Enderton. Recursion on omega exercises.
parent
d64bf9b076
commit
8b1da10ef1
|
@ -6636,15 +6636,18 @@ Show that $h$ is one-to-one.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.9}}%
|
||||
\subsection{\unverified{Exercise 4.9}}%
|
||||
\hyperlabel{sub:exercise-4.9}
|
||||
|
||||
Let $f$ be a function from $B$ into $B$, and assume that $A \subseteq B$.
|
||||
We have two possible methods for constructing the "closure" $C$ of $A$ under
|
||||
$f$.
|
||||
First define $C^*$ to be the intersection of the closed supersets of $A$:
|
||||
$$C^* = \bigcap\{X \mid
|
||||
A \subseteq X \subseteq B \land \img{f}{X} \subseteq X\}.$$
|
||||
\begin{equation}
|
||||
\label{sub:exercise-4.9-eq1}
|
||||
C^* = \bigcap\{X \mid
|
||||
A \subseteq X \subseteq B \land \img{f}{X} \subseteq X\}.
|
||||
\end{equation}
|
||||
Alternatively, we could apply the recursion theorem to obtain the function $h$
|
||||
for which
|
||||
\begin{align*}
|
||||
|
@ -6652,8 +6655,12 @@ Alternatively, we could apply the recursion theorem to obtain the function $h$
|
|||
h(n^+) & = h(n) \cup \img{f}{h(n)}.
|
||||
\end{align*}
|
||||
Clearly $h(0) \subseteq h(1) \subseteq \cdots$; define $C_*$ to be
|
||||
$\bigcup\ran{h}$; in other words $$C_* = \bigcup_{i \in \omega} h(i).$$
|
||||
Show that $C^+ = C_*$.
|
||||
$\bigcup\ran{h}$; in other words
|
||||
\begin{equation}
|
||||
\label{sub:exercise-4.9-eq2}
|
||||
C_* = \bigcup_{i \in \omega} h(i).
|
||||
\end{equation}
|
||||
Show that $C^* = C_*$.
|
||||
[\textit{Suggestion}:
|
||||
To show that $C^* \subseteq C_*$, show that $\img{f}{C_*} \subseteq C_*$.
|
||||
To show that $C_* \subseteq C^*$, use induction to show that
|
||||
|
@ -6661,11 +6668,70 @@ To show that $C_* \subseteq C^*$, use induction to show that
|
|||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
We show that $C^* \subseteq C_*$ and $C^* \supseteq C_*$.
|
||||
|
||||
\paragraph{($\subseteq$)}%
|
||||
|
||||
It suffices to show $\img{f}{C_*} \subseteq C_*$ since then $C_*$ is a
|
||||
member of the family of sets being intersected in
|
||||
\eqref{sub:exercise-4.9-eq1}.
|
||||
Let $t \in \img{f}{C_*}$.
|
||||
By definition of the \nameref{ref:image} of a set, there exists some
|
||||
$u \in C_*$ such that $f(u) = t$.
|
||||
By \eqref{sub:exercise-4.9-eq2}, there exists some $i \in \omega$ such that
|
||||
$u \in h(i)$.
|
||||
Then $t \in \img{f}{h(i)} \subseteq h(i) \cup \img{f}{h(i)} = h(i^+)$.
|
||||
Therefore \eqref{sub:exercise-4.9-eq2} indicates $t \in C_*$.
|
||||
|
||||
\paragraph{($\supseteq$)}%
|
||||
|
||||
Define $$S = \{n \in \omega \mid h(n) \subseteq C^*\}.$$
|
||||
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
||||
Afterward we prove that (iii) $C_* \subseteq C^*$.
|
||||
|
||||
\subparagraph{(i)}%
|
||||
\label{spar:exercise-4.9-i}
|
||||
|
||||
By construction, $h(0) = A$.
|
||||
It trivially follows that $A \subseteq C^*$ by
|
||||
\eqref{sub:exercise-4.9-eq1}.
