Enderton. Finish exercises 6.

finite-set-exercises
Joshua Potter 2023-06-22 14:34:50 -06:00
parent 8b5736397c
commit 3d556bc613
2 changed files with 202 additions and 8 deletions

View File

@ -2792,36 +2792,127 @@ Show that if $R$ is a relation, then $\fld{R} = \bigcup\bigcup R$.
\end{proof}
\subsection{\unverified{Exercise 6.8}}%
\subsection{\verified{Exercise 6.8}}%
\label{sub:exercise-6.8}
Show that for any set $\mathscr{A}$:
\begin{align}
\dom{\bigcup{\mathscr{A}}}
& = \bigcup\; \{ \dom{R} \mid R \in \mathscr{A} \},
& = \bigcup\;\{ \dom{R} \mid R \in \mathscr{A} \},
& \label{sub:exercise-6.8-eq1} \\
\ran{\bigcup{\mathscr{A}}}
& = \bigcup\; \{ \ran{R} \mid R \in \mathscr{A} \}.
& = \bigcup\;\{ \ran{R} \mid R \in \mathscr{A} \}.
& \label{sub:exercise-6.8-eq2}
\end{align}
\begin{proof}
TODO
\statementpadding
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_6\_8\_i}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_6\_8\_ii}
We prove (i) \eqref{sub:exercise-6.8-eq1} and then (ii)
\eqref{sub:exercise-6.8-eq2}.
\paragraph{(i)}%
Let $x \in \dom{\bigcup{\mathscr{A}}}$.
By definition of a domain, there exists some $y$ such that
$\left< x, y \right> \in \bigcup{\mathscr{A}}$.
By definition of the union of sets,
$\exists y, \exists R \in \mathscr{A}, \left< x, y \right> \in R$.
Equivalently,
$\exists R \in \mathscr{A}, \exists y, \left< x, y \right> \in R$.
By another application of the definition of a domain,
$\exists R \in \mathscr{A}, x \in \dom{R}$.
By another application of the definition of the union of sets,
$x \in \bigcup\;\{ \dom{R} \mid R \in \mathscr{A} \}$.
Since membership of these two sets holds biconditionally, it follows
\eqref{sub:exercise-6.8-eq1} holds.
\paragraph{(ii)}%
Let $x \in \ran{\bigcup{\mathscr{A}}}$.
By definition of a range, there exists some $t$ such that
$\left< t, x \right> \in \bigcup{\mathscr{A}}$.
By definition of the union of sets,
$\exists t, \exists R \in \mathscr{A}, \left< t, x \right> \in R$.
Equivalently,
$\exists R \in \mathscr{A}, \exists t, \left< t, x \right> \in R$.
By another application of the definition of a range,
$\exists R \in \mathscr{A}, x \in \ran{R}$.
By another application of the definition of the union of sets,
$x \in \bigcup\;\{ \ran{R} \mid R \in \mathscr{A} \}$.
Since membership of these two sets holds biconditionally, it follows
\eqref{sub:exercise-6.8-eq2} holds.
\end{proof}
\subsection{\unverified{Exercise 6.9}}%
\subsection{\verified{Exercise 6.9}}%
\label{sub:exercise-6.9}
Discuss the result of replacing the union operation by the intersection
operation in the preceding problem.
\begin{proof}
\begin{answer}
TODO
\statementpadding
\end{proof}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_6\_9\_i}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_6\_9\_ii}
Replacing the union operation with the intersection problem produces the
following relationships
\begin{align}
\dom{\bigcap{\mathscr{A}}}
& \subseteq \bigcap\;\{ \dom{R} \mid R \in \mathscr{A} \},
& \label{sub:exercise-6.9-eq1} \\
\ran{\bigcap{\mathscr{A}}}
& \subseteq \bigcap\;\{ \ran{R} \mid R \in \mathscr{A} \}.
& \label{sub:exercise-6.9-eq2}
\end{align}
We prove (i) \eqref{sub:exercise-6.9-eq1} and then (ii)
\eqref{sub:exercise-6.9-eq2}.
\paragraph{(i)}%
Let $x \in \dom{\bigcap{\mathscr{A}}}$.
By definition of the domain of a set,
$\exists y, \left< x, y \right> \in \bigcap{\mathscr{A}}$.
By definition of the intersection of sets,
$\exists y, \forall R \in \mathscr{A}, \left< x, y \right> \in R$.
But this implies that
$\forall R \in \mathscr{A}, \exists y, \left< x, y \right> \in R$.
By another application of the definition of the domain of a set,
$\forall R \in \mathscr{A}, x \in \dom{R}$.
By another application of the intersection of sets,
$x \in \bigcap\;\{ \dom{R} \mid R \in \mathscr{A} \}$.
Thus \eqref{sub:exercise-6.9-eq1} holds.
\paragraph{(ii)}%
Let $x \in \ran{\bigcap{\mathscr{A}}}$.
By definition of the range of a set,
$\exists t, \left< t, x \right> \in \bigcap{\mathscr{A}}$.
By definition of the intersection of sets,
$\exists t, \forall R \in \mathscr{A}, \left< t, x \right> \in R$.
But this implies that
$\forall R \in \mathscr{A}, \exists t, \left< t, x \right> \in R$.
By another application of the definition of the domain of a set,
$\forall R \in \mathscr{A}, x \in \ran{R}$.
By another application of the intersection of sets,
$x \in \bigcap\;\{ \ran{R} \mid R \in \mathscr{A} \}$.
Thus \eqref{sub:exercise-6.9-eq2} holds.
\end{answer}
\section{Exercises 7}%
\label{sec:exercises-7}

