]$, and let $Q$ denote the ordinate set of $f$ over $[a, b]$. $[a, b]$, and let $Q$ denote the ordinate set of $f$ over $[a, b]$.
@ -2705,7 +2665,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
\label{sec:measurability-graph-nonnegative-function} \label{sec:measurability-graph-nonnegative-function}
\label{sec:theorem-1.11} \label{sec:theorem-1.11}
\begin{theorem}{1.11} \begin{theorem}[1.11]
Let $f$ be a nonnegative function, integrable on an interval $[a, b]$. Let $f$ be a nonnegative function, integrable on an interval $[a, b]$.
Then the graph of $f$, that is, the set Then the graph of $f$, that is, the set
@ -2761,7 +2721,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
\label{sec:integrability-bounded-monotonic-functions} \label{sec:integrability-bounded-monotonic-functions}
\label{sec:theorem-1.12} \label{sec:theorem-1.12}
\begin{theorem}{1.12} \begin{theorem}[1.12]
If $f$ is \nameref{sec:def-monotonic} on a closed interval $[a, b]$, then $f$ If $f$ is \nameref{sec:def-monotonic} on a closed interval $[a, b]$, then $f$
is \nameref{sec:def-integrable} on $[a, b]$. is \nameref{sec:def-integrable} on $[a, b]$.
@ -2867,7 +2827,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
\label{sec:calculation-integral-bounded-monotonic-function} \label{sec:calculation-integral-bounded-monotonic-function}
\label{sec:theorem-1.13} \label{sec:theorem-1.13}
\begin{theorem}{1.13} \begin{theorem}[1.13]
Assume $f$ is increasing on a closed interval $[a, b]$. Assume $f$ is increasing on a closed interval $[a, b]$.
Let $x_k = a + k(b - a) / n$ for $k = 0, 1, \ldots, n$. Let $x_k = a + k(b - a) / n$ for $k = 0, 1, \ldots, n$.

View File

@ -1,9 +1,7 @@
\documentclass{report} \documentclass{report}
\input{../preamble} \input{../preamble}
\makeleancommands
\newcommand{\lean}[2]{\leanref{../#1.html\##2}{#2}}
\newcommand{\leanPretty}[3]{\leanref{../#1.html\##2}{#3}}
\begin{document} \begin{document}

View File

@ -1,8 +1,7 @@
\documentclass{article} \documentclass{article}
\input{../../preamble} \input{../../preamble}
\makeleancommands{../..}
\newcommand{\lean}[2]{\leanref{../../#1.html\##2}{#2}}
\begin{document} \begin{document}
@ -28,8 +27,6 @@ Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
\lean{Common/Real/Sequence/Arithmetic} \lean{Common/Real/Sequence/Arithmetic}
{Real.Arithmetic.sum\_recursive\_closed} {Real.Arithmetic.sum\_recursive\_closed}
\divider
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$. Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
By definition, for all $k \in \mathbb{N}$, By definition, for all $k \in \mathbb{N}$,
\begin{equation} \begin{equation}
@ -90,8 +87,6 @@ Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
\lean{Common/Real/Sequence/Geometric} \lean{Common/Real/Sequence/Geometric}
{Real.Geometric.sum\_recursive\_closed} {Real.Geometric.sum\_recursive\_closed}
\divider
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$. Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
By definition, for all $k \in \mathbb{N}$, By definition, for all $k \in \mathbb{N}$,
\begin{equation} \begin{equation}

