Enderton. Finish exercises 6.
parent
8b5736397c
commit
3d556bc613
|
@ -2792,36 +2792,127 @@ Show that if $R$ is a relation, then $\fld{R} = \bigcup\bigcup R$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 6.8}}%
|
||||
\subsection{\verified{Exercise 6.8}}%
|
||||
\label{sub:exercise-6.8}
|
||||
|
||||
Show that for any set $\mathscr{A}$:
|
||||
\begin{align}
|
||||
\dom{\bigcup{\mathscr{A}}}
|
||||
& = \bigcup\; \{ \dom{R} \mid R \in \mathscr{A} \},
|
||||
& = \bigcup\;\{ \dom{R} \mid R \in \mathscr{A} \},
|
||||
& \label{sub:exercise-6.8-eq1} \\
|
||||
\ran{\bigcup{\mathscr{A}}}
|
||||
& = \bigcup\; \{ \ran{R} \mid R \in \mathscr{A} \}.
|
||||
& = \bigcup\;\{ \ran{R} \mid R \in \mathscr{A} \}.
|
||||
& \label{sub:exercise-6.8-eq2}
|
||||
\end{align}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
\statementpadding
|
||||
|
||||
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.exercise\_6\_8\_i}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.exercise\_6\_8\_ii}
|
||||
|
||||
We prove (i) \eqref{sub:exercise-6.8-eq1} and then (ii)
|
||||
\eqref{sub:exercise-6.8-eq2}.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
Let $x \in \dom{\bigcup{\mathscr{A}}}$.
|
||||
By definition of a domain, there exists some $y$ such that
|
||||
$\left< x, y \right> \in \bigcup{\mathscr{A}}$.
|
||||
By definition of the union of sets,
|
||||
$\exists y, \exists R \in \mathscr{A}, \left< x, y \right> \in R$.
|
||||
Equivalently,
|
||||
$\exists R \in \mathscr{A}, \exists y, \left< x, y \right> \in R$.
|
||||
By another application of the definition of a domain,
|
||||
$\exists R \in \mathscr{A}, x \in \dom{R}$.
|
||||
By another application of the definition of the union of sets,
|
||||
$x \in \bigcup\;\{ \dom{R} \mid R \in \mathscr{A} \}$.
|
||||
Since membership of these two sets holds biconditionally, it follows
|
||||
\eqref{sub:exercise-6.8-eq1} holds.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
Let $x \in \ran{\bigcup{\mathscr{A}}}$.
|
||||
By definition of a range, there exists some $t$ such that
|
||||
$\left< t, x \right> \in \bigcup{\mathscr{A}}$.
|
||||
By definition of the union of sets,
|
||||
$\exists t, \exists R \in \mathscr{A}, \left< t, x \right> \in R$.
|
||||
Equivalently,
|
||||
$\exists R \in \mathscr{A}, \exists t, \left< t, x \right> \in R$.
|
||||
By another application of the definition of a range,
|
||||
$\exists R \in \mathscr{A}, x \in \ran{R}$.
|
||||
By another application of the definition of the union of sets,
|
||||
$x \in \bigcup\;\{ \ran{R} \mid R \in \mathscr{A} \}$.
|
||||
Since membership of these two sets holds biconditionally, it follows
|
||||
\eqref{sub:exercise-6.8-eq2} holds.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 6.9}}%
|
||||
\subsection{\verified{Exercise 6.9}}%
|
||||
\label{sub:exercise-6.9}
|
||||
|
||||
Discuss the result of replacing the union operation by the intersection
|
||||
operation in the preceding problem.
|
||||
|
||||
\begin{proof}
|
||||
\begin{answer}
|
||||
|
||||
TODO
|
||||
\statementpadding
|
||||
|
||||
\end{proof}
|
||||
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.exercise\_6\_9\_i}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.exercise\_6\_9\_ii}
|
||||
|
||||
Replacing the union operation with the intersection problem produces the
|
||||
following relationships
|
||||
\begin{align}
|
||||
\dom{\bigcap{\mathscr{A}}}
|
||||
& \subseteq \bigcap\;\{ \dom{R} \mid R \in \mathscr{A} \},
|
||||
& \label{sub:exercise-6.9-eq1} \\
|
||||
\ran{\bigcap{\mathscr{A}}}
|
||||
& \subseteq \bigcap\;\{ \ran{R} \mid R \in \mathscr{A} \}.
