Theorem Proving in Lean. Finish exercises 7.
parent
5f8cc89727
commit
9558ea4e52
|
@ -31,42 +31,42 @@ def add (m n : Nat) : Nat :=
|
|||
instance : Add Nat where
|
||||
add := add
|
||||
|
||||
theorem addZero (m : Nat) : m + Nat.zero = m :=
|
||||
theorem add_zero (m : Nat) : m + Nat.zero = m :=
|
||||
rfl
|
||||
|
||||
theorem addSucc (m n : Nat) : m + n.succ = (m + n).succ :=
|
||||
theorem add_succ (m n : Nat) : m + n.succ = (m + n).succ :=
|
||||
rfl
|
||||
|
||||
theorem zeroAdd (n : Nat) : Nat.zero + n = n :=
|
||||
theorem zero_add (n : Nat) : Nat.zero + n = n :=
|
||||
Nat.recOn (motive := fun x => Nat.zero + x = x)
|
||||
n
|
||||
(show Nat.zero + Nat.zero = Nat.zero from rfl)
|
||||
(fun (n : Nat) (ih : Nat.zero + n = n) =>
|
||||
show Nat.zero + n.succ = n.succ from
|
||||
calc
|
||||
Nat.zero + n.succ = (Nat.zero + n).succ := addSucc Nat.zero n
|
||||
Nat.zero + n.succ = (Nat.zero + n).succ := add_succ Nat.zero n
|
||||
_ = n.succ := by rw [ih])
|
||||
|
||||
-- Additional definitions.
|
||||
def mul (m n : Nat) : Nat := sorry
|
||||
def mul (m n : Nat) : Nat :=
|
||||
match n with
|
||||
| Nat.zero => Nat.zero
|
||||
| Nat.succ n => m + mul m n
|
||||
|
||||
-- def mul (m n : nat) : nat :=
|
||||
-- nat.rec_on n nat.zero (λ k ak, add m ak)
|
||||
def pred (n : Nat) : Nat :=
|
||||
match n with
|
||||
| Nat.zero => Nat.zero
|
||||
| Nat.succ n => n
|
||||
|
||||
def pred (n : Nat) : Nat := sorry
|
||||
def sub (m n : Nat) : Nat :=
|
||||
match n with
|
||||
| Nat.zero => m
|
||||
| Nat.succ n => sub (pred m) n
|
||||
|
||||
-- def pred (n : nat) : nat :=
|
||||
-- nat.cases_on n nat.zero id
|
||||
|
||||
def sub (m n : Nat) : Nat := sorry
|
||||
|
||||
-- def sub (m n : nat) : nat :=
|
||||
-- nat.rec_on n m (λ k ak, pred ak)
|
||||
|
||||
def exp (m n : Nat) : Nat := sorry
|
||||
|
||||
-- def exp (m n : nat) : nat :=
|
||||
-- nat.rec_on n (nat.zero.succ) (λ k ak, mul m ak)
|
||||
def exp (m n : Nat) : Nat :=
|
||||
match n with
|
||||
| Nat.zero => Nat.zero.succ
|
||||
| Nat.succ n => mul m (exp m n)
|
||||
|
||||
end Nat
|
||||
|
||||
|
@ -82,41 +82,90 @@ end ex1
|
|||
-- c. `reverse (reverse t) = t`
|
||||
namespace ex2
|
||||
|
||||
open List
|
||||
|
||||
variable {α : Type _}
|
||||
|
||||
-- theorem length_sum (s t : list α) : length (s ++ t) = length s + length t :=
|
||||
-- list.rec_on s
|
||||
-- (by rw [nil_append, length, zero_add])
|
||||
-- (assume hd tl ih, by rw [
|
||||
-- length,
|
||||
-- cons_append,
|
||||
-- length,
|
||||
-- ih,
|
||||
-- add_assoc,
|
||||
-- add_comm t.length,
|
||||
-- add_assoc
|
||||
-- ])
|
||||
--
|
||||
-- lemma cons_reverse (hd : α) (tl : list α)
|
||||
-- : reverse (hd :: tl) = reverse tl ++ [hd] :=
|
||||
-- sorry
|
||||
--
|
||||
-- theorem length_reverse (t : list α) : length (reverse t) = length t :=
|
||||
-- list.rec_on t
|
||||
-- (by unfold reverse reverse_core)
|
||||
-- (assume hd tl ih, begin
|
||||
-- unfold length,
|
||||
-- rw cons_reverse,
|
||||
-- rw length_sum,
|
||||
-- unfold length,
|
||||
-- rw zero_add,
|
||||
-- rw ih,
|
||||
-- end)
|
||||
--
|
||||
-- theorem reverse_reverse (t : list α) : reverse (reverse t) = t :=
|
||||
-- list.rec_on t rfl (assume hd tl ih, sorry)
|
||||
theorem length_sum (s t : List α)
|
||||
: List.length (s ++ t) = List.length s + List.length t :=
|
||||
List.recOn s
|
||||
(by rw [List.nil_append, List.length, Nat.zero_add])
|
||||
(fun hd tl ih => by rw [
|
||||
List.length,
|
||||
List.cons_append,
|
||||
List.length,
|
||||
ih,
|
||||
Nat.add_assoc,
|
||||
Nat.add_comm t.length,
|
||||
Nat.add_assoc
|
||||
])
|
||||
|
||||
theorem length_inject_anywhere (x : α) (as bs : List α)
|
||||
