diff --git a/Bookshelf/Apostol.tex b/Bookshelf/Apostol.tex index a836dad..253b9c8 100644 --- a/Bookshelf/Apostol.tex +++ b/Bookshelf/Apostol.tex @@ -1,14 +1,10 @@ \documentclass{report} \usepackage{graphicx} - -\input{../preamble} - \graphicspath{{./Apostol/images/}} -\newcommand{\lean}[2]{\leanref{../#1.html\##2}{#2}} -\newcommand{\leanPretty}[3]{\leanref{../#1.html\##2}{#3}} -\newcommand{\ubar}[1]{\text{\b{$#1$}}} +\input{../preamble} +\makeleancommands{..} \begin{document} @@ -228,7 +224,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \section{\verified{Lemma 1}}% \label{sec:lemma-1} -\begin{lemma}{1} +\begin{lemma}[1] Nonempty set $S$ has supremum $L$ if and only if set $-S$ has infimum $-L$. @@ -239,8 +235,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.is\_lub\_neg\_set\_iff\_is\_glb\_set\_neg} - \divider - Suppose $L = \sup{S}$ and fix $x \in S$. By definition of the \nameref{sec:def-supremum}, $x \leq L$ and $L$ is the smallest value satisfying this inequality. @@ -253,7 +247,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \section{\verified{Theorem I.27}}% \label{sec:theorem-i.27} -\begin{theorem}{I.27} +\begin{theorem}[I.27] Every nonempty set $S$ that is bounded below has a greatest lower bound; that is, there is a real number $L$ such that $L = \inf{S}$. @@ -265,8 +259,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.exists\_isGLB} - \divider - Let $S$ be a nonempty set bounded below by $x$. Then $-S$ is nonempty and bounded above by $x$. By the \nameref{sec:completeness-axiom}, there exists a @@ -279,7 +271,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \section{\verified{Theorem I.29}}% \label{sec:theorem-i.29} -\begin{theorem}{I.29} +\begin{theorem}[I.29] For every real $x$ there exists a positive integer $n$ such that $n > x$. @@ -290,8 +282,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.exists\_pnat\_geq\_self} - \divider - Let $n = \abs{\ceil{x}} + 1$. It is trivial to see $n$ is a positive integer satisfying $n \geq 1$. Thus all that remains to be shown is that $n > x$. @@ -305,7 +295,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \label{sec:archimedean-property-reals} \label{sec:theorem-i.30} -\begin{theorem}{I.30} +\begin{theorem}[I.30] If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$. @@ -317,8 +307,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.exists\_pnat\_mul\_self\_geq\_of\_pos} - \divider - Let $x > 0$ and $y$ be an arbitrary real number. By \nameref{sec:theorem-i.29}, there exists a positive integer $n$ such that $n > y / x$. @@ -329,7 +317,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \section{\verified{Theorem I.31}}% \label{sec:theorem-i.31} -\begin{theorem}{I.31} +\begin{theorem}[I.31] If three real numbers $a$, $x$, and $y$ satisfy the inequalities $$a \leq x \leq a + \frac{y}{n}$$ for every integer $n \geq 1$, then @@ -342,8 +330,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.forall\_pnat\_leq\_self\_leq\_frac\_imp\_eq} - \divider - By the trichotomy of the reals, there are three cases to consider: \paragraph{Case 1}% @@ -378,7 +364,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \section{\verified{Lemma 2}}% \label{sec:lemma-2} -\begin{lemma}{2} +\begin{lemma}[2] If three real numbers $a$, $x$, and $y$ satisfy the inequalities $$a - y / n \leq x \leq a$$ for every integer $n \geq 1$, then $x = a$. @@ -390,8 +376,6 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.forall\_pnat\_frac\_leq\_self\_leq\_imp\_eq} - \divider - By the trichotomy of the