|
||||
& \label{sub:exercise-6.9-eq2}
|
||||
\end{align}
|
||||
|
||||
We prove (i) \eqref{sub:exercise-6.9-eq1} and then (ii)
|
||||
\eqref{sub:exercise-6.9-eq2}.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
Let $x \in \dom{\bigcap{\mathscr{A}}}$.
|
||||
By definition of the domain of a set,
|
||||
$\exists y, \left< x, y \right> \in \bigcap{\mathscr{A}}$.
|
||||
By definition of the intersection of sets,
|
||||
$\exists y, \forall R \in \mathscr{A}, \left< x, y \right> \in R$.
|
||||
But this implies that
|
||||
$\forall R \in \mathscr{A}, \exists y, \left< x, y \right> \in R$.
|
||||
By another application of the definition of the domain of a set,
|
||||
$\forall R \in \mathscr{A}, x \in \dom{R}$.
|
||||
By another application of the intersection of sets,
|
||||
$x \in \bigcap\;\{ \dom{R} \mid R \in \mathscr{A} \}$.
|
||||
Thus \eqref{sub:exercise-6.9-eq1} holds.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
Let $x \in \ran{\bigcap{\mathscr{A}}}$.
|
||||
By definition of the range of a set,
|
||||
$\exists t, \left< t, x \right> \in \bigcap{\mathscr{A}}$.
|
||||
By definition of the intersection of sets,
|
||||
$\exists t, \forall R \in \mathscr{A}, \left< t, x \right> \in R$.
|
||||
But this implies that
|
||||
$\forall R \in \mathscr{A}, \exists t, \left< t, x \right> \in R$.
|
||||
By another application of the definition of the domain of a set,
|
||||
$\forall R \in \mathscr{A}, x \in \ran{R}$.
|
||||
By another application of the intersection of sets,
|
||||
$x \in \bigcap\;\{ \ran{R} \mid R \in \mathscr{A} \}$.
|
||||
Thus \eqref{sub:exercise-6.9-eq2} holds.
|
||||
|
||||
\end{answer}
|
||||
|
||||
\section{Exercises 7}%
|
||||
\label{sec:exercises-7}
|
||||
|
|
|
@ -329,4 +329,107 @@ theorem exercise_6_7 {R : Set.Relation α}
|
|||
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at this
|
||||
exact hxy_mem this
|
||||
|
||||
/-- ### Exercise 6.8i
|
||||
|
||||
Show that for any set `𝓐`:
|
||||
```
|
||||
dom ⋃ A = ⋃ { dom R | R ∈ 𝓐 }
|
||||
```
|
||||
-/
|
||||
theorem exercise_6_8_i {A : Set (Set.Relation α)}
|
||||
: Set.Relation.dom (⋃₀ A) = ⋃₀ { Set.Relation.dom R | R ∈ A } := by
|
||||
ext x
|
||||
unfold Set.Relation.dom Prod.fst
|
||||
simp only [
|
||||
Set.mem_image,
|
||||
Set.mem_sUnion,
|
||||
Prod.exists,
|
||||
exists_and_right,
|
||||
exists_eq_right,
|
||||
Set.mem_setOf_eq,
|
||||
exists_exists_and_eq_and
|
||||
]
|
||||
apply Iff.intro
|
||||