View File

@ -1,6 +1,8 @@
\usepackage{amsfonts, amsmath, amsthm} \usepackage{amsfonts, amsmath, amsthm}
\usepackage{bigfoot}
\usepackage{comment} \usepackage{comment}
\usepackage[shortlabels]{enumitem} \usepackage[shortlabels]{enumitem}
\usepackage{etoolbox}
\usepackage{environ} \usepackage{environ}
\usepackage{fancybox} \usepackage{fancybox}
\usepackage{fontawesome5} \usepackage{fontawesome5}
@ -11,23 +13,63 @@
\usepackage{xr-hyper} \usepackage{xr-hyper}
\usepackage{hyperref} \usepackage{hyperref}
% Open "private" namespace.
\makeatletter
% ========================================
% General
% ========================================
\newcommand{\header}[2]{\title{#1}\author{#2}\date{}\maketitle}
% ========================================
% Dividers
% ========================================
\newcommand\@linespace{\vspace{10pt}}
\newcommand\linedivider{\@linespace\hrule\@linespace}
\WithSuffix\newcommand\linedivider*{\@linespace\hrule}
\newcommand\suitdivider{$$\spadesuit\spadesuit\spadesuit$$}
% ======================================== % ========================================
% Linking % Linking
% ======================================== % ========================================
\hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue} \hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue}
\newcommand{\leanref}[2]{\textcolor{blue}{$\pmb{\exists}\;{-}\;$}\href{#1}{#2}}
\newcommand{\textref}[1]{\text{\nameref{#1}}} \newcommand{\textref}[1]{\text{\nameref{#1}}}
\newcommand\@leanlink[4]{%
\textcolor{blue}{$\pmb{\exists}\;{-}\;$}\href{#1/#2.html\##3}{#4}}
% Reference to an anchor of Lean documentation.
\newcommand\leanref[3]{%
\@leanlink{#1}{#2}{#3}{#3}\vspace{10pt}}
\WithSuffix\newcommand\leanref*[3]{%
\@leanlink{#1}{#2}{#3}{#3}}
% Variant that allows customizing display text.
\newcommand\leanpref[4]{%
\@leanlink{#1}{#2}{#3}{#4}\vspace{10pt}}
\WithSuffix\newcommand\leanpref*[4]{%
\@leanlink{#1}{#2}{#3}{#4}}
% Macro to build all Lean related commands relative to a specified directory.
\newcommand\makeleancommands[1]{%
\newcommand\lean[2]{%
\leanref{#1}{##1}{##2}}
\WithSuffix\newcommand\lean*[2]{%
\leanref*{#1}{##1}{##2}}
\newcommand\leanp[3]{%
\leanpref{#1}{##1}{##2}{##3}}
\WithSuffix\newcommand\leanp*[3]{%
\leanpref*{#1}{##1}{##2}{##3}}
}
% ======================================== % ========================================
% Environments % Admonitions
% ======================================== % ========================================
\newcommand{\divider}{\vspace{10pt}\hrule\vspace{10pt}} \newcommand{\@admonition}[2]{%
\newcommand{\header}[2]{\title{#1}\author{#2}\date{}\maketitle}
% Admonitions.
\newcommand{\admonition}[2]{%
\begin{center} \begin{center}
\doublebox{ \doublebox{
\begin{minipage}{0.95\textwidth} \begin{minipage}{0.95\textwidth}
@ -36,26 +78,33 @@
\vspace{2pt} \vspace{2pt}
\end{minipage}} \end{minipage}}
\end{center}} \end{center}}
\newcommand{\note}[1]{\admonition{Note:}{#1}}
\newcommand{\todo}[1]{\admonition{TODO:}{#1}}
% Statements. \newcommand{\note}[1]{\@admonition{Note:}{#1}}
\newenvironment{axiom}{% \newcommand{\todo}[1]{\@admonition{TODO:}{#1}}
\paragraph{\normalfont\normalsize\textit{Axiom.}}}
{\hfill$\square$} % ========================================
\newenvironment{definition}{% % Statements
\paragraph{\normalfont\normalsize\textit{Definition.}}} % ========================================
{\hfill$\square$}
\newcommand\@statement[1]{%
\linedivider*\paragraph{\normalfont\normalsize\textit{#1.}}}
\newenvironment{axiom}{\@statement{Axiom}}{\hfill$\square$}
\newenvironment{definition}{\@statement{Definition}}{\hfill$\square$}
\renewenvironment{proof}{\@statement{Proof}}{\hfill$\square$}
\newtheorem{lemmainner}{Lemma} \newtheorem{lemmainner}{Lemma}
\newenvironment{lemma}[1]{% \newenvironment{lemma}[1][]{%
\renewcommand\thelemmainner{#1}% \ifstrempty{#1}
\lemmainner {\lemmainner}
{\renewcommand\thelemmainner{#1}\lemmainner}
}{\endlemmainner} }{\endlemmainner}
\newtheorem{theoreminner}{Theorem} \newtheorem{theoreminner}{Theorem}
\newenvironment{theorem}[1]{% \newenvironment{theorem}[1][]{%
\renewcommand\thetheoreminner{#1}% \ifstrempty{#1}
\theoreminner {\theoreminner}
{\renewcommand\thetheoreminner{#1}\theoreminner}
}{\endtheoreminner} }{\endtheoreminner}
% ======================================== % ========================================
@ -82,3 +131,7 @@
\newcommand{\ico}[2]{\left[#1, #2\right)} \newcommand{\ico}[2]{\left[#1, #2\right)}
\newcommand{\ioc}[2]{\left(#1, #2\right]} \newcommand{\ioc}[2]{\left(#1, #2\right]}
\newcommand{\ioo}[2]{\left(#1, #2\right)} \newcommand{\ioo}[2]{\left(#1, #2\right)}
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
% Close off "private" namespace.
\makeatother