: List.length (as ++ [x] ++ bs) = List.length as + List.length bs + 1 := by
|
||||
induction as with
|
||||
| nil => simp
|
||||
| cons head tail ih => calc
|
||||
List.length (head :: tail ++ [x] ++ bs)
|
||||
= List.length (tail ++ [x] ++ bs) + 1 := rfl
|
||||
_ = List.length tail + List.length bs + 1 + 1 := by rw [ih]
|
||||
_ = List.length tail + (List.length bs + 1) + 1 := by rw [Nat.add_assoc (List.length tail)]
|
||||
_ = List.length tail + (1 + List.length bs) + 1 := by rw [Nat.add_comm (List.length bs)]
|
||||
_ = List.length tail + 1 + List.length bs + 1 := by rw [Nat.add_assoc (List.length tail) 1]
|
||||
_ = List.length (head :: tail) + List.length bs + 1 := rfl
|
||||
|
||||
theorem list_reverse_aux_append (as bs : List α)
|
||||
: List.reverseAux as bs = List.reverse as ++ bs := by
|
||||
induction as generalizing bs with
|
||||
| nil => rw [List.reverseAux, List.reverse, List.reverseAux, List.nil_append]
|
||||
| cons head tail ih => calc
|
||||
List.reverseAux (head :: tail) bs
|
||||
= List.reverseAux tail (head :: bs) := rfl
|
||||
_ = List.reverse tail ++ (head :: bs) := by rw [ih]
|
||||
_ = List.reverse tail ++ ([head] ++ bs) := rfl
|
||||
_ = List.reverse tail ++ [head] ++ bs := by rw [List.append_assoc]
|
||||
_ = List.reverseAux tail [head] ++ bs := by rw [ih]
|
||||
_ = List.reverseAux (head :: tail) [] ++ bs := rfl
|
||||
|
||||
theorem length_reverse (t : List α)
|
||||
: List.length (List.reverse t) = List.length t := by
|
||||
induction t with
|
||||
| nil => simp
|
||||
| cons head tail ih => calc
|
||||
List.length (List.reverse (head :: tail))
|
||||
= List.length (List.reverseAux tail [head]) := rfl
|
||||
_ = List.length (List.reverse tail ++ [head]) := by rw [list_reverse_aux_append]
|
||||
_ = List.length (List.reverse tail) + List.length [head] := by simp
|
||||
_ = List.length tail + List.length [head] := by rw [ih]
|
||||
_ = List.length tail + 1 := rfl
|
||||
_ = List.length [] + List.length tail + 1 := by simp
|
||||
_ = List.length ([] ++ [head] ++ tail) := by rw [length_inject_anywhere]
|
||||
_ = List.length (head :: tail) := rfl
|
||||
|
||||
theorem reverse_reverse_aux (as bs : List α)
|
||||
: List.reverse (as ++ bs) = List.reverse bs ++ List.reverse as := by
|
||||
induction as generalizing bs with
|
||||
| nil => simp
|
||||
| cons head tail ih => calc
|
||||
List.reverse (head :: tail ++ bs)
|
||||
= List.reverseAux (head :: tail ++ bs) [] := rfl
|
||||
_ = List.reverseAux (tail ++ bs) [head] := rfl
|
||||
_ = List.reverse (tail ++ bs) ++ [head] := by rw [list_reverse_aux_append]
|
||||
_ = List.reverse bs ++ List.reverse tail ++ [head] := by rw [ih]
|
||||
_ = List.reverse bs ++ (List.reverse tail ++ [head]) := by rw [List.append_assoc]
|
||||
_ = List.reverse bs ++ (List.reverseAux tail [head]) := by rw [list_reverse_aux_append]
|
||||
_ = List.reverse bs ++ (List.reverseAux (head :: tail) []) := rfl
|
||||
_ = List.reverse bs ++ List.reverse (head :: tail) := rfl
|
||||
|
||||
theorem reverse_reverse (t : List α)
|
||||
: List.reverse (List.reverse t) = t := by
|
||||
induction t with
|
||||
| nil => simp
|
||||
| cons head tail ih => calc
|
||||
List.reverse (List.reverse (head :: tail))
|
||||
= List.reverse (List.reverseAux tail [head]) := rfl
|
||||
_ = List.reverse (List.reverse tail ++ [head]) := by rw [list_reverse_aux_append]
|
||||
_ = List.reverse [head] ++ List.reverse (List.reverse tail) := by rw [reverse_reverse_aux]
|
||||
_ = List.reverse [head] ++ tail := by rw [ih]
|
||||
_ = [head] ++ tail := by simp
|
||||
_ = head :: tail := rfl
|
||||
|
||||
end ex2
|
||||
|
||||
|
@ -134,61 +183,22 @@ end ex2
|
|||
-- assignment of values to the variables.