· intro ⟨y, ⟨t, ⟨ht, hx⟩⟩⟩
|
||||
exact ⟨t, ⟨ht, ⟨y, hx⟩⟩⟩
|
||||
· intro ⟨t, ⟨ht, ⟨y, hx⟩⟩⟩
|
||||
exact ⟨y, ⟨t, ⟨ht, hx⟩⟩⟩
|
||||
|
||||
/-- ### Exercise 6.8ii
|
||||
|
||||
Show that for any set `𝓐`:
|
||||
```
|
||||
ran ⋃ A = ⋃ { ran R | R ∈ 𝓐 }
|
||||
```
|
||||
-/
|
||||
theorem exercise_6_8_ii {A : Set (Set.Relation α)}
|
||||
: Set.Relation.ran (⋃₀ A) = ⋃₀ { Set.Relation.ran R | R ∈ A } := by
|
||||
ext x
|
||||
unfold Set.Relation.ran Prod.snd
|
||||
simp only [
|
||||
Set.mem_image,
|
||||
Set.mem_sUnion,
|
||||
Prod.exists,
|
||||
exists_eq_right,
|
||||
Set.mem_setOf_eq,
|
||||
exists_exists_and_eq_and
|
||||
]
|
||||
apply Iff.intro
|
||||
· intro ⟨t, ⟨y, ⟨hy, ht⟩⟩⟩
|
||||
exact ⟨y, ⟨hy, ⟨t, ht⟩⟩⟩
|
||||
· intro ⟨y, ⟨hy, ⟨t, ht⟩⟩⟩
|
||||
exact ⟨t, ⟨y, ⟨hy, ht⟩⟩⟩
|
||||
|
||||
/-- ## Exercise 6.9i
|
||||
|
||||
Discuss the result of replacing the union operation by the intersection
|
||||
operation in the preceding problem.
|
||||
```
|
||||
dom ⋃ A = ⋃ { dom R | R ∈ 𝓐 }
|
||||
```
|
||||
-/
|
||||
theorem exercise_6_9_i {A : Set (Set.Relation α)}
|
||||
: Set.Relation.dom (⋂₀ A) ⊆ ⋂₀ { Set.Relation.dom R | R ∈ A } := by
|
||||
show ∀ x, x ∈ Set.Relation.dom (⋂₀ A) → x ∈ ⋂₀ { Set.Relation.dom R | R ∈ A }
|
||||
unfold Set.Relation.dom Prod.fst
|
||||
simp only [
|
||||
Set.mem_image,
|
||||
Set.mem_sInter,
|
||||
Prod.exists,
|
||||
exists_and_right,
|
||||
exists_eq_right,
|
||||
Set.mem_setOf_eq,
|
||||
forall_exists_index,
|
||||
and_imp,
|
||||
forall_apply_eq_imp_iff₂
|
||||
]
|
||||
intro _ y hy R hR
|
||||
exact ⟨y, hy R hR⟩
|
||||
|
||||
/-- ## Exercise 6.9ii
|
||||
|
||||
Discuss the result of replacing the union operation by the intersection
|
||||
operation in the preceding problem.
|
||||
```
|
||||
ran ⋃ A = ⋃ { ran R | R ∈ 𝓐 }
|
||||
```
|
||||
-/
|
||||
theorem exercise_6_9_ii {A : Set (Set.Relation α)}
|
||||
: Set.Relation.ran (⋂₀ A) ⊆ ⋂₀ { Set.Relation.ran R | R ∈ A } := by
|
||||
show ∀ x, x ∈ Set.Relation.ran (⋂₀ A) → x ∈ ⋂₀ { Set.Relation.ran R | R ∈ A }
|
||||
unfold Set.Relation.ran Prod.snd
|
||||
simp only [
|
||||
Set.mem_image,
|
||||
Set.mem_sInter,
|
||||
Prod.exists,
|
||||
exists_and_right,
|
||||
exists_eq_right,
|
||||
Set.mem_setOf_eq,
|
||||
forall_exists_index,
|
||||
and_imp,
|
||||
forall_apply_eq_imp_iff₂
|
||||
]
|
||||
intro _ y hy R hR
|
||||
exact ⟨y, hy R hR⟩
|
||||
|
||||
end Enderton.Set.Chapter_3
|
Loading…
Reference in New Issue