View File

@ -329,4 +329,107 @@ theorem exercise_6_7 {R : Set.Relation α}
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at this
exact hxy_mem this
/-- ### Exercise 6.8i
Show that for any set `𝓐`:
```
dom A = { dom R | R ∈ 𝓐 }
```
-/
theorem exercise_6_8_i {A : Set (Set.Relation α)}
: Set.Relation.dom (⋃₀ A) = ⋃₀ { Set.Relation.dom R | R ∈ A } := by
ext x
unfold Set.Relation.dom Prod.fst
simp only [
Set.mem_image,
Set.mem_sUnion,
Prod.exists,
exists_and_right,
exists_eq_right,
Set.mem_setOf_eq,
exists_exists_and_eq_and
]
apply Iff.intro
· intro ⟨y, ⟨t, ⟨ht, hx⟩⟩⟩
exact ⟨t, ⟨ht, ⟨y, hx⟩⟩⟩
· intro ⟨t, ⟨ht, ⟨y, hx⟩⟩⟩
exact ⟨y, ⟨t, ⟨ht, hx⟩⟩⟩
/-- ### Exercise 6.8ii
Show that for any set `𝓐`:
```
ran A = { ran R | R ∈ 𝓐 }
```
-/
theorem exercise_6_8_ii {A : Set (Set.Relation α)}
: Set.Relation.ran (⋃₀ A) = ⋃₀ { Set.Relation.ran R | R ∈ A } := by
ext x
unfold Set.Relation.ran Prod.snd
simp only [
Set.mem_image,
Set.mem_sUnion,
Prod.exists,
exists_eq_right,
Set.mem_setOf_eq,
exists_exists_and_eq_and
]
apply Iff.intro
· intro ⟨t, ⟨y, ⟨hy, ht⟩⟩⟩
exact ⟨y, ⟨hy, ⟨t, ht⟩⟩⟩
· intro ⟨y, ⟨hy, ⟨t, ht⟩⟩⟩
exact ⟨t, ⟨y, ⟨hy, ht⟩⟩⟩
/-- ## Exercise 6.9i
Discuss the result of replacing the union operation by the intersection
operation in the preceding problem.
```
dom A = { dom R | R ∈ 𝓐 }
```
-/
theorem exercise_6_9_i {A : Set (Set.Relation α)}
: Set.Relation.dom (⋂₀ A) ⊆ ⋂₀ { Set.Relation.dom R | R ∈ A } := by
show ∀ x, x ∈ Set.Relation.dom (⋂₀ A) → x ∈ ⋂₀ { Set.Relation.dom R | R ∈ A }
unfold Set.Relation.dom Prod.fst
simp only [
Set.mem_image,
Set.mem_sInter,
Prod.exists,
exists_and_right,
exists_eq_right,
Set.mem_setOf_eq,
forall_exists_index,
and_imp,
forall_apply_eq_imp_iff₂
]
intro _ y hy R hR
exact ⟨y, hy R hR⟩
/-- ## Exercise 6.9ii
Discuss the result of replacing the union operation by the intersection
operation in the preceding problem.
```
ran A = { ran R | R ∈ 𝓐 }
```
-/
theorem exercise_6_9_ii {A : Set (Set.Relation α)}
: Set.Relation.ran (⋂₀ A) ⊆ ⋂₀ { Set.Relation.ran R | R ∈ A } := by
show ∀ x, x ∈ Set.Relation.ran (⋂₀ A) → x ∈ ⋂₀ { Set.Relation.ran R | R ∈ A }
unfold Set.Relation.ran Prod.snd
simp only [
Set.mem_image,
Set.mem_sInter,
Prod.exists,
exists_and_right,
exists_eq_right,
Set.mem_setOf_eq,
forall_exists_index,
and_imp,
forall_apply_eq_imp_iff₂
]
intro _ y hy R hR
exact ⟨y, hy R hR⟩
end Enderton.Set.Chapter_3