|
||||
namespace ex3
|
||||
|
||||
-- inductive foo : Type*
|
||||
-- | const : ℕ → foo
|
||||
-- | var : ℕ → foo
|
||||
-- | plus : foo → foo → foo
|
||||
-- | times : foo → foo → foo
|
||||
--
|
||||
-- def value_at : ℕ → list ℕ → ℕ
|
||||
-- | 0 vs := list.head vs
|
||||
-- | i [] := default
|
||||
-- | (i + 1) vs := value_at i (list.tail vs)
|
||||
--
|
||||
-- -- The provided "variables" are supplied in a 0-indexed list.
|
||||
-- def eval_foo : foo → list ℕ → ℕ
|
||||
-- | (foo.const n) vs := n
|
||||
-- | (foo.var n) vs := value_at n vs
|
||||
-- | (foo.plus m n) vs := eval_foo m vs + eval_foo n vs
|
||||
-- | (foo.times m n) vs := eval_foo m vs * eval_foo n vs
|
||||
inductive foo : Type _
|
||||
| const : Nat → foo
|
||||
| var : Nat → foo
|
||||
| plus : foo → foo → foo
|
||||
| times : foo → foo → foo
|
||||
|
||||
def value_at : Nat → List Nat → Nat
|
||||
| _, [] => default
|
||||
| 0, vs => List.head! vs
|
||||
| (i + 1), vs => value_at i (List.tail! vs)
|
||||
|
||||
-- The provided "variables" are supplied in a 0-indexed list.
|
||||
def eval_foo : foo → List Nat → Nat
|
||||
| (foo.const n) , _ => n
|
||||
| (foo.var n) , vs => value_at n vs
|
||||
| (foo.plus m n) , vs => eval_foo m vs + eval_foo n vs
|
||||
| (foo.times m n), vs => eval_foo m vs * eval_foo n vs
|
||||
|
||||
end ex3
|
||||
|
||||
-- Exercise 4
|
||||
--
|
||||
-- Similarly, define the type of propositional formulas, as well as functions on
|
||||
-- the type of such formulas: an evaluation function, functions that measure the
|
||||
-- complexity of a formula, and a function that substitutes another formula for
|
||||
-- a given variable.
|
||||
namespace ex4
|
||||
|
||||
-- inductive foo : Type*
|
||||
-- | tt : foo
|
||||
-- | ff : foo
|
||||
-- | and : foo → foo → foo
|
||||
-- | or : foo → foo → foo
|
||||
--
|
||||
-- def eval_foo : foo → bool
|
||||
-- | foo.tt := true
|
||||
-- | foo.ff := false
|
||||
-- | (foo.and lhs rhs) := eval_foo lhs ∧ eval_foo rhs
|
||||
-- | (foo.or lhs rhs) := eval_foo lhs ∨ eval_foo rhs
|
||||
--
|
||||
-- def complexity_foo : foo → ℕ
|
||||
-- | foo.tt := 1
|
||||
-- | foo.ff := 1
|
||||
-- | (foo.and lhs rhs) := 1 + complexity_foo lhs + complexity_foo rhs
|
||||
-- | (foo.or lhs rhs) := 1 + complexity_foo lhs + complexity_foo rhs
|
||||
--
|
||||
-- def substitute : foo → foo := sorry
|
||||
|
||||
end ex4
|
||||
|
||||
-- Exercise 5
|
||||
--
|
||||
-- Simulate the mutual inductive definition of `even` and `odd` described in
|
||||
-- Section 7.9 with an ordinary inductive type, using an index to encode the
|
||||
-- choice between them in the target type.
|
||||
namespace ex5
|
||||
|
||||
end ex5
|
||||
|
|
Loading…
Reference in New Issue