diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index cfd8d52..893c714 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -6636,15 +6636,18 @@ Show that $h$ is one-to-one. \end{proof} -\subsection{\sorry{Exercise 4.9}}% +\subsection{\unverified{Exercise 4.9}}% \hyperlabel{sub:exercise-4.9} Let $f$ be a function from $B$ into $B$, and assume that $A \subseteq B$. We have two possible methods for constructing the "closure" $C$ of $A$ under $f$. First define $C^*$ to be the intersection of the closed supersets of $A$: - $$C^* = \bigcap\{X \mid - A \subseteq X \subseteq B \land \img{f}{X} \subseteq X\}.$$ + \begin{equation} + \label{sub:exercise-4.9-eq1} + C^* = \bigcap\{X \mid + A \subseteq X \subseteq B \land \img{f}{X} \subseteq X\}. + \end{equation} Alternatively, we could apply the recursion theorem to obtain the function $h$ for which \begin{align*} @@ -6652,8 +6655,12 @@ Alternatively, we could apply the recursion theorem to obtain the function $h$ h(n^+) & = h(n) \cup \img{f}{h(n)}. \end{align*} Clearly $h(0) \subseteq h(1) \subseteq \cdots$; define $C_*$ to be - $\bigcup\ran{h}$; in other words $$C_* = \bigcup_{i \in \omega} h(i).$$ -Show that $C^+ = C_*$. + $\bigcup\ran{h}$; in other words + \begin{equation} + \label{sub:exercise-4.9-eq2} + C_* = \bigcup_{i \in \omega} h(i). + \end{equation} +Show that $C^* = C_*$. [\textit{Suggestion}: To show that $C^* \subseteq C_*$, show that $\img{f}{C_*} \subseteq C_*$. To show that $C_* \subseteq C^*$, use induction to show that @@ -6661,11 +6668,70 @@ To show that $C_* \subseteq C^*$, use induction to show that \begin{proof} - TODO + We show that $C^* \subseteq C_*$ and $C^* \supseteq C_*$. + + \paragraph{($\subseteq$)}% + + It suffices to show $\img{f}{C_*} \subseteq C_*$ since then $C_*$ is a + member of the family of sets being intersected in + \eqref{sub:exercise-4.9-eq1}. + Let $t \in \img{f}{C_*}$. + By definition of the \nameref{ref:image} of a set, there exists some + $u \in C_*$ such that $f(u) = t$. + By \eqref{sub:exercise-4.9-eq2}, there exists some $i \in \omega$ such that + $u \in h(i)$. + Then $t \in \img{f}{h(i)} \subseteq h(i) \cup \img{f}{h(i)} = h(i^+)$. + Therefore \eqref{sub:exercise-4.9-eq2} indicates $t \in C_*$. + + \paragraph{($\supseteq$)}% + + Define $$S = \{n \in \omega \mid h(n) \subseteq C^*\}.$$ + We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$. + Afterward we prove that (iii) $C_* \subseteq C^*$. + + \subparagraph{(i)}% + \label{spar:exercise-4.9-i} + + By construction, $h(0) = A$. + It trivially follows that $A \subseteq C^*$ by + \eqref{sub:exercise-4.9-eq1}. + Thus $h(0) \subseteq C^*$ meaning $0 \in S$. + + \subparagraph{(ii)}% + \label{spar:exercise-4.9-ii} + + Suppose $n \in S$. + That is, $h(n) \subseteq C^*$. + We must prove that $h(n^+) \subseteq C^*$. + Let $$t \in h(n^+) = h(n) \cup \img{f}{h(n)}.$$ + Then either $t \in h(n)$ or $t \in \img{f}{h(n)}$. + If $t \in h(n)$, it immediately follows $t \in C^*$. + If $t \in \img{f}{h(n)}$, then the definition of the \nameref{ref:image} + of a set implies there exists some $u \in h(n)$ such that $f(u) = t$. + Since $h(n) \subseteq C^*$, \eqref{sub:exercise-4.9-eq1} indicates that + $$\forall X, A \subseteq X \subseteq B \land + \img{f}{X} \subseteq X \Rightarrow u \in X.$$ + But then closure under image yields + $$\forall X, A \subseteq X \subseteq B \land + \img{f}{X} \subseteq X \Rightarrow f(u) \in X.$$ + Since $f(u) = t$, $t \in C^*$. + Thus $h(n^+) \subseteq C^*$, i.e. $n^+ \in S$. + + \subparagraph{(iii)}% + + By \nameref{spar:exercise-4.9-i} and \nameref{spar:exercise-4.9-ii}, + $S \subseteq \omega$ is an \nameref{ref:inductive-set}. + By \nameref{sub:theorem-4b}, $S = \omega$. + That is, for all $n \in \omega$, $h(n) \subseteq C^*$. + Thus $$C_* = \bigcup_{i \in \omega} h(i) \subseteq C^*.$$ + + \paragraph{Conclusion}% + + Since $C^* \subseteq C_*$ and $C_* \subseteq C^*$, it follows $C^* = C_*$. \end{proof} -\subsection{\sorry{Exercise 4.10}}% +\subsection{\unverified{Exercise 4.10}}% \hyperlabel{sub:exercise-4.10} In Exercise 9, assume that $B$ is the set of real numbers, $f(x) = x^2$, and $A$ @@ -6674,11 +6740,17 @@ What is the set called $C^*$ and $C_*$? \begin{proof} - TODO + By \nameref{sub:exercise-4.9}, $C^* = C_*$. + By definition, + $$C^* = \bigcap \{X \mid + \icc{\frac{1}{2}}{1} \subseteq X \subseteq \mathbb{R} \land + \img{f}{X} \subseteq X\}.$$ + Since $f(x)$ converges to $0$ for all values $x < 1$, it follows + $C^* = C_* = \ioc{0}{1}$. \end{proof} -\subsection{\sorry{Exercise 4.11}}% +\subsection{\unverified{Exercise 4.11}}% \hyperlabel{sub:exercise-4.11} In Exercise 9, assume that $B$ is the set of real numbers, $f(x) = x - 1$, and @@ -6687,7 +6759,13 @@ What is the set called $C^*$ and $C_*$? \begin{proof} - TODO + By \nameref{sub:exercise-4.9}, $C^* = C_*$. + By definition, $$C_* = \bigcup_{i \in \omega} h(i)$$ where + \begin{align*} + h(0) & = A = \{0\}, \\ + h(n^+) & = h(n) \cup \img{f}{h(n)}. + \end{align*} + Thus $C_* = C^* = \{x \in \mathbb{Z} \mid x \leq 0\}$. \end{proof}