reals, there are three cases to consider: \paragraph{Case 1}% @@ -431,7 +415,7 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers. \subsection{\verified{Theorem I.32a}}% \label{sub:theorem-i.32a} -\begin{theorem}{I.32a} +\begin{theorem}[I.32a] If $S$ has a supremum, then for some $x$ in $S$ we have $x > \sup{S} - h$. @@ -442,8 +426,6 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers. \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.sup\_imp\_exists\_gt\_sup\_sub\_delta} - \divider - By definition of a \nameref{sec:def-supremum}, $\sup{S}$ is the least upper bound of $S$. For the sake of contradiction, suppose for all $x \in S$, @@ -459,7 +441,7 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers. \subsection{\verified{Theorem I.32b}}% \label{sub:theorem-i.32b} -\begin{theorem}{I.32b} +\begin{theorem}[I.32b] If $S$ has an infimum, then for some $x$ in $S$ we have $x < \inf{S} + h$. @@ -470,8 +452,6 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers. \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.inf\_imp\_exists\_lt\_inf\_add\_delta} - \divider - By definition of an \nameref{sec:def-infimum}, $\inf{S}$ is the greatest lower bound of $S$. For the sake of contradiction, suppose for all $x \in S$, @@ -495,7 +475,7 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set \subsection{\verified{Theorem I.33a}}% \label{sub:theorem-i.33a} -\begin{theorem}{I.33a} +\begin{theorem}[I.33a] If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and $$\sup{C} = \sup{A} + \sup{B}.$$ @@ -507,8 +487,6 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.sup\_minkowski\_sum\_eq\_sup\_add\_sup} - \divider - We prove (i) $\sup{A} + \sup{B}$ is an upper bound of $C$ and (ii) $\sup{A} + \sup{B}$ is the \textit{least} upper bound of $C$. @@ -568,7 +546,7 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set \subsection{\verified{Theorem I.33b}}% \label{sub:theorem-i.33b} -\begin{theorem}{I.33b} +\begin{theorem}[I.33b] If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and $$\inf{C} = \inf{A} + \inf{B}.$$ @@ -580,8 +558,6 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.inf\_minkowski\_sum\_eq\_inf\_add\_inf} - \divider - We prove (i) $\inf{A} + \inf{B}$ is a lower bound of $C$ and (ii) $\inf{A} + \inf{B}$ is the \textit{greatest} lower bound of $C$. @@ -641,7 +617,7 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set \section{\verified{Theorem I.34}}% \label{sec:theorem-i.34} -\begin{theorem}{I.34} +\begin{theorem}[I.34] Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that $$s \leq t$$ for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$ @@ -654,8 +630,6 @@ Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set \lean{Bookshelf/Apostol/Chapter\_I\_03} {Apostol.Chapter\_I\_03.forall\_mem\_le\_forall\_mem\_imp\_sup\_le\_inf} - \divider - By hypothesis, $S$ and $T$ are nonempty sets. Let $s \in S$ and $t \in T$. Then $t$ is an upper bound of $S$ and $s$ is a lower bound of $T$. @@ -689,7 +663,7 @@ For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$. \begin{axiom} - \leanPretty{Common/Geometry/Area}{Nonnegative-Property} + \leanp{Common/Geometry/Area}{Nonnegative-Property} {Nonnegative Property} \end{axiom} @@ -702,7 +676,7 @@ If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in \begin{axiom} - \leanPretty{Common/Geometry/Area}{Additive-Property} + \leanp{Common/Geometry/Area}{Additive-Property} {Additive Property} \end{axiom} @@ -715,7 +689,7 @@ If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in \begin{axiom} - \leanPretty{Common/Geometry/Area}{Difference-Property} + \leanp{Common/Geometry/Area}{Difference-Property} {Difference Property} \end{axiom} @@ -728,7 +702,7 @@ If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is \begin{axiom} - \leanPretty{Common/Geometry/Area}{Invariance-Under-Congruence} + \leanp{Common/Geometry/Area}{Invariance-Under-Congruence} {Invariance Under Congruence} \end{axiom} @@ -741,7 +715,7 @@ If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$. \begin{axiom} - \leanPretty{Common/Geometry/Area}{Choice-of-Scale} + \leanp{Common/Geometry/Area}{Choice-of-Scale} {Choice of Scale} \end{axiom} @@ -761,7 +735,7 @@ If there is one and only one number $c$ which satisfies the inequalities \begin{axiom} - \leanPretty{Common/Geometry/Area}{Exhaustion-Property} + \leanp{Common/Geometry/Area}{Exhaustion-Property} {Exhaustion Property} \end{axiom} @@ -1045,7 +1019,7 @@ Prove that every trapezoid and every parallelogram is measurable and derive the These cases are exhaustive and in agreement with one another. Thus $S$ is measurable and $$a(S) = \frac{b_1 + b_2}{2}h.$$ - \divider + \suitdivider Let $P$ be a parallelogram with base $b$ and height $h$. Then $P$ is the union of non-overlapping triangle $T$ and right trapezoid $R$. @@ -1355,8 +1329,6 @@ $\floor{x + n} = \floor{x} + n$ for every integer $n$. \lean{Bookshelf/Apostol/Chapter\_1\_11} {Apostol.Chapter\_1\_11.exercise\_4a} - \divider - Let $x$ be a real number and $n$ an integer. Let $m = \floor{x + n}$. By definition of the floor function, $m$ is the unique integer such that @@ -1380,14 +1352,12 @@ $\floor{-x} = \ \vspace{6pt} - \lean{Bookshelf/Apostol/Chapter\_1\_11} + \lean*{Bookshelf/Apostol/Chapter\_1\_11} {Apostol.Chapter\_1\_11.exercise\_4b\_1} \lean{Bookshelf/Apostol/Chapter\_1\_11} {Apostol.Chapter\_1\_11.exercise\_4b\_2} - \divider - There are two cases to consider: \paragraph{Case 1}% @@ -1428,8 +1398,6 @@ $\floor{x + y} = \floor{x} + \floor{y}$ or $\floor{x} + \floor{y} + 1$. \lean{Bookshelf/Apostol/Chapter\_1\_11} {Apostol.Chapter\_1\_11.exercise\_4c} - \divider - Rewrite $x$ and $y$ as the sum of their floor and fractional components: $x = \floor{x} + \{x\}$ and $y = \floor{y} + \{y\}$. Now @@ -1474,8 +1442,6 @@ $\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$ \lean{Bookshelf/Apostol/Chapter\_1\_11} {Apostol.Chapter\_1\_11.exercise\_4d} - \divider - This is immediately proven by applying \nameref{sec:hermites-identity}. \end{proof} @@ -1490,8 +1456,6 @@ $\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$ \lean{Bookshelf/Apostol/Chapter\_1\_11} {Apostol.Chapter\_1\_11.exercise\_4e} - \divider - This is immediately proven by applying \nameref{sec:hermites-identity}. \end{proof} @@ -1508,8 +1472,6 @@ State and prove such a generalization. \lean{Bookshelf/Apostol/Chapter\_1\_11} {Apostol.Chapter\_1\_11.exercise\_5} - \divider - We prove that for all natural numbers $n$ and real numbers $x$, the following identity holds: \begin{equation} @@ -1734,8 +1696,6 @@ Now apply Exercises 4(a) and (b) to the bracket on the right. \lean{Bookshelf/Apostol/Chapter\_1\_11} {Apostol.Chapter\_1\_11.exercise\_7b} - \divider - Let $n = 1, \ldots, b - 1$. By hypothesis, $a$ and $b$ are coprime. Furthermore, $n < b$ for all values of $n$. @@ -1807,7 +1767,7 @@ This property is described by saying that every step function is a linear \label{sec:step-additive-property} \label{sec:theorem-1.2} -\begin{theorem}{1.2} +\begin{theorem}[1.2] Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval $[a, b]$. @@ -1850,7 +1810,7 @@ This property is described by saying that every step function is a linear \label{sec:step-homogeneous-property} \label{sec:theorem-1.3} -\begin{theorem}{1.3} +\begin{theorem}[1.3] Let $s$ be a \nameref{sec:def-step-function} on closed interval $[a, b]$. For every real number $c$, we have @@ -1881,7 +1841,7 @@ This property is described by saying that every step function is a linear \label{sec:step-linearity-property} \label{sec:theorem-1.4} -\begin{theorem}{1.4} +\begin{theorem}[1.4] Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval $[a, b]$. @@ -1911,7 +1871,7 @@ This property is described by saying that every step function is a linear \label{sec:step-comparison-theorem} \label{sec:theorem-1.5} -\begin{theorem}{1.5} +\begin{theorem}[1.5] Let $s$ and $t$ be \nameref{sec:def-step-function}s on closed interval $[a, b]$. @@ -1950,7 +1910,7 @@ This property is described by saying that every step function is a linear \label{sec:step-additivity-with-respect-interval-integration} \label{sec:theorem-1.6} -\begin{theorem}{1.6} +\begin{theorem}[1.6] Let $a, b, c \in \mathbb{R}$ and $s$ a \nameref{sec:def-step-function} on the smallest closed interval containing them. @@ -1996,7 +1956,7 @@ This property is described by saying that every step function is a linear \label{sec:step-invariance-under-translation} \label{sec:theorem-1.7} -\begin{theorem}{1.7} +\begin{theorem}[1.7] Let $s$ be a step function on closed interval $[a, b]$. Then @@ -2037,7 +1997,7 @@ This property is described by saying that every step function is a linear \label{sec:step-expansion-contraction-interval-integration} \label{sec:theorem-1.8} -\begin{theorem}{1.8} +\begin{theorem}[1.8] Let $s$ be a step function on closed interval $[a, b]$. Then @@ -2425,13 +2385,13 @@ Which of the following properties would remain valid in this new theory? $\int_a^b s + \int_b^c s = \int_a^c s$. \note{This property mirrors - \nameref{sec:step-additivity-with-respect-interval-integration}} + \nameref{sec:step-additivity-with-respect-interval-integration}.} \begin{proof} - The above property is valid. + The above property is \textbf{valid}. - \divider + \vspace{6pt} WLOG, suppose $a < b < c$. Let $s$ be a step function defined on closed interval $[a, c]$. @@ -2464,9 +2424,9 @@ $\int_a^b (s + t) = \int_a^b s + \int_a^b t$. \begin{proof} - The above property is invalid. + The above property is \textbf{invalid}. - \divider + \vspace{6pt} Let $s$ and $t$ be step functions on closed interval $[a, b]$. By definition of a step function, there exists a \nameref{sec:def-partition} @@ -2511,9 +2471,9 @@ $\int_a^b c \cdot s = c \int_a^b s$. \begin{proof} - The above property is invalid. + The above property is \textbf{invalid}. - \divider + \vspace{6pt} Let $s$ be a step function on closed interval $[a, b]$. By definition of a step function, there exists a \nameref{sec:def-partition} @@ -2543,9 +2503,9 @@ $\int_{a+c}^{b+c} s(x) \mathop{dx} = \int_a^b s(x + c) \mathop{dx}$. \begin{proof} - The above property is valid. + The above property is \textbf{valid}. - \divider + \vspace{6pt} Let $s$ be a step function on closed interval $[a + c, b + c]$. By definition of a \nameref{sec:def-step-function}, there exists a \nameref{sec:def-partition} $P = \{x_0, x_1, \ldots, x_n\}$ such that $s$ is constant on each open subinterval of $P$. @@ -2577,9 +2537,9 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$. \begin{proof} - The above property is valid. + The above property is \textbf{valid}. - \divider + \vspace{6pt} Let $s$ and $t$ be step functions on closed interval $[a, b]$. By definition of a \nameref{sec:def-step-function}, there exists a \nameref{sec:def-partition} @@ -2611,7 +2571,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$. \section{\partial{Theorem 1.9}}% \label{sec:theorem-1.9} -\begin{theorem}{1.9} +\begin{theorem}[1.9] Every function $f$ which is bounded on $[a, b]$ has a lower integral $\ubar{I}(f)$ and an upper integral $\overline{I}(f)$ satisfying the @@ -2677,7 +2637,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$. \label{sec:measurability-ordinate-sets} \label{sec:theorem-1.10} -\begin{theorem}{1.10} +\begin{theorem}[1.10] Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval $[a, b]$, and let $Q$ denote the ordinate set of $f$ over $[a, b]$. @@ -2705,7 +2665,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$. \label{sec:measurability-graph-nonnegative-function} \label{sec:theorem-1.11} -\begin{theorem}{1.11} +\begin{theorem}[1.11] Let $f$ be a nonnegative function, integrable on an interval $[a, b]$. Then the graph of $f$, that is, the set @@ -2761,7 +2721,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$. \label{sec:integrability-bounded-monotonic-functions} \label{sec:theorem-1.12} -\begin{theorem}{1.12} +\begin{theorem}[1.12] If $f$ is \nameref{sec:def-monotonic} on a closed interval $[a, b]$, then $f$ is \nameref{sec:def-integrable} on $[a, b]$. @@ -2867,7 +2827,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$. \label{sec:calculation-integral-bounded-monotonic-function} \label{sec:theorem-1.13} -\begin{theorem}{1.13} +\begin{theorem}[1.13] Assume $f$ is increasing on a closed interval $[a, b]$. Let $x_k = a + k(b - a) / n$ for $k = 0, 1, \ldots, n$. diff --git a/Bookshelf/Enderton.tex b/Bookshelf/Enderton.tex index 0773151..243aeb4 100644 --- a/Bookshelf/Enderton.tex +++ b/Bookshelf/Enderton.tex @@ -1,9 +1,7 @@ \documentclass{report} \input{../preamble} - -\newcommand{\lean}[2]{\leanref{../#1.html\##2}{#2}} -\newcommand{\leanPretty}[3]{\leanref{../#1.html\##2}{#3}} +\makeleancommands \begin{document} diff --git a/Common/Real/Sequence.tex b/Common/Real/Sequence.tex index beb681c..eb456da 100644 --- a/Common/Real/Sequence.tex +++ b/Common/Real/Sequence.tex @@ -1,8 +1,7 @@ \documentclass{article} \input{../../preamble} - -\newcommand{\lean}[2]{\leanref{../../#1.html\##2}{#2}} +\makeleancommands{../..} \begin{document} @@ -28,8 +27,6 @@ Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$. \lean{Common/Real/Sequence/Arithmetic} {Real.Arithmetic.sum\_recursive\_closed} - \divider - Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$. By definition, for all $k \in \mathbb{N}$, \begin{equation} @@ -90,8 +87,6 @@ Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$. \lean{Common/Real/Sequence/Geometric} {Real.Geometric.sum\_recursive\_closed} - \divider - Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$. By definition, for all $k \in \mathbb{N}$, \begin{equation} diff --git a/preamble.tex b/preamble.tex index 747a4be..8cc1f24 100644 --- a/preamble.tex +++ b/preamble.tex @@ -1,6 +1,8 @@ \usepackage{amsfonts, amsmath, amsthm} +\usepackage{bigfoot} \usepackage{comment} \usepackage[shortlabels]{enumitem} +\usepackage{etoolbox} \usepackage{environ} \usepackage{fancybox} \usepackage{fontawesome5} @@ -11,23 +13,63 @@ \usepackage{xr-hyper} \usepackage{hyperref} +% Open "private" namespace. +\makeatletter + +% ======================================== +% General +% ======================================== + +\newcommand{\header}[2]{\title{#1}\author{#2}\date{}\maketitle} + +% ======================================== +% Dividers +% ======================================== + +\newcommand\@linespace{\vspace{10pt}} +\newcommand\linedivider{\@linespace\hrule\@linespace} +\WithSuffix\newcommand\linedivider*{\@linespace\hrule} +\newcommand\suitdivider{$$\spadesuit\spadesuit\spadesuit$$} + % ======================================== % Linking % ======================================== \hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue} -\newcommand{\leanref}[2]{\textcolor{blue}{$\pmb{\exists}\;{-}\;$}\href{#1}{#2}} \newcommand{\textref}[1]{\text{\nameref{#1}}} +\newcommand\@leanlink[4]{% + \textcolor{blue}{$\pmb{\exists}\;{-}\;$}\href{#1/#2.html\##3}{#4}} + +% Reference to an anchor of Lean documentation. +\newcommand\leanref[3]{% + \@leanlink{#1}{#2}{#3}{#3}\vspace{10pt}} +\WithSuffix\newcommand\leanref*[3]{% + \@leanlink{#1}{#2}{#3}{#3}} + +% Variant that allows customizing display text. +\newcommand\leanpref[4]{% + \@leanlink{#1}{#2}{#3}{#4}\vspace{10pt}} +\WithSuffix\newcommand\leanpref*[4]{% + \@leanlink{#1}{#2}{#3}{#4}} + +% Macro to build all Lean related commands relative to a specified directory. +\newcommand\makeleancommands[1]{% + \newcommand\lean[2]{% + \leanref{#1}{##1}{##2}} + \WithSuffix\newcommand\lean*[2]{% + \leanref*{#1}{##1}{##2}} + \newcommand\leanp[3]{% + \leanpref{#1}{##1}{##2}{##3}} + \WithSuffix\newcommand\leanp*[3]{% + \leanpref*{#1}{##1}{##2}{##3}} +} + % ======================================== -% Environments +% Admonitions % ======================================== -\newcommand{\divider}{\vspace{10pt}\hrule\vspace{10pt}} -\newcommand{\header}[2]{\title{#1}\author{#2}\date{}\maketitle} - -% Admonitions. -\newcommand{\admonition}[2]{% +\newcommand{\@admonition}[2]{% \begin{center} \doublebox{ \begin{minipage}{0.95\textwidth} @@ -36,26 +78,33 @@ \vspace{2pt} \end{minipage}} \end{center}} -\newcommand{\note}[1]{\admonition{Note:}{#1}} -\newcommand{\todo}[1]{\admonition{TODO:}{#1}} -% Statements. -\newenvironment{axiom}{% - \paragraph{\normalfont\normalsize\textit{Axiom.}}} - {\hfill$\square$} -\newenvironment{definition}{% - \paragraph{\normalfont\normalsize\textit{Definition.}}} - {\hfill$\square$} +\newcommand{\note}[1]{\@admonition{Note:}{#1}} +\newcommand{\todo}[1]{\@admonition{TODO:}{#1}} + +% ======================================== +% Statements +% ======================================== + +\newcommand\@statement[1]{% + \linedivider*\paragraph{\normalfont\normalsize\textit{#1.}}} + +\newenvironment{axiom}{\@statement{Axiom}}{\hfill$\square$} +\newenvironment{definition}{\@statement{Definition}}{\hfill$\square$} +\renewenvironment{proof}{\@statement{Proof}}{\hfill$\square$} \newtheorem{lemmainner}{Lemma} -\newenvironment{lemma}[1]{% - \renewcommand\thelemmainner{#1}% - \lemmainner +\newenvironment{lemma}[1][]{% + \ifstrempty{#1} + {\lemmainner} + {\renewcommand\thelemmainner{#1}\lemmainner} }{\endlemmainner} + \newtheorem{theoreminner}{Theorem} -\newenvironment{theorem}[1]{% - \renewcommand\thetheoreminner{#1}% - \theoreminner +\newenvironment{theorem}[1][]{% + \ifstrempty{#1} + {\theoreminner} + {\renewcommand\thetheoreminner{#1}\theoreminner} }{\endtheoreminner} % ======================================== @@ -82,3 +131,7 @@ \newcommand{\ico}[2]{\left[#1, #2\right)} \newcommand{\ioc}[2]{\left(#1, #2\right]} \newcommand{\ioo}[2]{\left(#1, #2\right)} +\newcommand{\ubar}[1]{\text{\b{$#1$}}} + +% Close off "private" namespace. +\makeatother