|
||||
Thus $h(0) \subseteq C^*$ meaning $0 \in S$.
|
||||
|
||||
\subparagraph{(ii)}%
|
||||
\label{spar:exercise-4.9-ii}
|
||||
|
||||
Suppose $n \in S$.
|
||||
That is, $h(n) \subseteq C^*$.
|
||||
We must prove that $h(n^+) \subseteq C^*$.
|
||||
Let $$t \in h(n^+) = h(n) \cup \img{f}{h(n)}.$$
|
||||
Then either $t \in h(n)$ or $t \in \img{f}{h(n)}$.
|
||||
If $t \in h(n)$, it immediately follows $t \in C^*$.
|
||||
If $t \in \img{f}{h(n)}$, then the definition of the \nameref{ref:image}
|
||||
of a set implies there exists some $u \in h(n)$ such that $f(u) = t$.
|
||||
Since $h(n) \subseteq C^*$, \eqref{sub:exercise-4.9-eq1} indicates that
|
||||
$$\forall X, A \subseteq X \subseteq B \land
|
||||
\img{f}{X} \subseteq X \Rightarrow u \in X.$$
|
||||
But then closure under image yields
|
||||
$$\forall X, A \subseteq X \subseteq B \land
|
||||
\img{f}{X} \subseteq X \Rightarrow f(u) \in X.$$
|
||||
Since $f(u) = t$, $t \in C^*$.
|
||||
Thus $h(n^+) \subseteq C^*$, i.e. $n^+ \in S$.
|
||||
|
||||
\subparagraph{(iii)}%
|
||||
|
||||
By \nameref{spar:exercise-4.9-i} and \nameref{spar:exercise-4.9-ii},
|
||||
$S \subseteq \omega$ is an \nameref{ref:inductive-set}.
|
||||
By \nameref{sub:theorem-4b}, $S = \omega$.
|
||||
That is, for all $n \in \omega$, $h(n) \subseteq C^*$.
|
||||
Thus $$C_* = \bigcup_{i \in \omega} h(i) \subseteq C^*.$$
|
||||
|
||||
\paragraph{Conclusion}%
|
||||
|
||||
Since $C^* \subseteq C_*$ and $C_* \subseteq C^*$, it follows $C^* = C_*$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.10}}%
|
||||
\subsection{\unverified{Exercise 4.10}}%
|
||||
\hyperlabel{sub:exercise-4.10}
|
||||
|
||||
In Exercise 9, assume that $B$ is the set of real numbers, $f(x) = x^2$, and $A$
|
||||
|
@ -6674,11 +6740,17 @@ What is the set called $C^*$ and $C_*$?
|
|||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
By \nameref{sub:exercise-4.9}, $C^* = C_*$.
|
||||
By definition,
|
||||
$$C^* = \bigcap \{X \mid
|
||||
\icc{\frac{1}{2}}{1} \subseteq X \subseteq \mathbb{R} \land
|
||||
\img{f}{X} \subseteq X\}.$$
|
||||
Since $f(x)$ converges to $0$ for all values $x < 1$, it follows
|
||||
$C^* = C_* = \ioc{0}{1}$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.11}}%
|
||||
\subsection{\unverified{Exercise 4.11}}%
|
||||
\hyperlabel{sub:exercise-4.11}
|
||||
|
||||
In Exercise 9, assume that $B$ is the set of real numbers, $f(x) = x - 1$, and
|
||||
|
@ -6687,7 +6759,13 @@ What is the set called $C^*$ and $C_*$?
|
|||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
By \nameref{sub:exercise-4.9}, $C^* = C_*$.
|
||||
By definition, $$C_* = \bigcup_{i \in \omega} h(i)$$ where
|
||||
\begin{align*}
|
||||
h(0) & = A = \{0\}, \\
|
||||
h(n^+) & = h(n) \cup \img{f}{h(n)}.
|
||||
\end{align*}
|
||||
Thus $C_* = C^* = \{x \in \mathbb{Z} \mid x \leq 0\}$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
Loading…
Reference in New Issue